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A New Measuring Method of Residual Stresses with the Aid of
Finite Element Method and Reliability of Estimated Values f

Yukio UEDA* Keiji FUKUDA® *

Keiji NAKACHO* * * and Setsuo ENDO* * *

Abstract

In estimation of residual stresses, the existing methods are mainly based on the idea that variation of strains on the
surface of the object is measured by sectioning continuously until any variation of the measured strains corresponding
to the residual stresses is not observed. In this kind of methods, some definite mathematical relation between the
variation of stresses and the released surface forces is required. This kind of relation was obtained only for the cases
where the geometry and the boundary condition of the object and the pattern of residual stress distribution are simple.
This restriction is removed when numerical methods, such as the finite element method, etc. are adopted.

In this paper, a general theory is developed based on the finite element method. With this method, three
dimensional residual stresses can be measured. Furthermore, reliability of estimated values of residual stresses by this
method is mathematically studied when errors are contained in the measured strains.

1. Introduction

It is very important to obtain more accurate
information about residual stresses in welded structures
for more rational design and safe construction of the
structures in relation to weld cracks and strength of the
structure.

Although there are strain gauge, X-ray, photo-elastic
material etc., as directly measuring devices or instru-
ments of strains (stresses) on the surface of the body,
no method has been devised yet to measure strains in
the interior. So, with the aid of these instruments,
several measuring methods have been already proposed
to estimate the interior stresses, for examples, by Sacks,
Mather and Rosenthal®),

Any of these methods is by means of a relaxation
method. By cutting a part of the object, a new surface is
exposed and forces acting on the surface before cutting
are released. These forces are estimated from the
changes of stress measured on the surface. The pro-
cedure is repeated until strains do not change and
residual stresses are determined by the summation of
released stresses at each step. Therefore, the relation
between the change of strains measured on the body
surface and released surface-forces by sectioning is neces-
sary in advance.

As it is very difficult to obtain such required
relation by analytical expressions in any cases that can
always express the corresponding released stress dis-
tribution to any sectioning and satisfy the boundary
conditions of the body, appropriate analytical solutions
or approximated expressions are chosen to the specific

object in the existing measuring method. As the result,
the chosen relationship is only effective within the fairly
limited conditions and then in the specified cases, the
three dimensional residual stresses can be estimated.
Therefore, these methods are not general. If these re-
lations are applied ignoring the restriction, reliability of
the estimated value would be very poor. For these
reasons, a general theory of measuring method of
residual stresses has not been developed yet?).

However, once the above relation can be obtained
generally, it is naturally possible and very efficient to
estimate overall residual stress distribution of a body
with a very limited number of measured strains.

As the other aspect of measurement of residual
stresses, it should be considered that errors are always
contained in measured strains to a certain degree and
these influence the accuracy of the result. Accordingly,
when the overall distribution is estimated from these
data, it is necessary to investigate reliability of the
estimate.

Thus, in this paper a new general theory of
measuring method of residual stresses with the aid of
the finite element method is proposed in order to solve
the above mentioned difficulties. Furthermore, the
theory is generalized to be able to apply to the cases
where errors are contained in the measured strains.
Applying this new method, numerical experiments are
conducted for several cases taking account of random
errors contained in measured strains, in order to varify
the validity of the new theory and usefulness of the new
method.
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2. Principle of Measuring Method of Residual Stresses

When residual stresses exist in a self-balance object,
these should be produced by dislocations, which are
generally called residual inherent strains.

Basically, there are two approaches to estimate resi-
dual stresses. One is a method which utilize a relation
between relaxation of residual stresses at an arbitrary
point and released forces on a new surface by sectioning.
The other is one which directly estimated the inherent
strains. In the former, released surface-forces are a part
of the residual stresses which was produced by the
inherent strains. Consequently, these methods are of the
same nature. In contrast with this, these are so different
in procedure that the former is called the released
surface-force method, and the latter the inherent strain
method in this paper. The theory of each approach is
described in the following section.

2.1 Released Surface-Force Method

Elastic strains (€j;) at an arbitrary point of a
self-balanced body are generally given by such a func-
tion that

e () = RE (x; e*, V) ()

where x vector of position at an interior

point of the object
e* :  vector of inherent strains
V : vector to experss the body shape.
If an interior plane A of the body is sectioned, the
shape changes from V, to V, producing new free
surfaces Ay and A; with reference to Fig.1. In this
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Fig. 1

Released surface-force and its discretization
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process, the strain energy stored in the object generally
decreases and elastic strains at each point are relaxed
partially (there may be some cases where produce new
plastic deformations by particular ways of sectioning,
but it is assumed that any sectioning is conducted
without new plastic zones). Thus,

ey (x) = Rf (x; e%, V) ()

eti[j (x) = R (x; e*, V)

Relaxed strains Ae jj are expressed,

(3

|
Aeij =€ ij — Elij = Rﬁ (X; e*, Vz) — R;_lf (X; e*, Vl) (4)

As changes in the stress distributions by sectioning are
assumed to be elastic, relaxed stresses Agjj is related
with Aeij by the elasticity matrix [D] (= Djjx1)

{A0i; (x) } = [D] (—Aey ()} ()

Representing the normal vector on the plane A to be
sectioned by n=_L nl,nz,ng._]T , forces acting on the
plane A before sectioning P = P,,P,,P,_T are

P; = 03 1 = Dyj€any at M (x*) eA  (6)
when M is an arbitrary point on A.
These forces are completely released since A is reduced
two free surfaces by sectioning,

at M (x*) eA 6)

7

The relaxed strain Agj; are produced by relief of the
surface-force P(xA) on the sectioned plane A. So, a
relation between the relaxed strain and the released
surface-force is given by the following function.

Aei; (x) = Rij (x; P (x™)) ®)
Although the distribution of released surface-force is
generally expressed by a continuous function, this
function may be replaced by a finite series (or approxi-

mated by discretization) to any desired degree of
accuracy, which contain 9 number of parameters LFJ=

LFy, Fppe, Fy 4.

_ 1
0 = Djjxi€xinj

5 P; = — Djjk1 Béxin

PGA)=f(x* Fy, Fpy oo o, Fy) ©)

By substituting Eq. (9) into Eq.(8), Ag;; are of functions
of the parameters {F} and co-ordinates x . This
relation is expressed by the function hj;,

T Fq) (10)

When the relaxed strains of g number (Ame) at
positions where observation is possible are measured, the

Agj (x) =hy; (x; Fy, Fy, -
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simultaneous equations to decide the parameters { F}
of the released surface-force are constituted as follows;

Apery (x1) = hy (%15 Fy, Fay -+ Fy)
Amery (x2) = hyy (x2; Fy, Fa, - - - JFy) (1)
Amelj (Xq) = h[] (XQ; F1> F2, R ] Fq)

where the combination of (I,J) represents the particular
component of strains at each measuring point.

If Egs. (11) are composed of independent equations and
the inverse functions g; of h is defined, the parameters
of the released surface-forces, {F} can be decided by
Eq.(12).

Fi = g (Ameny (X1), Apery (x2), - - -,
Apery (xq)) (i=1~q)

By a combination of Egs.(10) and (12), the relaxed
strains and stresses can be estimated at arbitrary points
in the entire body where strains were not measured
directly.

(12)

2.2 Inherent Strain Method

The above-mentioned method is utilizing elastic
response (changes of strains) at arbitrary points,; which is
induced by changes of the shape of the body, and
Eq. (1) is a basic equation. However, this is naturally a
function which expresses the relation of inherent strains
to the consequent residual strains. In this section, the
method by which inherent strains are ‘decided directly
and the residual strains are estimated is described.

Inherent strain distribution is replaced by a finite
series (or approximated by discretization) with q
Le*l = Le*l,e*z, €,

q
which corresponds to the surface-force distribution in
the released surface-force method.

e* (x) = f* (x; €%y, €%y, - - - %)) (13)

Substituting Eq. (13) into Eq. (1), it is seen that elastic
strains are expressed by a function, h*j;, of the
co-ordinates x, the parameters {e*}, the shape of
the object V. That is, :

number of parameters

€j (x) = h*jj (x; €1, €*2, - -, €%y, V)

(14)

The above equation is equivalent to Eq.(10).
Therefore, if the number of measured strains is q and
the inverse function g% of h*j; can be defined, the
parameters {€*} of the inherent strain distribution
are determined as,

€% = g% (mery (X1), men (X2), - - -, meny (xg); V)

i=1~9g

21
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So, strains or stresses at arbitrary points are estimated
by substituting Eq. (15) into Eq. (14).

As described above, it is seen that there are in
principle two approaches in measuring residual stresses,
which are the released surface-force and inherent strain
methods. There are two requirements in the process of
the general formulation of each method. One is that
continuous functions either P (Eq. (9)) or e* (Eq.(13))
in each method must be replaced by a finite series (or
approximated by discretization) to any desired degree of
accuracy, which contain parameters {F } or {e*}
respectively. And the other is that response functions b or
h* must be formulated . It is seen that these functions
depend on the shape of a body for both methods are
based on Eq.(1). Thus, it is impossible to find general
analytical solutions except for special cases. Therefore, it
is necessary to apply methods of numerical analysis such
as the finite difference method, the finite element method,
etc., to satisfy all of the preceding conditions. These
numerical analysis are based on discretization of
unknown functions and it is very convenient to use the
correspondency between the discretization and the finite
number of measurement.

In this paper, the finite element method which is
capable to satisfy the geometric shape is adopted and
the general formulation will be shown in the following
chapter.

3. Measuring Methods of Residual Stresses with the Aid
of FEM.

Since the object is fictitiously divided into finite
number of elements in application of the finite element
method, the parameters {F } of the released surface-
forces correspond to forces (nodal forces) acting at the
nodal points which are contained in a sectioned surface
and the parameters { €*] of the inherent strains to
of strains imposed in finite

components inherent

elements.

3.1 Released Surface-Force Method (Nodal Force
Method)

If nodal forces released in one of sectioned free
surfaces Au is expressed asL F 1= {F,, F,,.. ., Fqu T,
nodal forces in the other surface A; is — LF J. Because
the nodal forces are in self-equilibrium with no existance
of external forces, nodal displacements { Aur} pro-
duced by sectioning is given by the equation.

LO,LFJ, - LFJ1T=[K] {-Aur} (16)

[K] : stiffness matrix
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{au} = [K]-'LO, LFJ,— LFJ 1T
=—[Co,Ca,Cg] LO, LF, —~LF 11T
=—[Cal {F) + [Ca] {F}
=—[ca—-Cpl {F} =—[C1 {F} Q&)
Matrix [T]® is defined such as to transform the nodal

displacements, { Au,}, of the overall objects to those,
{Au,} ¢, of each element. Thus,

(Au,) = [T]° {Au,) arn

where the suffix e indicates an individual element.

The relaxed strains {Ae}® and relaxed stresses
{Ac)® in an element are represented as,
{ae}®=(B]®{au} =~ [B]°[TI°[C] {F}

(18)
{Ac}e=[D]® (- Ac)®=[DI°[B]°[T]°[C] {F)

where [B]e: the strain - displacement matrix of an element.

Summarizing Eq. (18) for all finite elements in the
object.

{Aed = [H;l {Fj} (i=1~n,j=1~q) (19)
where n is the total number of the strain components of
all elements in the object and q is the total number of
the nodal force components acting upon the sectioned
surface.

If the number of measured strains {Amé} is m less
than n, Eq.(19) is reduced to matrix [Hy] of a size
(mxq)

{(Ame} = [H;] {Fj} (i=1~m,j=1~q) (20)
If the released surface-forces {F}is decided by the
above observation equations (20), the magnitudes of the
relaxed strains and stresses at any point can be calcu-
lated by means of Eq. (18).

Repeating such sectioning procedures until no vari-
ation in strains at any point is found and summing up
these relaxed strains at each step, the desired residual
stresses can be estimated.

3.2 Inherent Strain Method

The inherent strains {€*} ¢ imposed in an element
produce restraining nodal forces to keep it undeformed,
which are usually called as equivalent nodal forces
{f} ©. This relation is shown to be,

£y ¢ =~ [ [BIT[DI{e)® dvoD = — [LI® e (21)

By collecting these forces all over the object,
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{f} == (f}e=—[L]° {1} °=— [L] {e*} (22

The nodal displacement {u} (=— {Auy}) is ex-
pressed in the following form, using the stiffness matrix
(K],

0=[K] {u} + {f)

{u} = — KI7' (£} =—[C] (£} = [CI[L] {e*)

(23)

The relation between displacement and strain is given by
Eq. (24) because the total strain of an element is the
summation of elastic and inherent strains.
{e}o+ {e*}®=[B]° {u}®=[B]°[T]° {u}
= [B]°[T]°[C] [L] {e*}

Matrix [U]°® is defined as one to transform the inherent
strains {€*) over the object into those {€*}® of an
element. Thus,

(24)

{e*)° = [U]° (%) (25)
Therefore, Eq. (24) is transformed into the form,
{e}®=[BI[TI°[CIL] {e*} - [U]° {e*}
=([B]°[T]°[CT[L] - [U]®) {e}
= [H¥]° {€") (26)
And stresses are evaluated as
{0} =[DI° {e}® = [D] °[H*]° {e*} 27)

The elastic strains {€} 4> {€}p> - - - the stresses
{0} A, {0}°B, ... of elements A, B, . . ., respectively

are summarized over the object in the following forms,

{e} =LLled®s, Lelfp, - 1T =[H¥] {e*} (28)

(29)

Generally speaking, when the total number, q, of
inherent strain components is equal to the total number,
n, of the elastic strain components, the sizes of matrices
[H*' ], and [M'] are (nxn).

If a special attension is paid to welding residual

fo}=LLod% Lol - 1T =M {e*}

stresses, the portion where the inherent strains exist is
limited in the vicinity of welded lines because the
inherent strains are originated by dislocations due to
plastic deformation. Therefore, it is not difficult to
presume such elements that apparently contain no
inherent strains. Representing the inherent strain vector
by the same notation, {e*}which consist of only
non-zero inherent strain components q (<n),the above
mentioned matrices are reduced to matrices [H*], [M]
of the sizes (nxq). '
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{a} = Hf] {e") (i=1~nj=1~q) (28)
{o1) =Myl {e*} (i=1~n,j=1~q) (29)

For example, if m number of measurements of elastic
strains can be done, the matrix [H*] = (nxq) is reduced
to [H*] =(mxq) and the observation equations are
constituted as,

(mé} = [H*;] {e*}

If the unknown inherent strains, {e*} can be decided
by these measured strains, {m€i} , the residual strain and
stress distributions can be calculated over the entire
object.

As seen in the above, both observation equations
appeared in the released surface-force and the inherent
strain methods are given in the same form, and the
necessary condition to determine the parameters{F},(e*)
which residual stress distribution is estimated by is
to satisfy the inequality m=q. For example, if m=q,
and [H] ™', [H*]7! exist, the resulting stress dis-
tribution can be obtained uniquely. In contrast with
this, if the number of Egs. (30) is not sufficient, that is
m<g, the inherent strains {e*} can not be determined.
In this case, it is required to increase such relations as
those in Eqgs. (30). These relations can be obtained
simply by adding measuring points, if not, by producing
a new self-balanced state by sectioning.

(i=1~m,j=1~q) (30)

4. Most Probable Value and Its Confidence Interval

In the case of m >>q in the observation equations, the
number of equations is greater than the number of

unknown parameters and consequently, there should be
(m — -q) number of dependent equations. But these
dependent equations do not exist apparently because
errors contained in measured values change the depend-
ency. So, for such cases where m > q and errors are con-
tained in the measured values, the theory of statistics3) is
introduced into the above mentioned methods in order to
decide the most probable values and these confidence
intervals with the observation equations.

Here, the errors used are accidental ones and satisfy
the three axioms of errors.

In this paper, the process of evaluation of the most
probable values and these confidence intervals are
discussed only when the inherent strain method is
applied, for the observation equations of the released
surface-force method is of the same form as the inherent
strain method.

4.1 Most Probable Value

The relation between the true value (e} of the

23
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elastic strain and the true value {e*} of the inherent
strain is expressed by Egs. (30). Substituting measured
values {ye€} of strains into Egs. (30) in place of {e},
the errors {x} are obtained in the following form.

(m€} — [H*] {e*} = {x} 31)

Furthermore, replacing e*} by the most probable
value {&*} in Eq.(31), residuals {v} are given as,

{me} — [H*] {&*} = {v} (32)
In the case where each measured value of strains is of
the same precision, the sum of squares of the residuals S
is

S=Lvl {v} (33)

According to the method of least squares, the most
probable values {é&*} are decided so as to minimize the
sum of squares of H}the residuals S. Thus, from the
condition dS/d {é*} = 0,

(1T {me} = [H*]T[H*] (&) (34)

The above equation which was normalized is called
normal equations and [H*] T [H*] is a square matrix of
a size (qxq). Se, if the square matrix is regular, its

inverse matrix can be obtained and the most probable
values are given as follows,

(&9 =(H*]TE) 7 HAT (md=[G*] (me) (35)

By using this result and Eq.(29)', the residual stress
distribution over the object is estimated.

{0} =M] {e*}=[MI[G*] {me} =IN] {me} (36)

4.2 Confidence Interval

4.2.1 Accuracy of Most Probable Value
The relation among measurement variance s> of unit

weight, inherent strain variances [3*2] and these
weights {p*} is represented as follows.
p*; s*;% = (i=1~q) (37N

The unbiased estimate §2 of the measurement variance is
given as,

2=Lvl{v} [(m-q)=S/(m—-q) (38)

And with components g*; of the matrix [G*] , the
weights of Eq. (37) can be evaluated.
m

(i=1~q)  (39)

By substituting Eqgs.(38) and (39) into Eq.(37), the
unbiased estimate of population variance of the most
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probable value {é*} can be determined.

Otherwise, the unbiased variance $gi° of the most
piobable value {6} of residual stresses is expressed in

the following equation if the components of the matrix
[N] are nj.

m
Soi2 = ( _Ellﬂij2 ) §2 (i=1~n) (40)
i=
4.2.2 Confidence Interval
Stochastic variable (¢*; — e*;)/s*; which is dim-

ensionlessly normalized {e*} of the inherent strains
obeys the standard normal distribution N(0, 1). A
variable S/s?> obeys x? - distribution with degree of
freedom ¢ =m—q. So, a variable t in the following
expression depends upon Student’s t-distribution with ¢
degree of freedom.

t=(e% —e%) /s //S/s? o
= (&% — %) [ 8%

(41)

So, the relation between confidence coefficient (1—a)
and t-value is represented as follows.

¢ rlo+npy ok 2
l—a= — (] +— 2
Joamr@ Oty B (42)
where ' : gamma function

If the confidence coefficient is given, t-value is decided
by Eq.(42) and the confidence intervals are obtained in
the following forms.

e — 8% < e < e+ ek
(confidence coef. 1 —a)

0 — 185 < 07 < 0; + 8y (43)

These intervals do not contain errors in the process of
the discretization, which are inevitable in the finite
element method but contain round-off errors in the
calculation.

S, Examples Analyzed by the Present Theory

5.1 Measurement of Three Dimensional Residual Stresses

(without Error in Measurement)

First, in order to confirm the validity of the new
general theory of measuring methods of residual stresses
with the aid of the finite element method, a few
experiments are conducted in the following.

As indicated in Fig. 2, a thick plate with a slit weld
is considered and constant inherent strains were imposed
along the slit. The resulting stress distribution is anal-
yzed by means of the convensional finite element
technique (ref. Figs. 7(a), (b), (c)). This distribution is
called the true value in the following discussion. The
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aim is to reproduce this stress distribution with the aid
of the inherent strain method. In this analysis, only
three components (e, *, e, *
strains in an element are assumed. As the number of

, €,%) of unknown inherent

elements where the inherent strains exist is 9, taking

account of three axes of symmetry, the total number of
the unknowns (q) equals to 3 x 9 =27.
Without any error in measured strains, the true dis-
tribution can be obtained if m=27 and the matrix
[H*] is regular. In the process of this calculation, the
relation between the inherent and the measured elastic
strains is used. As the result, when this relation is very
insensitive, some of the relation loosen their inde-
pendency numerically even if the matrix [H*] is regular.
In such a case, the round-off errors in the numerical
calculation influence the accuracy of the result. There-
fore, in order to improve these unfavorable relations,
another measurement is conducted on a piece which is
cut out so as to include the slit weld from the original
object as shown in Fig. 3. Points and directions of
measurement of strains are indicated in Fig. 4. For the
new piece, the residual stresses are calculated under the
same inherent strains as the original. These values on the
surfaces will be used as measured strains on the piece
for the further analysis. Based on these data, the
inherent strain method predicts the desired inherent
strains. Using these inherent strains, a residual stress
distribution to the original object (Fig. 2) is computed.
The resulting residual stresses agree precisely with the
true values. . The inherent strains were predicted within
an error less than * 1y for true values, — 4000u.
Although the released surface-force method is not
applied in this chapter, its validity has been already
confirmed in reference 4).

INHERENT STRAINS

a7 L& =€ =€ =-4000u]

7 |

ALL FINITE ELEMENTS ARE CUBIC.

A

x

Fig. 2 Model for analysis
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Fig. 3 Model peeled off one outer layer around the core

of inherent strains

5.2 Measurement of Three Dimensional Residual Stresses

(with Random Errors in Measurement)

When errors are contained in measured strains on
the same problem as dealt above, the present method
can be also applied. Measurement of strains are con-
ducted on the same surface of the piece as shown in
Fig. 3. The absolute value of the specified errors is equal
to 25u. Fig.5 represents points and directions of the
measurement (m =78) and signs of the errors given in
accordance with random number. In this case, t-
distribution almost coincides with the standard normal
one for ¢ =m—q =51,

Most probable values and these confidence intervals
of inherent strains which are estimated by the measured
values with these errors are represented in Fig. 6. And a

z * ; STRAINS TO BE MEASURED
IN THREE DIRECTIONS
ORI -3¢
| R R [R

' Ve~

ERROR IN OBSERVED STRAIN
+25u , --- : -25u

e

Location of measuring points and directions of
strains

[Fig. 5

(129)

*k

X

F

e

Fig. 4

STRAINS TO BE MEASURED
IN THREE DIRECTIONS

Location of measuring points and directions of
strains

relation between the true values and the most probable
values of the residual stresses to the original object are
shown in Figs. 7(a), (b) and (c).

Estimated 68%-confidence intervals of the inherent
strains contain the true values except several points and
these are almost coincided with the original. Though the
standard deviation of the estimated residual stresses in the
portion containing the inherent strains are locally great
(these values are less than 10 kg/mm?) and the confidence
intervals become wide, the estimates of these deviation are
small in the other part.

Based on the above discussions, it is concluded that
residual stresses even in three dimensional state can be
accurately estimated by the new method, except some
locally disturbed portion.

—I—; CONFIDENCE INTERVAL (68.2%)
o (€-8)

~\Z S

25

u) N
500\ i E%
0 . N
-500 S TTE T

(a) Inherent strains in X-direciton

¢ 5 TRUE VALUE
£ ; MOST PROBABLE VALUE

\

(b) Inherent strains in Y-direction

(c) Inherent strains in Z-direction

Relations of true values to confidence intervals of
inherent strains

Fig. 6
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Fig. 7 True and estimated values of residual stresses

5.3 Measurement of Two Dimensional Residual Stresses
(with Random Errors in Measurement)

There are many cases in which residual stress
distribution is regarded as two dimensional state. So, as

26

such typical example, welding residual stresses induced
in a butt welded joint of plates as shown in Fig. 8 are
analyzed. The original residual stress distribution is
produced by a uniform inherent strain e,* =—4000u in
each element located along the center line of the plate.

The number of unknown values is q = 11 (e, * of 11
elements) and the number of measurements is m=22.
Location of measuring points are along the line Y =Y,
shown in Fig. 8 (analysis is conducted in each case of
Yo=25, 75 and 12.5 mm). Residual stresses are
estimated by the method, following the same procedure
and providing the same error as used in Sec. 5.2. Fig. 9
represents the estimated inherent strains and their
accuracy (the original inherent strain is —4000u). In the
cases of measuring lines Yo =2.5 and 7.5 mm, the
estimated inherent strains are almost agreeable to the
original and then the accuracy is high and of same order
in both cases. On the other hand, it is seen that the
accuracy is abruptly worse in the case of Yo =12.5 mm
since the relation between inherent and elastic strains is
insensitive. Furthermore, residual stresses are estimated
in Fig. 10 and t-value corresponds to 95% — confidence
coefficient is equal to 2.2 for ¢ =m-—q=11. As the
estimates of the standard deviation are 1 kg/mm? at the
largest in the cases of Yy =2.5 and 7.5 mm, there are
confidences of 95% if these bands of 2 kg/mm?, to the
most probable values of about 75 kg/mm? are adopted.

Therefore, as seen above, if points of measurement
are located close to the welded line, very accurate
estimate of stress distribution all over the plate can be
expected by a few points of measurement.

SYMBOL| Yo (mm) TOTAL NUMBER OF OBSERVED STRAIN
COMPONENTS : m = 22
CASE 1| © 2.5
TOTAL NUMBER OF INHERENT STRAIN
CASE 2| @ 7.5 COMPONENTS : q = 11
CASE 3| 4 [12.5 DEGREE OF FREEDOM : ¢ = 11
Y
[mm],r
55 i
[ "fg/’Y
[ I N O OO . 0 O 0 O N A 6 S R
oD MIer/SR}S 0

Ex=-4000y 50 100 X [mm]
OBSERVATION OF STRAINS ALONG LINE Y = Yo

— 5 STRAINS TO BE MEASURED
IN THO DIRECTIONS

Fig. 8 Location of measuring points
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6. Conclusion

In this paper, the principle of measuring residual
stresses is presented, and the release surface-force and
the inherent strain methods are introduced as basic
approaches for the application of the principle. A new
general theory of measuring method of residual stresses
is proposed by formulating each method with the aid of
the finite element method.

Furthermore, this theory is generalized by statistic
approach in order to be applied in the cases where
measured values contain random errors.

Several numerical experiments are conducted by
using the present method. The following information is
obtained.

(1) The new general theory of measuring method of
residual stresses has been developed.

Measurement of three dimensional residual stresses
in general cases, which is unable by the existing
methods, is shown to be possible by this theory.

In the case where measured strains contain errors,
residual stresses in three dimensional stress state,
can be estimated accurately over the whole object
but there are still some portions where those are
predicted without good accuracy.

(4) In the case of butt welded joint in two dimensional
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Fig. 10  Estimated values and their accuracy of residual

stresses at the weld metal

stress state, extremely accurate estimates can be
obtained only with a few measured strain if points
of measurement are located close to welded line.
Furthermore, it is possible to predict such points of
measurement by the present method as to obtain
the most accurate result.
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