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A New Measure of Movement Symmetry in Early
Parkinson’s Disease Patients Using Symbolic
Processing of Inertial Sensor Data

Anita Sant’ Anna®*, Arash Salarian, Member, IEEE, and Nicholas Wickstrom, Member, IEEE

Abstract—Movement asymmetry is one of the motor symptoms
associated with Parkinson’s disease (PD). Therefore, being able to
detect and measure movement symmetry is important for mon-
itoring the patient’s condition. The present paper introduces a
novel symbol based symmetry index calculated from inertial sen-
sor data. The method is explained, evaluated, and compared to six
other symmetry measures. These measures were used to determine
the symmetry of both upper and lower limbs during walking of 11
early-to-mid-stage PD patients and 15 control subjects. The pa-
tients included in the study showed minimal motor abnormalities
according to the unified Parkinson’s disease rating scale (UPDRS).
The symmetry indices were used to classify subjects into two differ-
ent groups corresponding to PD or control. The proposed method
presented high sensitivity and specificity with an area under the re-
ceiver operating characteristic (ROC) curve of 0.872, 9% greater
than the second best method. The proposed method also showed
an excellent intraclass correlation coefficient (ICC) of 0.949, 55%
greater than the second best method. Results suggest that the pro-
posed symmetry index is appropriate for this particular group of
patients.

Index Terms—Gyroscope, Parkinson’s disease, symbolization,
symmetry.

I. INTRODUCTION

OTOR dysfunctions have long been associated with neu-
M rological conditions. There is evidence that movement
asymmetry is commonly observed in conjunction with a decline
in health status [1]. Parkinson’s disease (PD) patients, in partic-
ular, may exhibit very asymmetrical gait [2], and asymmetrical
hand movements [3].

Although many symmetry measures have been suggested in
the literature, there is still no accepted standard. Each symme-
try measure may convey different information, and there is no
correspondence between most measures. That is, one symmetry
measure cannot be inferred from another. The lack of a stan-
dard measure and the fact that results are not transferable from
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one symmetry index to another suggest that each application
may require a different optimal measure. Early PD patients, for
example, exhibit very subtle movement characteristics that can
only be evidenced by very sensitive tools. The objective of the
present paper is to introduce, evaluate, and benchmark a new
measure of movement symmetry, appropriate for early-to-mid-
stage PD patients. The present paper will not dwell on clinical
aspects of the proposed method; such analysis will be addressed
in future works.

The sample of PD patients chosen for this study showed min-
imal motor abnormality and practically no postural instability.
Characterizing the differences in movement symmetry between
these patients and controls is a challenging task. The symme-
try measure proposed here aims at detecting subtle movement
asymmetries, which are characteristic of early PD symptoms.
The proposed method is based on the analysis of symbolized
inertial sensor data. The data were collected using gyroscopes
attached to upper and lower limbs of the trial subjects dur-
ing walking. These data were used to evaluate the performance
of the proposed symmetry index in comparison with six other
methods: symmetry index (Slindex), symmetry angle (SLiygle),
gait asymmetry (Slga), trend symmetry (Sl enq), maximum
angular velocity ratio (SI;.¢i,), and latency-corrected ensem-
ble average symmetry magnitude (SIy,cga ). All methods were
evaluated for sensitivity and test-retest reliability.

II. RELATED WORK

Symmetry measures typically compute the similarity between
the movements of the right and left sides of the body. Once the
movement information has been obtained (via sensors, cam-
eras or others), there are several different ways to compute the
similarity between both sides. Generally speaking, gait symme-
try measures can be computed: 1) from certain discrete values,
e.g., double support time, stride length, or 2) from continuous
signals, e.g., EMG signals, accelerometer signals. Through this
document, the former will be referred to as discrete methods,
and the latter as continuous methods.

Discrete methods are the most common. They require simple
movement information, and they can be easily computed. For
this reason, the earlier symmetry indices belong to this category.
In the late 1980s, Robinson ef al. [4] proposed a simple way to
quantify symmetry between right and left lower limbs. Since
then, several other authors have proposed small variations to
Robinson’s method, e.g., [5]-[8]. Robinson’s formula has also
been used to quantify asymmetry of upper limbs [9]. The ma-
jor limitation of this method is that a reference value must be
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chosen, and inappropriate choices of reference may cause ar-
tificial inflation [7]. Zifchock et al. [7] proposed a symmetry
angle measure that did not require a reference value. Zifchock’s
symmetry angle has also been applied to upper limb data [10].
Other examples of discrete symmetry measures are presented
in [1], [11], [12], [13]. All these measures are limited to discrete
values. If the motion data are obtained from a continuous source,
preprocessing is needed to extract values which can later be used
to estimate symmetry. Discrete methods normally make use of
spatiotemporal gait measurements, or features extracted from
kinematic data. Most gait symmetry studies have focused on
lower limb measurements. However, some recent studies have
also observed the role of arm swing symmetry during walking,
e.g., [9], [10], [13].

Continuous methods compare similarities between two con-
tinuous signals; they, therefore, require continuous motion in-
formation such as EMG, acceleration, angular displacement or
position. These methods are more easily applied to whole-body
data. Moe-Nilssen and Helbostad [14], for example, introduced
an unbiased autocorrelation method using trunk acceleration
data. Crenshaw and Richards [15] calculated trend symmetry
based on the variance around the st principal component of a
right-side versus left-side plot. Miller et al. [16] introduced a
latency corrected ensemble average (LCEA) method to evalu-
ate the symmetry and variability of EMG signals. Sant’ Anna
and Wickstrom [17] recently suggested a symbolic method for
estimating gait symmetry.

Although discrete methods have been proved very useful,
continuous methods are potentially more informative. While the
former may only consider isolated spatiotemporal values, the lat-
ter can compare whole movement sequences. To exemplify this
difference, consider the following thought experiment. Imagine
that one evaluates a gait pattern only by looking at the footprints
a subject creates over time. These footprints convey spatiotem-
poral information that is typically used in discrete symmetry
measures. It is possible, however, that two people with different
walking patterns create the exact same sequence of footprints.
The only way to differentiate between two such walking patterns
would be to observe what happens above ground, in between
footprints. This is the kind of information one would like to use
in continuous symmetry measures.

The method presented here is a continuous method based on
previous work by Sant’ Anna and Wickstrém [17]. The six other
methods chosen for comparison are:

1) symmetry index (Sliyqex) [4];

2) symmetry angle (SLig1e) [71;

3) gait asymmetry (SIga) [11];

4) maximum angular velocity ratio (S .i0) [18];

5) trend symmetry (Sliyenq) [15];

6) LCEA symmetry magnitude (SIpcga) [16].

Method 1 is the most commonly used, e.g., [4], [7], [15], [19].
Methods 2 and 3 were among the discrete methods investigated
by Patterson et al. [20]. These measures, calculated for swing
time and stance time, were able to detect statistically signifi-
cant differences between stroke patients and the healthy control
group. Method 4 is a variant of method 1 that may be used to
measure the symmetry of both lower and upper limbs. Meth-
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Fig. 1. Standardization. Consider an original signal, Sy, with mean p, and
standard deviation (. The original signal is standardized to zero mean and
unitary standard deviation according to the formula: S = (S — po)/00. (@)
shows an example of original signal, and (b) illustrates the same signal after
standardization.

ods 5 and 6 were chosen among a small number of continuous
methods in the literature. They were the only continuous meth-
ods that could be implemented using the data available in the
present study.

III. METHOD

A. Data Analysis

The proposed symbolic symmetry index, Slgy1, is based on
the concept of motion language [17], [21]. The present method,
however, differs from [17] in symbolization method and type of
sensors used. The main characteristic of this method is that the
continuous signal is segmented and transformed into a string
composed of a finite number of symbols. One of the advantages
of using symbols instead of the raw signal is that it makes
the analysis more robust to measurement noise and to small
data variations which are not useful to the intended analysis.
Another interesting property of this method is that it incorporates
information about the shape and temporal characteristics of the
signal. In addition, no gait events such as heel strike or toe-off
need to be calculated, eliminating a potential source of error. On
the other hand, symbolic methods are greatly influenced by the
choice of symbols. Inadequate symbols may overlook important
information or exacerbate the influence of irrelevant factors.

1) Symbolization: In order to calculate the novel symmetry
index, the data must be symbolized. In order to achieve this,
the original signal, Fig. 1(a), is first standardized to zero mean,
1 = 0, and standard deviation one, o = 1, Fig. 1(b). This stan-
dardization is needed to ensure that all signals are within the
same range, which facilitates segmentation. This standardiza-
tion does not compromise the analysis of the data because the
symbolic symmetry index aims to compare the shape of two sig-
nals, not their absolute values. It is unlikely that two signals will
have the same shape and different absolute values. When the
subject is walking in a straight line, the average speed of both
hands must coincide with the average walking speed. There-
fore, a faster swing on one side needs to be compensated by a
different pattern of motion.
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Fig. 2. Symbolization. The continuous signal is segmented into 10 equiprob-
able quantization levels (deciles). (a) shows an example of standardized signal.
The horizontal lines correspond to the quantization levels based on a normal
probability density function (p.d.f) with zero mean and unit standard devia-
tion, as shown in (b). (c) illustrates the same signal after symbolization. Each
quantization level corresponds to a symbol.

The standardized signal, Fig. 2(a), is then partitioned into
ten different quantization values. The quantization values are
based on deciles, i.e., ten equiprobable partitions of a normal
distribution, Fig. 2(b). This segmentation technique is known as
symbolic aggregate approximation (SAX) [22]. This segmenta-
tion method is not limited to ten partitions, different numbers
of partitions could be used. For this analysis, alternative parti-
tions were investigated (see Section VI). The results obtained
with ten partitions were most satisfactory. All values between
two consecutive partitions are then joined into a segment and
represented by a symbol, Fig. 2(c). The segment’s mid-point is
used to represent when that symbol segment occurs in time. For
simplicity, the symbols are numbers from 1 to 10.

2) Symbolic Symmetry Index: Once the signal has been sym-
bolized, Fig. 3(a), the symmetry index is calculated as follows.
For each symbol, i, construct a period histogram by finding
the period between consecutive segments of the same symbol,
Fig. 3(b). These periods are sorted into intervals of 0.1 s each
and organized as a histogram, Fig. 3(c). Intervals of 0.1 s were
chosen based on previously observed frequency characteristics
of human movements [23]. It has been shown that 99% of the
acceleration power during walking is concentrated below 15 Hz,
and that the lower frequencies are the ones that directly result
from voluntary muscular work. Considering that rotational data
typically contains lower frequencies than acceleration data, a
period of 0.1 s (10 Hz) was judged sufficient to capture relevant
movement information.

The period histogram is then normalized by its sum, Fig. 3(d),
so as to consider the relative distribution of symbol periods,
disregarding the number of steps recorded. Period histograms
are calculated for both the right (hy;) and left (hy;) limbs, for
each symbol.

The symbolic symmetry index (Slsymy) is a comparison be-
tween the histograms of the right and left signals:

Z LK g (k) — k(K
Ez:l n; Zk:l' ri(k) Li )‘100 )

SRS i (k) + hyi(k)]
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2129

(a) Symbols

4

3

2

1

T T T T T T Time (s)
03 03 01 03 04 0101

(b)Symbol 1 periods

(d)Normalized period
histogram

47
3wt || 37
|| 2
s == 17

(c) Period histogram
Symbol 1

0.1 0203 04

0.1 02 03 04
(s) Period (s)

Period (s

Fig. 3. Period Histograms. Period histograms are formed by measuring the
time between two consecutive segments of the same symbol. (a) is a simple
example of how symbols may occur over time. (b) illustrates how the periods
of symbol / are calculated based on their occurrence over time. (c) shows how
the histogram is constructed from the calculated periods. (d) shows the period
histogram normalized by its sum.
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Fig. 4. Example. Comparing period histograms for one symbol. (a) and (b)
show simple examples of possible period histograms. (c) is the absolute differ-
ence between the histograms in (a) and (b). (c) shows the sum of the histograms
in (a) and (b).

where Z = 10 is the number of symbols, K’ < 10(MAXeriod)
is the number of bins in the histograms and M AX,¢rioq is the
largest symbol period; n; is the number of non-empty histogram
bins (for either foot) for symbol ¢, hr; (k) is the normalized value
for bin k in the period histogram i for the right foot, and hy,; (k)
is the normalized value for bin k in the period histogram ¢ for
the left foot.

The histograms’ difference (numerator) and the histograms’
sum (denominator) for each symbol are multiplied by a weight
inversely proportional to the number of bins in the histogram.
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This weight penalizes the symbols with very variable periods.
The Slgy .y is then the sum of weighted histograms’ differences
divided by the sum of weighted histograms’ sums. If the left
and right histograms are the same, Sly,,;, = 0 and the signals
are considered symmetric. If the left and right histograms have
nothing in common, the absolute difference equals the sum and
SIsymb = 100.

Fig. 4 illustrates the calculus of SIgy,1, for one particular sym-
bol, where K = 4, 1 = 1, n; = 4. Fig. 4(c) shows the absolute
difference of the histograms in 4(a) and 4(b), and corresponds
to the numerator of (1), e.g., S-y_, |hr1 (k) — hr1(k)| = 2/7.
Fig. 4(d) is the sum of the histograms in 4(a) and 4(b) and
corresponds to the denominator of (1), e.g., Z;ﬁ:l |hp1(k) +
hri(k)| = 14/7 = 2. This process is repeated for all ten sym-
bols. The results are weighted and summed, and the quotient is
taken.

B. Reference Symmetry Indices

The reference methods were implemented as follows:
1) Symmetry index [4]:

| X1 — Xg|

SIin ex — T v v .\
a max (X, Xr)

100 -

2) Gait asymmetry [11]:
min(XR,XL)
Iga =100 |In § ————F=%
Sloa =100 ’n{maX(XRaXL)H

3) Symmetry angle [7]:

45 — arctan{ Xy /Xr}
90
where Xy is the variable from the right side, averaged
over all cycles, and X}, the respective variable from the
left side.
4) Maximum angular velocity ratio [18]:

Slangle = 100 -

IMA, — MAj|

Imi =1 '
5 atlo 00 maX(MAL,MAR)

where M AR (7 is the maximum angular velocity during
a cycle, averaged over all cycles.
5) Trend symmetry [15]:

X tTL
Slirena = 100 - mean,, { var(roL)}

var(Xrot’,)
where
Xroth, = Xm', cos(0) + Xm] sin(h),
Xrot] = —Xm}, sin(f) + Xm] cos(f)
0 is the angle between the first eigenvector of M =
[Xm}, Xm]] and the horizontal axis, Xmp =

X' () — mean(X% ), and X% ;) is the signal from
the right (left) side for cycle n.
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6) LCEA symmetry magnitude [16]:

PRL
SIt,cea = 100 max{ T }
where pry, is the cross-correlation between LCEA R, and
LCEAL, prr(LL) is the autocorrelation of LCEAR (1),
and LCEAp ;) is the column-wise average of an L x N
matrix Sg(z). Each row of Sp() contains the signal for
one cycle of the data, normalized to L samples. N is the
total number of cycles in the data set for the right (left)
side. Each row of Sy(r) is also time shifted in order to
synchronize the cycles as best as possible.

C. Statistical Analysis

In the present study, the clinical evaluation did not provide
movement asymmetry information. As a result, no reference
data are available. In order to investigate the sensitivity and re-
liability of each index, a classification task was performed. The
motivation for this classification based on symmetry indices is
the assumption that the initial symptoms of PD set asymmetri-
cally, affecting one side more than the other [24]. Therefore, we
expect PD patients to exhibit greater asymmetry than control
subjects. The following statistical analyses were performed on
all symmetry indices. All hypotheses were nondirectional and
the critical significance level was 0.05.

Two-Sample t-Test: A two-sample t-test was used to determine
if the symmetry measures distinguished controls’ and patients’
results as originating from two different distributions.

Receiver Operating Characteristic (ROC) Curve: The area
under the ROC curve (AUC) was used to evaluate the discrimi-
natory power of each index. The ROC curves were constructed
based on tests performed on the same individuals. Therefore,
any statistically significant comparison between different AUC
must take into account the correlated nature of the data. A non-
parametric approach based on generalized U-statistics was used
to estimate the covariance matrix of the different curves [25].

Intraclass Correlation Coefficient (ICC): Eight controls and
eight PD patients were measured twice. This data was used to
assess the test-retest reliability of each index using ICC type
A-1 as a measure of absolute agreement [26].

IV. EXPERIMENTAL SETUP
A. Subjects

The data used in the present study were derived from the
study by Zampieri et al. [18]. The control group consisted of
15 healthy subjects, aged 61.4 + 7.8 years, and weighing 81.4
+ 20.5 kg. The patient group was composed of 11 subjects
with idiopathic PD, aged 60.1 £ 8.6 years, and weighing 79.7
4+ 13.5 kg. The differences in age and weight of the groups
were not statistically significant. The selected PD patients had
been diagnosed 13.7 £ 12.9 months earlier and had never been
treated with antiParkinson medications. They were evaluated
by a movement-disorder neurologist according to the unified
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TABLE I
DATA SUMMARY—CONTROL SUBJECTS

Hand sensor data — control subjects
Measurement Left side Right side
Cycle [ms] 986 + 82 982 + 129

Shank sensor data — control subjects

____ Measurement |  Leftside | Rightside
Stance' [%] 580+6.7 58.6 + 6.6
Swing' [%] 400 + 6.8 408 +2.6

Double support' [%] 177+£5.1
Stride length® [%] 70.6 + 10.2 77.6 +10.2
Stride time [ms] 980 + 53 980 + 53

Summary of spatiotemporal measurements for all control
subjects. The shank sensor data were processed,as described
in [8]. The hand sensor cycle time was determined, as
described in Section IV-D. The values are reported as:
mean value + standard deviation. ms: milliseconds.
*Normalized to stride time.

2Normalized to subject’s height.

Sl hand Sl.,hand SI hand Sl _. hand
index GA angle ratio
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O T | 1 T
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20 L, T30 E 115 T L |20 Q i
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50 T . ‘
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20 i % 20 i j 5 i 10 E "
10 (63 PD i C PD 0 (63 PD 0 C PD
Fig. 5. Discrete symmetry indices—distributions. Results for all discrete

methods are shown as box-plots. The whiskers represent the smallest and largest
observations, the edges of the box correspond to the lower and upper quartiles,
the horizontal line indicates the median, the plus sign marks probable outliers.
C: controls, PD: patients, hand: hand sensor data, shank: shank sensor data.

Parkinson’s disease rating scale (UPDRS), motor section [27],
and Hoehn and the Yahr (H&Y) scale [28].

Clinical evaluation of the patients’ gait according to the motor
UPDRS showed minimal gait deficiency, the postural instability
and gait disorder (PIGD) subscores was 0.7 £ 1.1 on a scale
of 0 to 16 where 0 means no impairment. Though they showed
minimal gait abnormalities, they might have had other motor
dysfunctions such as slight hand tremors. The H&Y stages of
the patient group were 1.6 4 0.6.

Subjects were excluded if they presented any neurological
disorder other than PD, or other conditions which could inter-
fere with gait. All participants signed informed consent forms
approved by the Oregon Health & Science University Internal
Review Board.

B. Apparatus

During the measurements, subjects wore a portable data-
logger (Physilog from BioAGM, Switzerland) with four inertial
sensors attached to their body. A 1-D gyroscope (range 600°/s)
was attached to the anterior shank of each limb, 4 cm above the
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TABLE II
DISCRETE SYMMETRY INDICES—SUMMARY

Hand sensor data — PD patients

Measurement Left side Right side
Cycle [ms] 1034 + 148 1053 £ 113
Shank sensor data — PD patients
Measurement Left side Right side
Stance' [%] 574 + 6.6 574+ 6.6
Swing' [%] 40.6 + 6.9 419422
Double support' [%] 16.0 + 4.1
Stride length’ [%] 754+ 112 7744112
Stride time [ms] 1051 + 73 1051 + 73

"Normalized to stride time.

*Normalized to subject’s height.

Summary of spatiotemporal measurements for all PD
The shank sensor data was processed as described in [8].
The hand sensor cycle time was determined as described
in Section IV-D. The values are reported as:

mean value £ standard deviation. ms: milliseconds.

TABLE III
DATA SUMMARY—PD PATIENTS

Hand sensor data

Index Control PD
Slindex 3238 £17.98 45.29 + 22.00
SlGa 43.24 £ 31.59 67.85 £ 41.02
Slungte -1.68 £+ 15.45 5.70 £ 21.71
ST, usip 2362 £ 1627 40.55 +19.78
Shank sensor data

Index Control PD
STindex 26.58 +£4.74 2895 +£5.41
Slca 31.09 + 6.44 3443 +755
STungte 9.72 +£1.95 10.72 +£2.27
ST, uiio 12.77 £ 9.36 1329 +7.70

Results for all discrete methods are shown as:
mean value + standard deviation. The top part
of the table reports the results calculated from
hand sensor data whereas the bottom part
reports the results from shank sensor data.

ankle joint. A 2-D gyroscope (range £1200°/s) along pitch and
roll axes was attached to the dorsum of each wrist. Data were
recorded at a sampling rate of 200 Hz with 16 bits/sample and
stored in a flash memory card.

C. Protocol

The subjects were equipped with the sensors and walked at
their preferred speed along a straight 30-meter hallway for two
minutes. At the end of the hallway the subject turned around
and walked in the opposite direction. Typically, each subject
turned four times. The data were processed in order to remove
the turns and the five initial and final cycles, so as to consider
only steady-state, straight walking patterns. This is necessary
because the turn data are asymmetric in nature and would cause
a bigger effect on the results than the occasional boundary ir-
regularities that arise from creating gaps in the data. To assess
test-retest reliability, eight subjects in each group repeated the
same protocol a second time after 1 h.

D. Data Analysis

Slindexs SIga, and Slynele were calculated using temporal
variables derived from both hand and shank sensor data. The
variable chosen for the hand was mean cycle time, i.e., the time
between maximum swing velocity front-to-back from one cycle



TABLE IV

CONTINUOUS SYMMETRY INDICES—SUMMARY

Hand sensor data

Index Control PD

STyrena 4.68 +3.56 9.87+ 11.49
100 - STycpa 48.88 + 8.15 45.91 £ 10.03

Sl 23.61 +£14.12 38.74 £ 11.61

Shank sensor data

Index Control PD

Sliyena 1.51 £0.90 173+ 1.17
100 - S7ycp4 0.76 £ 0.51 148 + 151

Syymp 16.60 + 5.26 1785 +£5.78
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Results for all continuous methods are shown as:

mean value & standard deviation. The top part of the
table reports the results calculated from hand sensor data,
whereas the bottom part reports the results from shank
sensor data.

TABLE V
TWO-SAMPLE t-Test

Hand sensor data Shank sensor data
Index Reject Hy | p-value | Reject Hy | p-value
STidex YES 0.0431 NO 0.2946
Sl YES 0.0260 NO 0.2819
Slungte NO 0.1690 NO 0.2860
Sl,atio YES 0.0017 NO 0.8151
Slirena NO 0.1225 NO 0.6391
STicea NO 0.4313 NO 0.1028
Sy YES <0.0001 NO 0.4060

T-test results for the indices calculated on hand and
shank sensor data. H: results from PD and control
subjects are consistent with one single distribution.

to the next. The variable chosen for the lower limb data was
swing time, one of the measures used by Patterson et al. [20]
that was available in our dataset. SI;.tio, Slirena, and Sly,cga
were calculated from both hand and shank sensor data. The cy-
cles were determined according to strides of the corresponding
foot [8]. Sk, was calculated from hand and shank data as
explained in Section III. Because the shank sensors are 1-D and
the hand sensors are 2-D, the two axes of the hand data were
combined into a resultant signal, res = \/axisf + axis%. The
number of strides used in this analysis varied across subjects,
the average number of steps was 89.7 + 9.4. Overall, eight
discrete and six continuous measures were computed for each
subject. All the acquired data were considered for the sensitiv-
ity and specificity analysis (z-test and ROC) of the symmetry
indices. Only the data from the eight subjects who repeated the
test were used for the test-retest reliability analysis (ICC). All
data analysis was undertaken in MATLAB (MathWorks, Natick,
MA).

V. RESULTS

A summary of the variables extracted from the data is shown
in Tables I and III. There are no clear differences between control
subjects and PD patients besides hand cycle and stride time. For
both groups hand cycle duration is consistent with stride time,
and stance and swing are approximately 60% and 40% of stride
time, respectively.

A summary of the discrete symmetry indices is shown in
Table II, alongside their distributions in Fig. 5. Regarding the
shank sensor data, the spread of the distributions is so large
compared to the differences in mean values that it is difficult
to differentiate between control and PD. The indices calculated

SItrend hand (1 OO-SILCEA) hand SISymb hand
50 70— 70,
. 60 i - 60/ T
40 50 : : 501 :
% a5 B H |« Q
20 i : 30 T
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SItrend shank (100-SILCEA) shank S| r—
15 50 symb
+ 80,
] 40 60} +
10 : 30 I
. 20 407 -
N 10 20 O e
== = . Y ol
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Fig. 6. Continuous symmetry indices—distributions. Results for all contin-

uous methods are shown as box-plots. C: controls, PD: patients, hand: hand
sensor data, shank: shank sensor data.

TABLE VI
AREA UNDER ROC CURVE (AUC)

Hand sensor data

Index AUC 95% C.L p-value
STindex 0.673 [0.445, 0.902] 0.1368
Slgq 0.673 [0.445, 0.902] 0.1368
ST, uio 0.798 [0.629, 0.968] <0.0001
Sloymb 0.872 [0.720, 1.000] <0.0001

AUC results for the indices that rejected the two-sample H.

The C.L lower limits for SI; ;.. and SI;;, are smaller than 0.5;

these indices are not statistically significantly grcater than 0.5.
C.L: confidence interval.

from the hand sensor data present a similarly large spread, but
the greater differences in mean values make these better can-
didates, with the exception of SI,, 4. These observations are
corroborated by the results of the two-sample #-test shown in
Table V.

Similarly, a summary of the continuous symmetry indices is
shown in Table IV. The corresponding distributions are illus-
trated in Fig. 6. Although the distributions of the shank data are
much narrower than before, the differences between mean val-
ues is also much smaller. The only continous index that appears
as a good candidate is Slgy 1, as evidenced by the two-sample
t-test reported in Table V.

In order to further investigate the four indices that successfully
rejected the r-test Hy, the area under ROC curve (AUC) was
calculated. Table VI shows the the resulting AUC along with the
corresponding 95% confidence intervals (CI). An AUC of 0.5
indicates an inability to differentiate between control and PD.
Both SIj,qex and SIga present CI lower limit smaller than 0.5.
These areas are, therefore, not statistically significantly greater
than 0.5, as evidenced by the corresponding p-values. On the
other hand, SI, i, and Slgy,,1, present favourable AUC.

The ROC curves for these two indices are illustrated in Fig. 7.
Slsymp presents an AUC greater than Sly,i0. A x2-test was
performed to judge if this difference is statistically relevant.
The test resulted in a x> coefficient of 1.086 and a p-value
of 0.297, which indicates that there is a 30% chance that the
difference between the areas is due to chance alone.

In addition to AUC, an ICC analysis was used to judge the test-
retest reliability of Sl,.(i, and Slyy,,. The ICC results reported
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Fig. 7. ROC curves. ROC curves for methods showing AUC statistically
greater than 0.5. An ROC curve which coincides with the diagonal line indicates
a test that cannot distinguish between control and patients.

TABLE VII
INTRACLASS CORRELATION COEFFICIENTS (ICC).

Hand sensor data

Index 1ICC 95% C.I. p-value
STyaiio 0.611 [0.178, 0.849] 0.0049
SLymp 0.949 [0.859, 0.982] <0.0001

ICC results for the three indices with AUC statistically greater
than 0.5. H: intra-subject variance is similar to inter-subject
variance. C.L: confidence interval.

in Table VII show that Sy, is considerably more reliable than
SLiatio- In fact, the upper CI limit for SI,,¢;, is smaller than the
lower CI limit for SIgymp,-.

VI. DISCUSSION

The objective of the present analysis was to evaluate which
symmetry indices were able to differentiate between control
subjects and early-to-mid-stage PD patients. Out of all seven
symmetry indices calculated on upper and lower limb data, four
were able to pick up on differences between PD and control
groups according to a two-sample #-test. An ROC analysis in-
dicated that, out of these four, only Sl,ai, and Slgy.;, were
truly able to classify patients and controls. Between these two
methods, Slgy,1, showed better performance according to AUC
and ICC results.

To better understand how the Sy, works, consider some
of the differences between the control and PD data illustrated in
Fig. 8. In this example, the most striking dissimilarities present
in the PD data are the higher frequency content and the lower
periodicity of the left hand signal. To understand how these char-
acteristics are transformed by the symbolic analysis, consider
the normalized symbol histograms shown in Fig. 9. These his-
tograms were computed from symbol 1, which is the symbolic
representation of the data points that fall below the dotted line
shown in Fig. 8. The higher frequency with which the left-hand
PD signal crosses the line causes the skewness of the symbol
histogram to the left. In addition, the lower periodicity of the
signal flattens the distribution causing the main frequency of
the signal to be less apparent. These characteristics of the sym-
bolic histogram transformation are the basis for the symbolic
symmetry index.

Results show that the hand data are, in general, more asym-
metric than lower limb data, even among healthy subjects. This
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decoupling between upper and lower limb symmetry is not ex-
clusive to PD patients. A study by Kuhtz-Buschbeck et al. [9]
determined that arm swing asymmetry is common in healthy
subjects, and cannot be explained by lower limb kinematics.
This study extracted arm swing amplitude and step length from
3-D motion analysis data, among other variables, and utilized
Slindex to determine upper and lower limb symmetry. The study
determined that the asymmetry of upper limb variables is con-
siderably greater than that of lower limb variables.

The analysis presented here stems from the assumption that
PD patients present more asymmetric arm movements than the
control group. Indeed, other studies have determined that re-
duced arm swing is often one of the first motor symptoms of the
disease [29], [30]. More recently a quantitative study by Lewek
et al. investigated the symmetry of lower and upper limbs dur-
ing walking in PD [10]. This work used SI, g1, on variables
extracted from 3D motion analysis data. Lewek e al. also found
that lower limb symmetry was not significantly different in PD
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TABLE VIII
COMPARING Sl y 1, EQUATIONS

Hand sensor data

Equation IcC 95% C.1
Eq. 1 0.949 [0.859. 0.982]
Egq.2 0.921 [0.788. 0.972]
Eq.3 0.928 [0.807.0.975]
(CC coefficients for each of the three alternative equations.

2 symbols 5 symbols 10 symbols 20 symbols
100 100 100 100
90 90¢ 1 90f 90¢ r
80 80 80 80 |
70 70 - 70 U ‘
60 { 60 60 T | 60 ‘
50 T 1 50 : 50f 50

40 r 4 40 H 40
30 J 30 | 1800 7 Lo a0

100 | 100 100 10 L

OC PD 0C PD GC PD OC PD

Fig. 10.  Dependency on number of symbols. Results of the SIgy 1, calculated
on hand sensor data considering different numbers of symbols.

patients, but arm swing symmetry was. The lower limb SL,,1c
results reported in [10] are slightly smaller than the ones pre-
sented here. This can be due to the fact that their choice of vari-
able was stride time, instead of swing time. Another difference
is that Lewek et al. found the arm swing Sl.yg1e significantly
different for the PD group. This can be attributed to the fact that
they used arm swing distance as the observed variable instead of
arm swing cycle time. Another influencing factor is that features
extracted from 3-D motion data are slightly more accurate than
features extracted from inertial sensor data. On the other hand,
inertial sensors can be used continuously and in uncontrolled
environments, e.g. at home.

As mentioned in Section III-A, the proposed symbolic anal-
ysis of gyroscope data presents a few issues. The first issue
relates to 1. This equation compares the left and right period
histograms, however, there are many alternatives which could
serve the same purpose. The following equations were also in-
vestigated:

ST — Zi:l Zgzl |hri(k) = hei(k)l 0
>im1 2=t |hri(k) + (k)|

@

1~ S8 |hpi(k) = hyi(k)]
SI:ZZ k=1 A LM 00 3)

i1 |hri(k) + hri(k)|

All three equations were compared in terms of ICC and AUC.
All methods result in the same ROC curve and ICC results are
very similar, Table VIIIL.

Another issue is that the number of symbols and the sym-
bolization technique used can have a considerable effect on the
results. Too few symbols would result in a too coarse measure-
ment. Too many would cause the measures to be too sensitive to
noise or unimportant details. Therefore, the number of symbols
must be optimized to the intended application. Fig. 10 shows the

i=1
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Slsymn, results considering different numbers of symbols. In all
cases, the quantization levels were chosen to match equiproba-
ble partitions of a normal distribution. The distributions created
by using ten partitions was one of the most satisfactory based
on ROC analysis and ICC results.

Fig. 5 and Fig. 6 show some data points as outliers. No sub-
jects were considered outliers based on all methods. Therefore,
no data points were excluded from the analysis.

VII. CONCLUSION

The present study introduced a new symbol based movement
symmetry index and compared it to six other symmetry mea-
sures. The methods were evaluated on data from early-to-mid-
stage PD patients who showed minimal motor abnormalities
and practically no postural instability according to the UPDRS.
Sensitivity and test-retest reliability were computed for each
method, on both upper limb and lower limb data.

Results illustrate how important it is to chose the most ap-
propriate method given a particular data set. The method pro-
posed here is sensitive enough to detect movement asymmetry
in early-to-mid-stage PD patients. Two of the evaluated meth-
ods performed significantly better than the other five. Out of
these two, the proposed method showed superior sensitivity and
test-retest reliability. Results also show that for this group of pa-
tients, movement asymmetry is more easily observed in upper
limb data. It is therefore important to employ a symmetry index
which can be applied not only to gait spatiotemporal parameters
but also to upper limb data.
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