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�is paper proposes a member of the T-X family that incorporates heavy-tailed distributions, known as “a new exponential-X
family of distribution.” As a special case, the paper studies a submodel of the proposed class named a “new exponential Weibull
(NEx-Wei) distribution.” Some mathematical properties including hazard rate function, ordinary moments, moment generating
function, and order statistics are discussed. Furthermore, we adopt the method of MLE (maximum likelihood estimation) for
estimating its model parameters. A brief Monte Carlo simulation study is conducted to evaluate the performances of the MLEs
based on biases and mean square error. Finally, we provide a comprehensive study to illustrate the introduced approach by
analyzing three real data sets from di�erent disciplines. �e analytical goodness of �t measure of the proposed distribution is
compared with other well-known distributions. We hope that the proposed class may produce many more new distributions for
�tting monotonic and nonmonotonic data in the �eld of reliability analysis and survival analysis as well.

1. Introduction

In a number of practical areas such as engineering, bio-
medical, and actuarial sciences, the observations are gen-
erally positive in nature and have a unimodal and hump-
shaped distribution. In such scenarios, extreme values form
thick right tails, thus, requiring heavy-tailed distributions to
model the data. For instance, in engineering, modeling the
unusual phenomena associated with the tails of a statistical
distribution is of main interest. Earthquakes, �oods, hur-
ricanes, tsunamis, and electrical and power outages market
risk are some of the examples of such extreme/rare events
[1]. In insurance losses, the data are generally recorded on a
positive scale, unimodal, hump-shaped, and positively
skewed and have a thick right tail [2]. Also, in health service
research, medical expenses that cross a given threshold [3]

and the length of stay in a hospital generally represent highly
skewed and heavily tailed data [4].

All the above-mentioned scenarios and the rate at which
they happen are associated with the distribution in terms of
shape and the heaviness of its tails. Classical distributions are
not suitable for modeling this type of data [5]. Researchers
have observed that the use of gamma, exponential, and
Weibull models is discouraged in modeling insurance data
because of their ine�cient results. Consequently, it has been
concluded that it is better to use probability distributions
having maximum �exibility in order to get higher accuracy
in modeling heavy-tailed data than the exponential distri-
bution [6]. To this end, e�orts are put on to introduce new
“heavy-tailed distributions”; see [7–11].

Distributions where the probabilities on their right tails
are greater than the classical exponential models are known
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as heavy-tailed distributions [12]. For instance, for a cu-
mulative distribution function, we have

lim
x⟶∞

e
− p x

1 − G(x)
� 0, (1)

for any p> 0 ; further details are given in [13,14].
'e relevant methods proposed in the literature, and

mentioned in the references herein, may be very useful in
bringing more flexibility to existing distributions. However,
they lack flexibility in terms of inference and computations
to derive their distributional properties [8]. Another
prominent approach relates to the composition of two or
more distributions based on predefined weights, which gives
an improved fit for heavy-tailed losses [15–18]. It is,
therefore, important to introduce a new class of models
either from the existing classical distributions or from a new
family of distributions to model heavy-tailed data from
various fields of life.

Motivated by these concerns, this paper proposes a novel
family of heavy-tailed distributions using the T-X technique
without adding additional parameters. 'e suggested
method, called “a new exponential-X family of distributions”
offers a reliable fit for insurance data.

'e remainder of the paper is arranged as follows: Section
2 discusses the proposed method based on the T-X family; see
Alzaatreh et al. [19]. Section 3 presents a new exponential
Weibull (NEx-Wei) distribution. Some basic mathematical
properties of the proposed family are studied in Section 4.
Parameters estimation based on the maximum likelihood
estimation method is described in Section 5. In the same
section, a Mote Carlo simulation study is also conducted.
Applications of the proposed family of distributions on data
from vehicle insurance loss, engineering, and medicine are
illustrated in Section 6. Finally, Section 7 gives the conclusion
of the work based on the proposed distribution.

2. Proposed Method

In this section, we introduce a new modified method to
obtain a new lifetime distribution. 'e proposed method is
introduced by combining the exponential model having
PDF (probability density function) m(t) � e− t with the T-X
family proposed by Alzaatreh et al. [19].

Consider a random variable, say T, to be a baseline
random variable with PDF m(t), where T ∈ [π1, π2]

for− ∞≤ π1 < π2 ≤∞. Let X be a random variable with CDF
(cumulative distribution function) K(x;ω) depending on

the parameter vectorω. Let W[K(x;ω)] be a function of
CDF of y, satisfying the following three conditions.

(i) W[K(x;ω)] ∈ [π1, π2],
(ii) W[K(x;ω)] is differentiable and monotonically

increasing,
(iii) W[K(x;ω)]⟶ π1 as x⟶ − ∞ and

W[K(x;ω)]⟶ π2 as x⟶∞.

According to the Alzaatreh et al. [19] the CDF of the T-X
family method is defined by

FT− X(x) � F(x;ω) � 
W[K(x;ω)]

π1
m(t)dt, x ∈ R, (2)

where W[K(x;ω)] satisfies certain conditions presented (I-
III).'e PDF of T-X distribution, corresponding to equation
(1), is given by

fT− X(x) � f(x;ω)

� m W[K(x;ω)]{ }
d

dx
W[K(x;ω)] , x ∈ R.

(3)

By using the T-X family of distributions, several novel
distribution classes have been proposed in the literature.
Table 1 provides some W[K(x;ω)] expressions for some of
the widely used members of the T-X family.

Now, by using m(t) � e− t and setting W[K(x,ω)] �

− log e(1− K(x,ω)) − 1/e − [1 − K(x,ω)]  in equation (2), we
get the CDF of the new Exponential-X family, given by

F(x;ω) � 1 −
e

[1− K(x,ω)]
− 1

e − [1 − K(x,ω)]
 , x ∈ R, (4)

where K(x,ω) is the CDF of the baseline distribution which
may depend on ω ∈ R. 'e PDF of the NEx-X family as-
sociated with equation (4) is

f(x;ω) �
k(x,ω)

(e − [1 − K(x,ω)])
2

(e + K(x,ω))e
[1− K(x,ω)]

− 1 , x ∈ R,

(5)

where k(x,ω) � (zK(x,ω)/zx).
Similarly, the HF (hazard function) and SF (survival

functions) of the NEx-X family are provided by (6) and (7),
respectively.

h(x;ω) �
k(x,ω)

(e − [1 − K(x,ω)]) e
[1− K(x,ω)]

− 1 
(e + K(x,ω))e

[1− K(x,ω)]
− 1 , (6)

S(x;ω) �
e

[1− K(x,ω)]
− 1

e − [1 − K(x,ω)]
 , x ∈ R, (7)

'e keymotivations of the NEx-X family approach are as
follows:

(i) A relatively simple approach for extending the
available distributions.
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(ii) To further improve the capabilities of existing
distributions.

(iii) To define a special submodel having closed-form
CDF, SF, and HF.

(iv) To furnish a better fit for heavy-tailed data.

In addition, the most important motivation is that the
proposed method introduces new distributions without
inserting extra parameters, which consequently avoids the
difficulties of rescaling.

3. Special Submodel of the Proposed
Novel Family

In this section of the article, a special submodel based on the
proposed family called the NEx-Wei distribution is intro-
duced. Let K(x;ω) and k(x;ω) be the corresponding CDF
and PDF of the Weibull distribution given by K(x;ω)

� 1 − e− αxβ
x≥ 0, α, β> 0 and k(x;ω) � αβxβ− 1e− αxβ , where

ω � (α, β). 'en the CDF of NEx-Wei model is defined by

F(x; α, β) � 1 −
e

e− αxβ

− 1

e − e
− αxβ

⎛⎝ ⎞⎠, x≥ 0, α, β> 0. (8)

Expressions for PDF, SF (survival function), and func-
tion for HF (hazard rate function) are given in equations
(8)–(10), respectively.

f(x; α, β) �
αβx

β− 1
e

− αxβ

e − e
− αxβ

 
2

· e + 1 − e
− αxβ

 e
e− αxβ

− 1 , x> 0,

(9)

S(x; α, β) �
e

e− αxβ

− 1

e − e
− αxβ

⎛⎝ ⎞⎠, x> 0, (10)

h(x; α, β) �
αβx

β− 1
e

− αxβ
e

e− αxβ

− 1 
− 1

e − e
− αxβ

 

· e + 1 − e
− αxβ

 e
e− αxβ

− 1 , x> 0.

(11)

Different shapes for the f(x; α, β) of NEx-Wei distri-
bution for various parameter values are sketched in Figure 1.

Figure 2 graphically displays the h(x; α, β) of the NEx-
Wei model for different combinations of the model pa-
rameters. From Figure 2, we can see that the h(x; α, β) of the
NEx-Wei distribution have six different patterns including
(i) increasing, (ii) decreasing, (iii) reverse-J shaped, (iv)
unimodal, and (vi) slightly bathtub shaped. Hence, the
proposed model is capable and becomes an important model
to fit several lifetime data in applied areas, particularly in
reliability engineering, biomedical, economics, and finance
analysis.

4. Basic Mathematical Properties

'is section presents some mathematical properties of the
NEx-X family, such as the quantile function and ordinary
moments, which can further be used to obtain some im-
portant characteristics of the model. In addition to these
properties, the moment generating function is also derived.

4.1. Quantile Function. 'e quantile function (QF), also
called inverse distribution function (IDF), is an important
statistical terminology used to generate random numbers
(RNs). 'ese RNs can be used for simulation purposes to
evaluate the performance of the estimators. Later in Section
4, the IDF method has been implemented to generate RNs
from the NEx-Wei model. For the proposedmodel, the QF is
given by

xq � Q(u) � F
− 1

(u) � K
− 1

(t), (12)

where t is the solution of equation (1 − u)(e − 1) + 1 + (1 −

u)t − e1− t � 0 and u has the uniform distribution on interval
(0, 1). 'e expression can be used to generate RNs from any
subcase of the NEx-X family of distributions.

4.2. rth Moment. 'e rth moment is an important and a
useful ST (statistical tool) to obtain certain characteristics
and features of a model. 'ese characteristics are known as
(i) central tendency: which deals with the mean point of any
distribution, (ii) dispersion: which measures the variance of
a model, (iii) skewness: which describe the tail behavior of
the model, and (iv) kurtosis: which helps in studying the

Table 1: Some members of T-X family.

S. No. W[K(x,ω)] Range of X T-X family member
1 K(x,ω) [0, 1] Beta-G [20]
2 − log[1 − K(x,ω)] (0,∞) Gamma type-1 [21]
3 − log[K(x,ω)] (0,∞) Gamma type-2 [22]
4 K(x,ω)/1 − K(x,ω) (0,∞) Gamma type-3 [23]
5 − log[1 − K(x,ω)α] (0,∞) Exponentiated T-X family [24]
6 log[K(x,ω)/1 − K(x,ω)] (− ∞,∞) Logistic-G family [25]
7 log[− log(1 − K(x,ω))] (− ∞,∞) 'e Logistic-X [26]
8 [− log(1 − K(x,ω))]/(1 − K(x,ω)) (0,∞) New Weibull-X family [27]
9 − log(1 − K(x,ω)/eK(x,ω)) (0,∞) Weighted T-X family [28]
10 − log(σK(x,ω)/σ − K(x,ω)) (0,∞) Exponential T-X family [29]
11 log[e(1K(x, )) − 1/e − (1 − K(x,ω))] (0,∞) New exponential-X family (proposed)
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peakedness of the distribution. For the proposed NEx-X
family, the rth moment expressed by μr/ is derived as

μr/ � 
∞

− ∞
x
r
f(x;ω)dx. (13)

By (5), we have

μr/ � 
∞

− ∞
x
r k(x,ω)

(e − [1 − K(x,ω)])
2

(e + K(x,ω))e
[1− K(x,ω)]

− 1 dx,

μr/ �
1
e
2 
∞

− ∞
x
r k(x,ω)

(1 − ([1 − K(x,ω)]/e))
2

(e + K(x,ω))e
[1− K(x,ω)]

− 1 dx.

(14)

Using the series expansion

1
(1 − x)

2 � 1 + 2x + 3x
2

+ . . . � 

∞

n�1
nx

n− 1
. (15)

When replacing x by ((1 − K(x,ω))/e) in (15), we get

1
(1 − ((1 − K(x,ω))/e))

2 � 
∞

n�1
n

(1 − K(x,ω))

e
 

n− 1

. (16)

Also, using Taylor series representation

e
x

� 1 + x +
x
2

2!
+

x
3

3!
. . . � 

∞

n�0

x
i

i!
. (17)

By replacing x by K(x,ω) in (17), we get
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Figure 1: Different plots for the PDF f(x; α, β) of the NEx-Wei distribution.
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Figure 2: Different plots for the hrf h(x; α, β) of the NEx-Wei distribution.
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e
(1− K(x,ω))

� 
∞

i�0

(1 − K(x,ω))
i

i!
. (18)

By (16) and (18), we get

μr/ � 
∞

n�1

n

e
n+2 
∞

− ∞
x
r
k(x,ω)(1 − K(x,ω))

n− 1
(e + K(x,ω)) 

∞

i�0

(1 − K(x,ω))
i

i!
− 1

⎧⎨

⎩

⎫⎬

⎭dx. (19)

Furthermore, incorporating the binomial expansion

(1 − x)
p

� 

p

j�0
(− 1)

j p

j
 x

j
. (20)

When replacing x by K(x,ω) and p by n − 1 and i, re-
spectively, in (20), we arrive at

(1 − K(x,ω))
n− 1

� 
n− 1

j�0
(− 1)

j
n − 1

j
 K(x,ω)

j
, (21)

(1 − K(x,ω))
i

� 
i

l�0
(− 1)

l i

l
 K(x,ω)

l
. (22)

Using (21) and (22), in (19), we obtain

μr/ � 
∞

n�1


n− 1

j�0


∞

i�0


i

l�0

n(− 1)
j+l

i!e
n+2

i

l

⎛⎝ ⎞⎠
n − 1

j

⎛⎝ ⎞⎠ηr,n,i,j,l − 
∞

n�1


n− 1

j�0

n(− 1)
j

e
n+2

n − 1

j

⎛⎝ ⎞⎠ηr,n,j/, (23)

where ηr,n,i,j,l � 
∞
− ∞ x

r
k(x,ω)(e + K(x,ω))K(x,ω)j+ldx

and ηr,n,j/ � 
∞
− ∞ x

r
k(x,ω)K(x,ω)jdx.

Furthermore, a simple general expression for the MGF
(moment generating function) of the NEx-X random var-
iable X, say MX(t), is given by

MX(t) � 
∞

r�0

t
r

r!
μr/. (24)

By using (23) and (24), we get the MGF of the NEx-X
family of distributions.

4.3. Order Statistics. In distribution theory, OS (order sta-
tistic) has great importance. 'ey make their appearance in
the reliability analysis, problems of estimation theory, and
life testing in a number of ways. 'ey can characterize the
lifetimes of elements or components of a reliability system.

Let X1, X2, . . . , Xq be a random sample of q chosen from
NEx-X with CDF and PDF given by (5) and (6), respectively.
'en the density function of gr: q is given by

gr: q(x) �
1

B(r, q − r + 1)
k(x;ω)[K(x;ω)]

r− 1
[1 − K(x;ω)]

q− r
.

(25)

We express the 1st order statistic as X1: q �

min(X1, X2, . . . , Xq) and the qth order statistic as Xq: q �

max(X1, X2, . . . , Xq). 'en, 0<K(x;ω)< 1 for x> 0. We
may utilize the binomial expansion of [1 − K(x;ω)]q− r as
follows:

[1 − K(x;ω)]
q− r

� 

q− r

i�0
(− 1)

i
[1 − K(x;ω)]

q− r
 

i
. (26)

On using equation (25) into equation (26), we get

gr: q(x) �
k(x;ω)

B(r, q − r + 1)


k− r

i�0
(− 1)

i
[K(x;ω)]

r+i− 1
. (27)

Using equations (5) and (6), in equation (27), we obtain
the DF (density function) of gr: q.

4.4. Residual andReverse Residual Lifetime. 'e RL (residual
lifetime) of the NEx-X random variable X, expressed by
R(X)(t), is derived as

R(X)(t) �
S(x + t)

S(t)
,

R(X)(t) �
(e − [1 − K(x + t,ω)]) e

[1− K(x+t,ω)]
− 1 

e
1− K(x,ω)

− 1 (e − [1 − K(x + t,ω)])
, x ∈ R.

(28)

In addition to the RL, we obtain the RRL (reverse re-
sidual lifetime) of the NEx-X distributions denoted by
R(X)(t). For the NEx-X distributions, the R(X)(t) is derived
as

R(X)(t) �
S(x − t)

S(t)
,

R(X)(t) �
(e − [1 − K(t,ω)]) e

[1− K(t,ω)]
− 1 

e
[1− K(t,ω)]

− 1 (e − [1 − K(x − t,ω)])
, x ∈ R.

(29)

5. Estimation and Simulation

'is section is divided into two subsections. 'e first sub-
section provides a detailed description of the maximum

Journal of Mathematics 5



likelihood estimation implemented for estimating the pa-
rameters (α, β) of the NEx-Wei model, while the second
subsection provides a comprehensive Monte Carlo simu-
lation study for assessing the performance of theMLEs of the
proposed method.

5.1. Maximum Likelihood Estimation. Several methods for
estimating the parameters of any distribution have been
introduced in the literature. 'e MLE (maximum likelihood
estimation) is one of the most frequently used of such
methods. 'is method furnishes estimators with several
important properties and can be used in the construction of
confidence intervals as well as other tests for checking
statistical significance. For further details about MLEs, see
[30]. 'is subsection provides a discussion on the MLEs
approach for estimating the model parameters of the NEx-
Wei distribution.

Suppose x1, x2, ..., xn are the observed values from the
pdf given in equation (9) with α andβ as the associated
parameters. Corresponding to equation (9), the Log-likeli-
hood function is

L xi; α, β(  � n log(α) + n log(β) +(β − 1) 
n

i�1
log xi( 

− α
n

i�1
x
β
i − 2

n

i�1
log e − e

− αx
β
i 

+ 
n

i�1
log e + 1 − e

− αx
β
i e

e
− αx

β
i

− 1 .

(30)

Taking derivatives of equation (30) with respect to the
desired parameters and setting it equal to zero give

zL xi; α, β( 

zα
�

n

α
− 

n

i�1
x
β
i − 2

n

i�1

x
β
i e

− αx
β
i

e − e
− αx

β
i 

+ 
n

i�1

x
β
i e

− αx
β
i e

e
− αx

β
i

e
− αx

β
i − e 

e − e
− αx

β
i + 1 e

e
− αx

β
i

− 1 

� 0,

(31)

zL xi; α, β( 

zβ
�

n

β
+ β

n

i�1
log xi − α

n

i�1
log xi( x

β
i

− 2α

n

i�1

log xi( x
β
i e

− αx
β
i 

e − e
− αx

β
i 

+ α
n

i�1

log xi( x
β
i e

− αx
β
i e

e
− αx

β
i

e
− αx

β
i − e  

e − e
− αx

β
i + 1 e

e
− αx

β
i

− 1 

� 0.

(32)

Numerical solutions of (31) and (32) simultaneously
yield the MLEs of α and β.

5.2. Simulations. 'e behaviors of the MLEs of the pa-
rameters of the suggested distribution are evaluated in this
section based on simulated data. 'ree sets of parameters of
the NEx-Wei model are assessed in the simulation. 'e
process is described below:

(i) With N� 750, samples of size n� 25, 50, 100, . . .,
750 are generated from NEx-Wei distribution with
parameters α and β.

(ii) Compute MLEs of α and β.
(iii) Calculation of the biases and mean square error

(MSE) of the desired model parameters is done by

bias(α⌢) � 
500

i�1
α⌢i − α  andMSE(α⌢) � 

500

i�1
α⌢i − α 

2
. (33)

(iv) Step (iii) is repeated for β.

Simulation results on estimated parameters in terms of
MSEs and biases values are provided in Table 2 and also
graphically displayed in Figures 3–5. From the simulation
results in Table 2, we conclude that the biases for all pa-
rameters are positive and the estimated biases and MSEs
decrease as the sample size increases.

6. Applications

'is section assesses the applicability of the NEx-Wei model
in applied areas that include financial, engineering, and
medical sciences. In all these areas, the fits of the NEx-Wei
model are compared with other familiar distributions.

For checking the goodness of the distributions, we
consider different goodness of fits measures in order to
examine which competitor provides the best fit to the
considered data sets. 'e goodness of fit measures include
CM (Cramer-von-Misses) test statistic, AD (Ander-
son–Darling) test statistic, KS (Kolmogorov-Smirnov), AIC
(Akaike Information Criterion), BIC (Bayesian Information
Criterion), corrected Akaike information criterion (CAIC),
and HQIC (Hannan-Quinn Information Criterion) as well
as P-values.

In general, a distribution with smaller values for these
analytical measures and a greater p-value could be con-
sidered a good candidate for the underlying data set. Based
on the considered analytical measures, the results reveal that
the NEx-Wei distribution produces greater distributional
flexibility among all the other applied distributions.

6.1. Application inVehicle Insurance LossData. 'e first case
study is that of insurance, where vehicle insurance losses are
considered.'e data are taken from the website: http://www.
businessandeconomics.mq.edu.au/our-depatments-/Apllied
-Finance-and-Acturial-Studies/research/books/GLMs-for-in
surance-Data. Some basic measures for the dataset are given
by minimum� 1.0, 1st quartile� 23.25, median� 41.60,
mean� 55.89, 3rd quartile� 73.20, maximum� 194.00, skew
ness� 1.253132, kurtosis� 4.08863, variance� 2334.975, and
range� 193.00.
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Corresponding to this dataset, the comparison of the
NEx-Wei distribution is made with other well-known dis-
tributions including APT-Wei (Alpha Power transformed
Weibull) [31], Degum [32], Lomax distribution, Burr-XII
(B-XII) distribution [33], MO-Wei distribution [34], and
Kumaraswamy Weibull (Ku-Wei) distribution [35]. 'e

reason for considering these distributions for comparison
purposes is their frequent application in modeling financial
and financial risk management problems.

Furthermore, for the analyzed data, the maximum
likelihood estimates of the fitted models are presented in
Table 3. 'e numerical values of the analytical measures of

Table 2: Simulation results for NEx-Wei distribution for different combination of parameters.

N par
Set 1: α � 1.7,β � 2.8 Set 1: α � 1,β � 1.6 Set 1: α � 1,β � 0.8

MLE MSEs Bias MLE MSEs Bias MLE MSEs Bias

25 α 1.9127 0.4856 0.2127 1.1177 0.13861 0.1177 1.0765 0.1105 0.0765
β 2.9613 0.2651 0.1613 1.6927 0.0888 0.0927 2.0208 0.1321 0.1208

50 α 1.8060 0.1430 0.1060 1.0447 0.0422 0.0447 1.0238 0.0372 0.0238
β 2.8808 0.1024 0.0808 1.6455 0.0397 0.0455 1.9558 0.0476 0.0558

75 α 1.7600 0.0846 0.0599 1.0215 0.0229 0.0215 1.0260 0.0247 0.0260
β 2.8483 0.0683 0.0483 1.6302 0.0213 0.0302 1.9357 0.0312 0.0357

100 α 1.7399 0.0647 0.0399 1.0181 0.0166 0.0181 1.0161 0.0165 0.0161
β 2.8341 0.0451 0.0341 1.6243 0.0153 0.0243 1.9292 0.0226 0.0292

150 α 1.7352 0.0355 0.0352 1.0094 0.0107 0.0094 1.0090 0.0101 0.0090
β 2.8217 0.0305 0.0217 1.6088 0.0102 0.0088 1.9141 0.0142 0.0141

200 α 1.7175 0.0286 0.0175 1.0141 0.0082 0.0141 1.0149 0.0077 0.0149
β 2.8144 0.0258 0.0144 1.6090 0.0077 0.0090 1.9163 0.0101 0.0163

250 α 1.7189 0.0262 0.0189 1.0041 0.0063 0.0041 1.0066 0.0057 0.0066
β 2.8143 0.0189 0.0143 1.6076 0.0059 0.0076 1.9124 0.0086 0.0124

300 α 1.7125 0.0181 0.0125 1.0030 0.0050 0.0030 1.0126 0.0053 0.0126
β 2.8113 0.0141 0.0113 1.6062 0.0047 0.0066 1.9076 0.0067 0.0076

400 α 1.7166 0.0141 0.0133 1.0068 0.0038 0.0040 1.0039 0.0048 0.0090
β 2.8102 0.0115 0.0066 1.6032 0.0035 0.0059 1.9066 0.0059 0.0051

500 α 1.7026 0.0100 0.0026 1.0047 0.0027 0.0047 1.0027 0.0028 0.0027
β 2.8114 0.0089 0.0114 1.6037 0.0028 0.0037 1.9026 0.0042 0.0026

600 α 1.7079 0.0093 0.0079 1.0031 0.0027 0.0031 1.0026 0.0022 0.0026
β 2.8012 0.0078 0.0012 1.6055 0.0024 0.0055 1.9030 0.0032 0.0030

700 α 1.6995 0.0066 0.0077 1.0039 0.0021 0.0039 1.0046 0.0020 0.0046
β 2.7974 0.0064 0.0068 1.6046 0.0019 0.0046 1.9035 0.0028 0.0035

750 α 1.7023 0.0065 0.0023 1.0049 0.0021 0.0049 1.0016 0.0020 0.0016
β 2.8028 0.0055 0.0028 1.6026 0.0019 0.0026 1.8530 0.0027 0.0030
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Figure 3: MLEs, MSEs, and biases for α � 1.7 and β � 2.8 of the estimated parameters.
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the fitted models are provided in Tables 4 and 5. For this
data, the analytical measures values for the NEx-Wei are
AIC� 325.3758, BIC� 328.3072, CAIC� 325.7896, HQIC�

326.3475 CM� 0.03211, AD� 0.1968, KS� 0.0827, and p-
value� 0.968.

Based on these analytical measures, the proposed model
fits better than the other competingmodels to the considered
data. In the support of the numerical illustration in Tables 4
and 5, the estimated PDF and CDF plots of the NEx-Wei

distribution are presented in Figure 6. Moreover, the PP plot
and Kaplan-Meier survival plot are presented in Figure 7,
whereas Figure 8 shows the box and QQ plots. Obviously,
these plots reveal the closer fit of the NEx-Wei model.

6.2. Application in Reliability Engineering. 'e second case
study is from reliability engineering regarding the failure
time of cutting layers machine [36]. Basic measures for the

Plot of Estimated Parameters vs n Plot of MSEs vs n Plot of Biases vs n

200 400 6000

n

0.5

1.0

1.5

2.0

2.5

Es
tim

at
ed

 P
ar

am
et

er
s

200 400 6000

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

400200 6000

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Bi
as

β=1.6
α=1.0

β=1.6
α=1.0

β=1.6
α=1.0

Figure 4: MLEs, MSEs, and biases for α � 1.0 and β � 1.6 of the estimated parameters.
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Figure 5: MLEs, MSEs, and biases for α � 1.0, and β � 1.9 of the estimated parameters.

Table 3: 'e MLEs values of the fitted distributions using vehicle insurance losses data.

Distribution α⌢ β
⌢

θ
⌢

σ⌢ a
⌢

b
⌢

NEx-Wei 0.003897 1.229428 — — — —
APT-Wei 0.025821 0.979796 3.444968 — — —
B-XII — — — — 7.860075 0.035724
Ku-Wei 0.316431 0.893541 — — 2.699737 0.095785
Lomax 4.264217 196.614704 — — — —
Degum 3.041811 87.280010 0.309938 — — —
MO-Wei 0.021598 1.013912 — 1.683068 — —
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dataset are given by minimum� 1.0, 1st quartile� 20.75,
median� 43.75, mean� 124.10, 3rd quartile� 143.50,
maximum� 970.50, skewness� 2.917965, kurtosis�

11.85639, variance� 41601.74, and range� 969.5.
'e performance of the proposed model is evaluated by

comparing it with other well-known models such as
Kumaraswamy Weibull (Ku-Wei) [35], two parameters’
Weibull, extended alpha power Weibull (EAP-Wei) [37],
Beta Weibull (B-Wei) [38], and new alpha power Weibull
(NAP-Wei) [39] models. Furthermore, the Ku-Wei, EAP-
Wei, and NAP-Wei models are widely used in the literature
for modeling failure time data.

Corresponding to the second data set, the values ofMLEs
of the parameters are presented in Table 6, whereas the
analytical results of the proposed and other competitive
models are reported in Tables 7 and 8. For this data, the

analytical measures values for the NEx-Wei model are
AIC� 331.8761, BIC� 334.6107, CAIC� 332.3376, HQIC�

332.7325, CM� 0.07430, AD� 0.40100, KS� 0.13626, and p-
value� 0.6545.

Figure 9 gives the corresponding estimated plots of PDF
and CDF. Furthermore, Figure 10 gives the PP and Kaplan-
Meier survival plots, whereas Figure 11 shows the box and
QQ plots. 'e results demonstrate, given the positively
skewed data (see box plot), that the newly suggested model
fits the data better than the other methods.

6.3. Application in Biomedical Science Data. 'e third case
study is from biomedical science, where the dataset consists
of forty-four observations reported in [40]. 'is data set
represents the survival time of a group of patients suffering from

Table 4: 'e analytical measures of the fitted distributions using vehicle insurance losses data.

Distributions CM AD KS p-value
NEx-Wei 0.03211 0.19688 0.08272 0.96870
AP-Wei 0.04093 0.20915 0.09147 0.92940
B-XII 0.44285 2.60380 0.37109 0.01837
Ku-Wei 0.05341 0.32749 0.10299 0.85233
Lomax 0.03909 0.24298 0.14514 0.46730
Degum 0.04146 0.23202 0.09372 0.91650
MO-Wei 0.04133 0.13196 0.08940 0.94010

Table 5: 'e analytical measures of the fitted distributions using vehicle insurance losses data.

Distributions AIC BIC CAIC HQIC
NEx-Wei 325.37582 328.30722 325.78964 326.34754
APT-Wei 326.65220 331.04941 327.50943 328.10983
B-XII 377.97272 380.90422 378.38654 378.94444
Ku-Wei 330.48661 336.34963 331.96815 332.43435
Lomax 328.10725 331.03854 328.52086 329.07876
Degum 327.27246 331.66965 328.12964 328.73461
MO-Wei 326.62125 331.01846 327.47833 328.07874
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Figure 6: 'e estimated PDF and CDF plots of the NEx-Wei model for the vehicle insurance losses data.
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head and neck cancer. Some basic measures of head and neck
cancer data are given by minimum� 12.20, 1st quartile� 67.21,
mean� 223.50, median� 128.50, 3rd quartile� 219.00,
maximum� 1776.00, variance� 93287.41, range� 12.20,
skewness� 3.38382, and kurtosis� 16.5596.

Corresponding to the third data set, we applied the NEx-
Wei model with several other competitive models, namely,

the two parameters’ classical Weibull, FRL-Wei [41], APT-
Wei [31], and MO-Wei [34] distributions.

Furthermore, for the data set, the numerical values of
MLEs of the NEx-Wei distribution and other competing
model parameters are presented in Table 9. 'e numerical
values of the analytical measures of the fitted models are in
Tables 10 and 11. For the dataset, the analytical measures
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Figure 7: 'e Kaplan-Meier survival and PP plots of the NEx-Wei model for vehicle insurance loss data.
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Figure 8: 'e box and QQ plots of the NEx-Wei model for vehicle insurance losses data.

Table 6: 'e MLEs values of the fitted distributions using cutting layers machine data.

Distributions α⌢ β
⌢

α⌢1 a
⌢

b
⌢

NEx-W 0.015751 0.793979 — — —
Weibull 0.044270 0.686792 — — —
Ex-APW 0.091202 0.595231 1.144296 — —
Ku-W 0.435013 0.515035 — 2.6738437 0.3084275
NAPT-Wei 0.018558 0.767287 0.516289 — —
BW 0.502332 0.478112 — 2.7972342 0.3442123
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Table 7: 'e analytical measures of the fitted distribution using cutting layers machine data.

Distributions CM AD KS p-value
NEx-Wei 0.07430 0.40101 0.13626 0.65450
Wei 0.08845 0.47593 0.15097 0.52321
Ex-APT-Wei 0.09634 0.51343 0.15185 0.51562
Ku-Wei 0.14565 0.81133 0.14951 0.53522
NAPT-Wei 0.07766 0.41519 0.13828 0.63621
B-Wei NaN NaN 0.14572 0.60322

Table 8: 'e analytical measures of the fitted distribution using cutting layers machine data.

Distributions AIC BIC CAIC HQIC
NEx-Wei 331.87613 334.61071 332.33761 332.73250
Wei 332.76846 335.50262 333.22952 333.62443
Ex-APT-Wei 335.25339 339.35522 336.21333 336.53790
Ku-Wei 341.86054 347.32915 339.11531 339.24343
NAPT-Wei 334.04573 338.14764 335.00572 335.33032
B-Wei 335.45712 340.92533 334.43216 336.33123

200 400 600 800 10000
x

0.000

0.005

0.010

0.015

f (
x)

200 400 600 800 10000
x

0.0

0.2

0.4

0.6

0.8

1.0
Es

tim
at

ed
 cd

f

Emperical
Estimated

Figure 9: Plots of the estimated PDF and CDF of the NEx-Wei model for failure time of cutting layers machine data.
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Figure 10: 'e Kaplan-Meier survival plot and PP plot of the NEx-Wei model for failure time of cutting layers machine data.
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values of the NEx-Wei are AIC� 565.1568, BIC� 568.7252,
CAIC� 565.4495, HQIC� 566.4801, CM� 0.08657,
AD� 0.51532, KS� 0.1006, and p-value� 0.7278.

In the support of the numerical illustration in Tables 10
and 11, the estimated PDF and CDF plots of the NEx-Wei

distribution are presented in Figure 12. Moreover, the PP plot
and Kaplan-Meier survival plot are presented in Figure 13,
whereas Figure 14 shows the box and QQ plots. 'e results
demonstrate, given the positively skewed data (see box plot),
that the newly suggested model fits the data closely.
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Figure 11: 'e box and QQ plots of the NEx-Wei model for failure time of cutting layers machine data.

Table 9: 'e MLEs values of the fitted distributions using head and neck cancer data.

Distributions α⌢ β
⌢

α⌢1 θ
⌢

NEx-Wei 0.002456 1.022756 — —
Wei 0.006771 0.931311 — —
FRL-Wei 0.028596 0.761846 — 5.721750
APT-Wei 0.003264 0.992700 0.245030 —
MO-Wei 0.003032 1.001188 — 0.507524

Table 10: 'e analytical measures of the fitted distributions using head and neck cancer data.

Distributions CM AD KS p-value
NEx-Wei 0.08657 0.51532 0.10061 0.72780
Wei 0.13983 0.81427 0.12612 0.44940
FRL-Wei 0.19103 1.09553 0.13355 0.37890
APT-Wei 0.09338 0.55387 0.10551 0.67230
MO-Wei 0.09492 0.56181 0.11255 0.59330

Table 11: 'e analytical measures of the fitted distributions using head and neck cancer data.

Distributions AIC BIC CAIC HQIC
NEx-Wei 565.15680 568.72520 565.44950 566.48012
Wei 567.69411 571.26252 567.98681 569.01751
FRL-Wei 572.88330 578.23593 573.48338 574.86832
APT-Wei 567.77121 573.12381 568.37127 569.75627
MO-Wei 568.20841 573.56123 568.80846 570.19349
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Figure 12: Plots for the estimated PDF and CDF of the NEx-Wei model based on head and neck cancer data.
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Figure 13: 'e Kaplan-Meier survival and PP plots of the NEx-Wei model for head and neck cancer data.
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Figure 14: 'e box and QQ plots of the NEx-Wei model for head and neck cancer data.
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7. Conclusion

'is article presented the idea of a new family of distri-
bution, called the new exponential-X family or NEx-X. 'is
family of distributions has a wide range of applications
without adding additional parameters to the already avail-
able distributions. A special submodel of the proposed
method called a NEx-Wei (new exponential Weibull) is
derived and studied in detail. Besides, general expressions
for different statistical properties of the proposed family
have been derived including quantile function, moments,
moments generating function, and order statistics. MLE
(maximum likelihood estimation) method has been used for
estimating the unknown parameters, and in addition, a
Monte Carlo simulation study is carried out to assess the
performance of the proposed model estimators. In the field
of reliability engineering, insurance, and medicine, we have
analyzed three data sets and the proposed class provides a
very good fit for all data sets. We hope that this novel
improvement in the theory of the distribution will give more
attractive applications in reliability engineering, medical,
and other related fields.
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