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Abstract: Clustering is a popular data analysis and data mining problem. Symmetry can be con-
sidered as a pre-attentive feature, which can improve shapes and objects, as well as reconstruction
and recognition. The symmetry-based clustering methods search for clusters that are symmetric
with respect to their centers. Furthermore, the K-means (K-M) algorithm can be considered as one
of the most common clustering methods. It can be operated more quickly in most conditions, as
it is easily implemented. However, it is sensitively initialized and it can be easily trapped in local
targets. The Tabu Search (TS) algorithm is a stochastic global optimization technique, while Adaptive
Search Memory (ASM) is an important component of TS. ASM is a combination of different memory
structures that save statistics about search space and gives TS needed heuristic data to explore search
space economically. Thus, a new meta-heuristics algorithm called (MHTSASM) is proposed in this
paper for data clustering, which is based on TS and K-M. It uses TS to make economic exploration for
data with the help of ASM. It starts with a random initial solution. It obtains neighbors of the current
solution called trial solutions and updates memory elements for each iteration. The intensification
and diversification strategies are used to enhance the search process. The proposed MHTSASM
algorithm performance is compared with multiple clustering techniques based on both optimization
and meta-heuristics. The experimental results indicate the superiority of the MHTSASM algorithm
compared with other multiple clustering algorithms.

Keywords: data clustering; Tabu Search; K-means; adaptive memory; meta-heuristics

1. Introduction

Clustering can be considered as a key problem in data analysis and data mining [1]. It
tries to group similar data objects into the sets of disjoint classes or clusters [2,3]. Symmetry
can be considered as a pre-attentive feature that can improve the shapes and objects as well
as reconstruction and recognition. Furthermore, the symmetry-based clustering methods
search for clusters that are symmetric with respect to their centers. As each cluster has
the point symmetry property, an efficient point symmetry distance (PSD) was proposed
by Su and Chou [4] to support partitioning the dataset into the clusters. They proposed
a symmetry-based K-means (SBKM) algorithm that can give symmetry with minimum
movement [5].

The literature shows that there are many techniques to solve clustering problems.
They are basically categorized as the hierarchical clustering algorithm and the partitional
clustering algorithm [6,7].

The hierarchical clustering algorithms mainly generate clusters hierarchies signified
in a tree structure called a dendrogram. It can be successively proceeded throughout either
splitting larger clusters or merging smaller clusters into larger ones. The clusters identify as
the connected components in a tree. Hence, the output of hierarchical clustering algorithms
is a tree of clusters [8–10].

However, partitional clustering algorithms attempt to treat a dataset as one cluster and
try to decompose it into disjoint clusters. As partitional clustering does not need to make a
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tree structure, it can be considered to be easier than hierarchy clustering. The partitional
algorithms are restricted with a criterion function while decomposing the dataset, and thus
this function leads to minimizing dissimilarity in each cluster and maximizing similarity in
data objects of each cluster [11].

The K-means (K-M) algorithm is considered to be one of the most common algorithms
of partitional clustering [12–14]. However, it has some disadvantages, such as specifying
the number of k clusters, as it is based on practical experience and knowledge. The main K-
M problems are its sensitivity to initialization and becoming trapped in local optima [15,16].
Therefore, meta-heuristics algorithms are used to escape from these problems.

Meta-heuristics is an iterative generation processes that can guide a heuristic algorithm
by different responsive concepts for exploring and exploiting search space [17]. It is a class
of approximate methods that can attack hard combinatorial problems when the classical
optimization methods fail. It allows for the creation of new hybrid methods by combining
different concepts [18,19].

Tabu Search (TS) is considered to be one of the meta-heuristics algorithms based on
memory objects to make economic exploitation and exploration for search space. Tabu list
(TL) is one of the main memory elements of TS. It is a list that contains recently visited
solutions by TS. It is used by TS in order to avoid re-entering pre-visited regions [20,21].

This paper aims to propose a new meta-heuristics Tabu Search with an Adaptive
Search Memory algorithm (MHTSASM) for data clustering, which is based on TS and K-M.
MHTSASM is an advanced TS that uses responsive and intelligent memory. The proposed
MHTSASM algorithm uses multiple memory elements. For example, it uses the elite list
(EL) memory element of TS to store the best solutions and Adaptive Search Memory (ASM)
to store information about features of each solution. The ASM partitions each feature range
into p partitions and stores information about these partitions in each center. There are
two types of ASM used in the proposed algorithm: (1) ASMv stores number of visits; and
(2) ASMu stores the number of improvement updates. In addition, there are two TS
strategies used in the proposed algorithm: (1) the intensification strategy, which allows
MHTSASM to focus on the best pre-visited regions; and (2) the diversification strategy,
which allows MHTSASM to explore un-visited regions to ensure good exploration for
search space.

The results of MHTSASM are specifically compared with other optimization and
metaheuristics algorithms. The performance of MHTSASM is compared with several
variable neighborhood searches, such as Variable Neighborhood Search (VNS), VNS+,
and VNS-1 algorithms [22], Simulated Annealing (SA) [23], and global K-means (G1) [24].
Additionally, it is compared with hybrid algorithms, such as a new hybrid algorithm based
on particle swarm optimization with K-harmonic means (KHM) [25], and an ant colony
optimization clustering algorithm (ACO) with KHM [26,27].

The remainder of this paper is organized as follows: Section 2 presents the back-
ground of the proposed MHTSASM clustering algorithm. Section 3 presents the proposed
MHTSASM clustering algorithm. Section 4 illustrates experimental results. Finally, the
conclusion is presented in Section 5.

2. Background
2.1. K-Means (K-M) Clustering Algorithm

The K-M is a common clustering algorithm for data mining used in many real life
applications, such as healthcare, environment and air pollution, and industry data. It
outputs k centers that partition input points into k clusters [12–14]. However, it has some
disadvantages, such as specifying the number of k clusters, as it is based on the practical
experience and knowledge. An example of how to select the k number is shown in Figure 1.
It has two clusterings, where the dark crosses specify the k centers. There are five k values
used on the left. In addition, there are many centers that could be used on the right,
even though one center can sufficiently represent the data [15]. The main K-M problems
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are its sensitivity to initialization and getting trapped in local optima [16]. Therefore,
meta-heuristics algorithms are used to escape from these problems.

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

1. It has two clusterings, where the dark crosses specify the k centers. There are five k 
values used on the left. In addition, there are many centers that could be used on the right, 
even though one center can sufficiently represent the data [15]. The main K-M problems 
are its sensitivity to initialization and getting trapped in local optima [16]. Therefore, 
meta-heuristics algorithms are used to escape from these problems. 

 
Figure 1. An example of the K-means clustering algorithm. 

The K-M calculates the center of each cluster as the mean value of points that belong 
to the cluster. It works as follows: let D denotes the entire dataset, n the number of data 
objects, and d the number of features Rd, i.e., D = {x , x , … , x }, and we want to partition 
set X into K partitions. K-M tries to obtain the best set of centers C = {C , … , C }. Let C  
denote class j with cardinality S ; then we can calculate C , j = 1,...,K according to the 
following equation: C  =  1S  x ∈  (1)

In order to measure the goodness of different sets of centers, objective function f(C) 
can be calculated for each set of centers using the minimum sum of squares [10,11], de-
fined by the following: 

f(C)  =  1n min d (C , x ) (2)

where d C , x  corresponds to the squared Euclidean distance between the center of class 
C and the point x . 

K-M is known for its low computational requirements and ease of implementation. 
The main K-M problems are its sensitivity to initialization and becoming trapped in local 
optima [16,28]. Therefore, the meta-heuristics algorithms are used to escape from these 
problems. 

2.2. Meta-Heuristics Clustering Algorithm 
There are many meta-heuristics methods that can be used with K-M in order to in-

crease its efficiency and treat its problems. The literature shows that there are several 
methods proposed in order to compete local optima problem of K-M, such as SA, TS, and 
the genetic algorithm (GA) [23]. 

A hybrid algorithm that uses GA and K-M (GKA) was proposed in [29,30]. GKA uses 
GA as a search operator, as it finds a globally optimal partition [31,32]. 
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The K-M calculates the center of each cluster as the mean value of points that belong to
the cluster. It works as follows: let D denotes the entire dataset, n the number of data objects,
and d the number of features Rd, i.e., D = {x1, x2, . . . , xn}, and we want to partition set
X into K partitions. K-M tries to obtain the best set of centers C =

{
C1, . . . , Ck

}
. Let Cj

denote class j with cardinality
∣∣Sj
∣∣; then we can calculate Cj, j = 1, . . . , K according to the

following equation:

Cj =
1∣∣Sj
∣∣ ∑

x ∈ Sj

x (1)

In order to measure the goodness of different sets of centers, objective function f(C)
can be calculated for each set of centers using the minimum sum of squares [10,11], defined
by the following:

f(C) =
1
n

n

∑
i=1

min
j

d
(
Cj, xi

)
(2)

where d
(
Cj, xi

)
corresponds to the squared Euclidean distance between the center of class

C and the point xi.
K-M is known for its low computational requirements and ease of implementation.

The main K-M problems are its sensitivity to initialization and becoming trapped in lo-
cal optima [16,28]. Therefore, the meta-heuristics algorithms are used to escape from
these problems.

2.2. Meta-Heuristics Clustering Algorithm

There are many meta-heuristics methods that can be used with K-M in order to increase
its efficiency and treat its problems. The literature shows that there are several methods
proposed in order to compete local optima problem of K-M, such as SA, TS, and the genetic
algorithm (GA) [23].

A hybrid algorithm that uses GA and K-M (GKA) was proposed in [29,30]. GKA uses
GA as a search operator, as it finds a globally optimal partition [31,32].

In addition, a hybrid algorithm was proposed in [33] to solve the problems of K-M
based on GA and the weighted K-M algorithm. Moreover, another hybrid algorithm using
K-M and SA was proposed in [34].

A comparison of implementation complexity and computational cost between the
most common clustering algorithms was summarized, as shown Table 1 [16,23,35–37].
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Table 1. Comparison between different optimization and metaheuristics algorithms [2,22,38–40].

Algorithm Name Implementation Complexity Level Computational Cost Level
High Medium Low High Medium Low

K-M X X
TS X X
GA X X
SA X X

Algorithm 1 X X
J-M+ X X
VNS X X

VNS-1 X X
G1 X X
G2 X X

KHM X X
PSO X X

PSOKHM X X
ACO X X

ACOKHM X X
Proposed

MHTSASM
Approach

X X

2.2.1. Tabu Search (TS) Clustering Algorithm

TS is considered to be one of the meta-heuristics algorithms that is based on memory
objects to make economic exploitation and exploration for search space. Tabu list (TL) is
one of the main memory elements of TS. It is a list that contains recently visited solutions
by TS. It is used by TS in order to avoid re-entering pre-visited regions.

Memory Elements

TS is considered to be one of the meta-heuristic algorithms. It is used to solve hard
optimization problems of which classical methods often encounter great difficulty [41]. It
depends on memory structures rather than memoryless methods based on semi random
processes implementing a form of sampling. The MHTSASM is an advanced TS that uses
responsive and intelligent memory. It uses multiple memory elements such as EL, TL, and
ASM in order to minimize search time and focus on promising regions.

EL: Elite list stores best visited solutions.
TL: Tabu list stores recently visited solutions.
ASMv: Feature partitions visitation matrix. It is a matrix that partitions each feature

into p partitions, and it is stored as a matrix of size K × p × d. It stores the number of visits
of each partition for all generated centers.

ASMu: Feature improvement update matrix. It has the same size of ASMv and stores
the number of obtained improvements of objective functions while updating the centers.

MHTSASM uses both explicit and attributive memories. Explicit memory records
complete solutions such as EL and TL. Attributive memory stores information about
features of each solution such as ASMv and ASMu. MHTSASM uses memory elements to
guide intensification and diversification strategies.

Center Adjustment

The center adjustment method as shown in Algorithm 1 is used to re-compute the
centers according to the data objects related to each center. It re-assigns each data object x
to center Cj, j = 1, . . . , K with minimum Euclidean distance between center and data object.
Applying K-M, a new set of centers according to mean values of related objects to each
center is computed. Equations (3) and (4) are used in Algorithm 1.
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j∗ = arg
min

j = 1, . . . , k
‖xi − C̃

(j)‖ (3)

C̃
(j)

=
1∣∣Sj
∣∣ ∑x ∈Sj

x (4)

Algorithm 1: Center Adjust(K, C̃, d, D)

1. Set Sj, j = 1, . . . , K to be empty.
2. Repeat (2.1–2.2) steps for i = 1, . . . , n.

2.1. Compute the Euclidean distance between data object xi and each center C̃
(j)

, j = 1, . . . , K.
2.2. Add xi to Sj∗ where

Compute Equation (3)
Hence, Sj∗ = Sj∗ ∪ xi

3. Compute a new set of centers C̃ =
{

C̃
(1)

, . . . ., C̃
(k)
}

; each center C̃
(j) ∈ C̃ is computed

according to the following equation:

Compute Equation (4)

4. Return C̃
(j)

, j = 1, . . . , K.

3. The Proposed MHTSASM Algorithm

In this paper, the MHTSASM algorithm is proposed for data clustering, which is
based on TS and K-M. Figure 2 shows the proposed MHTSASM algorithm framework. The
MHTSASM starts with a random initial solution. It obtains neighbors of the current solution
called trial solutions and updates memory elements for each iteration. Furthermore, it uses
intensification and diversification strategies guided by memory elements to enhance the
search process. Thus, it is a high level TS algorithm with long term memory elements. In
the following subsections, the main components of MHTSASM are explained.

3.1. Intensification and Diversification Strategies

The TS has two highly important components called (1) intensification strategy; and
(2) diversification strategy. The MHTSASM uses both intensification and diversification
strategies guided by ASM. Intensification tries to immigrate to best solutions. It can recruit
a return into striking regions in order to explore them more systematically. Furthermore,
intensification techniques require saving elite solutions to be able to examine their neigh-
bors, and thus the MHTSASM records elite solutions in EL. The MHTSASM may use the
responsive memory ASMu in order to keep track of best partitions of each feature in the
search space.

The intensification method as shown in Algorithm 2 is guided by ASMu. It selects a
random number of features from d features. The MHTSASM selects a partition with the
highest updating improvement value for the current center for each selected feature. Each
selected feature value is updated with a random value in range between the current feature
value and the selected partition. The memory elements are updated, and the updated set of
centers is returned. Algorithm 2 states formally the steps of the intensification process.

On the other hand, the diversification strategy can develop the exploration process
in order to inspect the non-visited regions and create a new solution. It can improve the
exploration for search space. The MHTSASM applies diversification by choosing partitions
from ASMv with a minimum number of visits.
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Algorithm 2: Intensification Algorithm
(
δ, C̃, ASMu, ASMv, d

)
1. For each center in C̃, repeat the following steps (1.1–1.4).

1.1. Select δ features with highest updating improvement value in ASMu from d
data features.

1.2. Select a partition from p partitions for each selected feature with the highest
updating improvement value for current center in ASMu.

1.3. Update the value of the selected feature by computing a random value in the range
between the current value and the selected partition value.

1.4. Update memory elements ASMv.

2. Return the updated centers C̃, ASMv.
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The diversification method as shown in Algorithm 3 tends to explore unvisited regions
guided by ASMv. It selects a random number of features from d features. Next, the
MHTSASM selects a partition with a minimum number of visits for the current center for
the selected features. Each feature value is updated with a random value in the range of
the selected partition depending on the ASMv information. The memory elements are
updated, and the updated set of centers is returned. Algorithm 3 states formally the steps
of the diversification process.

Algorithm 3: Diversification Method
(
δ, C̃, ASMv, d

)
1. For each center in C̃, repeat the following steps (1.1–1.4).

1.1. Select δ features from features with the least number of visits in ASMv from d
data features.

1.2. Select a partition from p partitions for each selected feature with the least number of
visits for the current center in ASMv.

1.3. Update the value of the selected feature by computing a random value in the range
between the current value and the selected partition value.

1.4. Update memory elements ASMv.

2. Return the updated centers C̃, ASMv.

3.2. Trial Solutions Generation Algorithm

The trial solutions generation method as shown in Algorithm 4 generates µ trial
solutions near the current set of centers C. It may select the random features for each
center and then generate a new random value that belongs to the range of the current
value partition. It makes a thorough search for neighbors of the current set of centers C.
Algorithm 4 states formally the steps of the trial solutions generation process.

Algorithm 4: Trial Solutions Method (C, µ, ASMv, d)

1. Repeat the following steps (1.1–1.3) for j = 1, . . . , µ.

1.1. Set C̃
(j)

equal to the input centers C.
1.2. Select η features randomly from d data features.
1.3. Repeat steps (1.3.1–1.3.2) for m = 1, . . . , η.

1.3.1. Update the values of the selected features in C̃
(j)

by generating new values
randomly.

1.3.2. Update the memory elements ASMv.

2. Return the updated set of centers C̃
(j)

, j = 1, . . . , µ, ASMv.

3.3. Refinement Method

The refinement method as shown in Algorithm 5 is used to examine the neighbors
of the best solutions that have been found so far and return with the better solution if it
exists in their neighborhood. It may call the trial solution (Algorithm 4) in order to find the
neighbors of the current solution. If a better solution is found, it will call the trial solution
(Algorithm 4) again for a new solution; otherwise, it will break. Algorithm 5 states formally
the steps of the refinement method.

Algorithm 5: Refinement Method (C, µ, ASMv, ASMu, EL, d)

1. Apply Algorithm 4 to generate µ centers C̃ near the set of centers C.
2. Update the memory elements.
3. If an improvement achieved, then go to step 1; otherwise, go to step 4.
4. Return C, ASMv, ASMu, EL.
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3.4. The Proposed MHTSASM Algorithm

The MHTSASM cluster algorithm is proposed in this paper. It is an advanced TS that
uses responsive and intelligent memory, and it uses multiple memory elements, such as
the EL memory element of TS, in order to store the best solutions, and the ASM in order to
store information about features of each solution. It may use two important TS strategies:
intensification and diversification. It starts with initial random centers and then applies
the trail solutions (Algorithm 4) in order to generate trial solutions near initial centers. The
parameter variables are used to determine if intensification or diversification is needed.

If the intensification strategy is needed, the intensification (Algorithm 2) is applied
to enhance the set of centers using ASM and EL. If the centers are stuck and gain no
improvement, diversification (Algorithm 3) is used to make exploration for regions that
have not been visited yet. However, if termination conditions are satisfied, then refinement
is carried out (Algorithm 5), where the refinement method examines the neighbors of the
best solution that has been found so far. If there is no improvement, then the process is
terminated. Algorithm 6 states formally the steps of the advanced MHTSASM algorithm.

Algorithm 6: MHTSASM Algorithm

1. Initialization. Set values for the number of clusters K, the number of neighborhood trials µ,
and set the memory elements TL, ASMv, ASMu, and EL to be empty.

2. Generate K random initial centers C.
3. Evaluate the initial centers C and update the memory elements TL and EL.
4. Main Loop.

4.1. Generate µ trail solutions C̃
(j)

, j = 1, . . . , µ applying Algorithm 4.
4.2. Repeat the following steps (4.2.1–4.2.2) for j = 1, . . . , µ.

4.2.1. Adjust set of centers C̃
(j)

applying Algorithm 1; compute the objective

function f(C̃
(j)

) applying Equation (2).

4.2.2. If objective function of f(C̃
(j)

) is not better than f(C), then go to Step 4.2.1;

otherwise set C equal to C̃
(j)

and update ASMu.

4.3. Update the memory elements TL and EL.

5. Termination. If the termination conditions are satisfied then go to Step 8. Otherwise, go to
Step 6.

6. Intensification. If an intensive solution is needed, then apply Algorithm 3 to generate new
centers C. Update the memory elements and go to Step 4.

7. Diversification. If a diverse solution is needed, then apply Algorithm 2 to generate new
centers C. Update the memory elements and go to Step 4.

8. Final Refinement. Apply Algorithm 5 to refine the best solution found so far.

4. Numerical Experiments
4.1. Dataset

There are several numerical experiments for small and medium dataset sizes that were
done in order to validate the clustering algorithm effectiveness. In other words, there were
three clustering test problems used in order to evaluate the proposed MHTSASM algorithm
with others clustering techniques, such as K-M, TS, GA, and SA.

Firstly, there are three different standard test problems that were considered to compare
the proposed algorithm with the other heuristics and meta-heuristics, such as the K-M
algorithm [42], the TS method, GA, the SA method, and the non-smooth optimization
technique for the minimum sum for the squares clustering problems (Algorithm 1) [43].
The German towns clustering test, which uses Cartesian coordinates, which has 59 towns
and 59 records with two attributes, was used. Secondly, another set including 89 postal
zones in Bavaria, which includes 89 records and 3 attributes, was used. Thirdly, another
set including 89 postal zones in Bavaria, which includes 89 records and 4 attributes, was
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used. The results for these datasets are presented in Section 4.2.1, First Clustering Test
Problems Situation.

Secondly, another two test datasets were used to compare the proposed MHTSASM
algorithm with K-M algorithm, j-means (J-M+) algorithms [25], and the variable neighbor-
hood search, such as VNS, VNS+, and VNS-1 algorithms [22]. In addition, we compared
MHTSASM with the Global K-means (G1) [24], Fast global K-means (G2) algorithm [38,39],
and Algorithm 1 [40,44]. These datasets are called (1) the first Germany postal zones dataset;
and (2) the Fisher’s iris dataset that includes 150 instances and 4 attributes [45–47] used in
order to evaluate the proposed MHTSASM algorithm with others clustering techniques,
such as K-M, J-M+, VNS, VNS+, VNS-1, G1, and G2. The results for these dataset is
presented in Section 4.2.2, Second Clustering Test Problems Situation.

Thirdly, another five datasets called Iris, Glass, Cancer, Contraceptive Method Choice
(CMC) and Wine as the examples of low, medium, and high dimensions data, respectively,
were used to compare the proposed MHTSASM algorithm with K-harmonic means (KHM),
particle swarm optimization (PSO), hybrid clustering method based on KHM, and PSO,
called the PSOKHM algorithm [25] ACO and the hybrid clustering method based on ACO
and KHM called the ACOKHM algorithm [26,27]. The results for these dataset is presented
in Section 4.2.3, Third Clustering Test Problems Situation.

Table 2 summarizes the characteristics of these datasets [47]. Furthermore, there are
several methods called (1) KHM; (2) PSO; and (3) PSOKHM algorithms [25], which were
selected in order to compare their performances. In addition, other method called (1) KHM;
(2) ACO; and (3) ACOKHM algorithms [27,28] were selected for the same purpose.

Table 2. Datasets characteristics.

Data Set
Name No. of Classes No. of Features Data Set Size Classes Size in

Parentheses

Iris 3 4 150 (50, 50, 50)
Glass 6 9 214 (70, 17, 76, 13, 9, 29)

Cancer 2 9 683 (444, 239)
CMC 3 9 1473 (629, 334, 510)
Wine 3 13 178 (59, 71, 48)

Moreover, there are two characteristics for each dataset that can positively affect the
clustering algorithms’ performances: (1) the instances which are the data records numbers;
and (2) the features which are the data attributes numbers. The list of parameter values for
the proposed MHTSASM algorithm is presented in Table 3 [28].

Table 3. Parameters setting.

Parameters Definition Value

El Largest number of solution stored in elite list 5
ASMv Number of visits of each partition 9
ASMu Number of visit of each partition with improvement 300

4.2. Clustering Test Problems Situation Results

Tables 4 and 5 report the best value for the global minimum. The values are given as
nf(x∗), where x∗ is the local minimizer, and n is the instances number [28]. Moreover, the
error E percentage of every algorithm is shown and calculated using Equation (5).

E =
f− fopt

fopt
∗ 100 (5)

where f represents the algorithm finding solution, and fopt represents the best known solution.
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Table 4. Results of first problems situation.

K Dataset Name fopt K-M TS GA SA Algorithm 1 MHTSASM

2
German towns 0.121426 × 106 0.00 0.00 0.00 0.00 0.00 0.00

first Bavarian postal zones 0.60255 × 1012 7.75 0.00 0.00 0.00 0.00 0.00
second Bavarian postal zones 0.199080 × 1011 144.25 0.00 144.25 144.25 144.25 144.25

3
German towns 0.77009 × 105 1.45 0.00 0.00 0.29 0.29 0.00

first Bavarian postal zones 0.29451 × 1012 23.48 23.48 23.48 23.48 0.00 0.00
second Bavarian postal zones 0.173987 × 1011 106.79 0.00 0.00 77.77 0.00 0.00

4
German towns 0.49601 × 105 0.55 0.00 0.00 0.00 0.00 0.00

first Bavarian postal zones 0.10447 × 1012 166.88 18.14 0.00 0.39 0.00 0.00
second Bavarian postal zones 0.755908 × 1010 303.67 0.00 0.00 9.13 0.00 0.00

5
German towns 0.39453 × 105 2.75 0.00 0.15 0.15 0.15 0.00

first Bavarian postal zones 0.59762 × 1011 335.32 33.35 0.00 40.32 0.00 0.00
second Bavarian postal zones 0.540379 × 1010 446.13 15.76 15.76 18.72 0.00 0.00

Table 5. Results of second problems situation.

K Dataset Name fopt K-M J-M+ VNS VNS-1 G1 G2 Algorithm 1 MHTSASM

2
first Germany
postal zones 0.60255 × 1012 7.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 152.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

3
first Germany
postal zones 0.29451 × 1012 23.40 0.00 7.04 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 78.851 13.35 0.00 0.00 0.00 0.00 0.01 0.00 0.11

4
first Germany
postal zones 0.10447 × 1012 156.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 57.228 11.26 2.40 0.00 0.00 0.00 0.00 0.00 0.16

5
first Germany
postal zones 0.59762 × 1011 315.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 46.446 13.83 3.97 1.46 0.00 0.00 0.06 0.00 0.19

6
first Germany
postal zones 0.35909 × 1011 531.44 27.70 11.06 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 39.040 16.21 4.26 0.01 0.00 0.00 0.07 0.00 0.00

7
first Germany
postal zones 0.21983 × 1011 832.60 44.00 7.07 0.00 0.00 0.00 1.48 0.00

Fisher’s iris 34.298 17.43 2.86 0.00 0.00 0.02 1.55 1.34 0.00

8
first Germany
postal zones 0.13385 × 1011 1239.64 0.24 0.00 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 29.989 20.81 2.76 0.02 0.00 0.01 0.25 0.00 0.00

9
first Germany
postal zones 0.84237 × 1010 1697.17 28.59 0.00 0.00 0.00 0.00 0.00 0.00

Fisher’s iris 27.786 18.80 1.62 0.00 0.00 0.01 0.82 1.37 0.23

10
first Germany
postal zones 0.64465 × 1010 1638.30 0.16 0.00 0.00 0.00 0.00 11.32 0.00

Fisher’s iris 25.834 17.43 2.84 0.42 0.00 0.51 1.00 0.00 0.28

4.2.1. First Clustering Test Problems Situation

The numerical experimental results in Table 4 were taken for seven runs. In these
tables, K refers to the number of clusters, and fopt refers to the best identified value.

The proposed MHTSASM algorithm can reach the best results compared with all other
clusters techniques for the German towns dataset, as shown in Table 4. The MHTSASM, TS,
and GA results were the same. SA and Algorithm 1 gave the same results for all clusters.

Furthermore, the proposed MHTSASM algorithm achieved the best results for all
numbers of clusters for the first Bavarian postal zones dataset, as shown in Table 4. The
results from Algorithm 1 and MHTSASM were the same. Cluster three gave bad results for
K-M, TS, GA, and SA. Cluster four gave better results for K-M, TS, GA, and SA than cluster
three. Furthermore, GA gave good results except for cluster three.
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The results presented in Table 4 show that TS achieved the best results for all numbers
of clusters except for clusters five, where it gave a bad result for the second Bavarian postal
zones dataset. The results from Algorithm 1 and the MHTSASM were the same for all
clusters. Cluster two gave bad results for all algorithms except TS. Clusters three and four
gave good results for the MHTSASM, Algorithm 1, and GA but bad results for SA and K-M.
Cluster five gave good results for the proposed MHTSASM algorithm and Algorithm 1 but
bad for K-M, TS, GA, and SA.

The results indicated that the proposed MHTSASM algorithm could reach better or
very similar solutions to those found using the global optimization methods. Therefore, the
proposed MHTSASM algorithm can deeply compute the local minimum in the clustering
problem for the objective function.

4.2.2. Second Clustering Test Problems Situation

Another two datasets called (1) the first Germany postal zones dataset, and (2) the
Fisher´s iris dataset that includes 150 instances and 4 attributes [8,21] were used in order
to evaluate the proposed MHTSASM algorithm with other clustering techniques, such as
K-M, J-M+, VNS, VNS+, VNS-1, G1, and G2. The numerical experimental results for this
evaluation is presented in Table 5, where K refers to the number of clusters, and fopt refers
to the best identified value [28].

The average results for 10 restarts for KM, J-M+, and VNS were used, as seen in
Table 5. The results of the first Germany postal zones dataset indicated that the proposed
MHTSASM algorithm achieved better results than those for K-M, J-M+, VNS, G1, G2, and
Algorithm 1. The proposed MHTSASM algorithm performed the same as VNS-1.

As shown in Table 5, the results of the Fisher´s iris dataset indicated that the proposed
MHTSASM algorithm achieved better performance than the K-M technique for all numbers
of clusters except for K = 2 and better results than J-M+ for K = 2, 3 [28]. The MHTSASM
gave better results than G2 for K = 6, 7, 8, 9, 10. The proposed MHTSASM algorithm and
VNS-1 gave results for K = 6, 7, 8 better than all other algorithms. Algorithm 1 and G1
were quite similar; they gave better results than the proposed MHTSASM algorithm for
K = 2, 3, 4, 5. VNS gave better results than the MHTSASM for K = 2, 3, 4, 9. Compared with
the Algorithm 1, the G1 technique achieved similar or better performance for all K values
excluding K = 10. The proposed MHTSASM algorithm gave better results than Algorithm 1
for K = 7, 9. It gave better results than G2 for K = 6, 7, 8, 9, 10. It gave better results than
G1 for K = 7, 8, 10. In addition, it gave better results than VNS for K = 6, 8, 10. The VNS-1
can be considered as the best technique for the Fisher´s iris dataset, as it could achieve the
best identified optimal values. Hence, the results indicated that the results deviation found
using the proposed MHTSASM algorithm from the comprehensive minimum was equal to
or less than zero for all K.

4.2.3. Third Clustering Test Problems Situation

Another five datasets, known as Iris, Glass, Cancer, Contraceptive Method Choice
(CMC), and Wine were employed to validate the proposed MHTSASM algorithm. Further-
more, there were several methods called (1) KHM, (2) PSO, and (3) PSOKHM algorithm [25]
that were selected in order to compare their performances [28]. In addition, methods called
(1) KHM, (2) ACO, and (3) ACOKHM algorithm [26,27] were selected for the same purpose.

The clustering methods quality, which could be measured using the F-measure criteria,
was compared. F-measure is an external quality measure applicable for quality evaluation
tasks [48–52]. It uses the ideas of precision and recall from information retrieval [53–57].
It finds how each point is clustered correctly relative to its original class. Every class (i)
assumed using the benchmark dataset class labels is observed as ni items set chosen for the
query. Every cluster (j) created using the data cluster algorithms is observed as ni items set
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for the query retrieval. Let nij denotes the class i element numbers inside cluster j. For every
class i inside cluster j, the precision and recall are then defined as shown in Equation (6):

P(i,j) =
nij

nj
, r(i,j) =

nij

ni
(6)

and the corresponding value under the F-measure is calculated by Equation (7):

F(i,j) =

(
b2 + 1

)
∗P(i,j)∗ r(i,j)

b2∗ P(i,j) + r(i,j)
(7)

where we are assuming that (b = 1) in order to gain equal weighting for r(i,j) and p(i,j). The
total F-measure for the dataset of size n can be calculated using Equation (8):

F = ∑
i

ni

n
max

j

{
F(i,j)

}
(8)

The results in Table 6 show the quality of clustering evaluated using the F-measure over
five real datasets. The results show standard deviations and means for 10 independent runs.

Table 6. Results of KHM, PSO, PSOKHM, and the proposed MHTSASM algorithm when p = 2.5, 3,
and 3.5, respectively.

p No Dataset
Name KHM PSO PSOKHM MHTSASM

2.5

Iris 0.750 0.711 0.753 0.892
Glass 0.421 0.387 0.424 0.548

Cancer 0.829 0.819 0.829 0.872
CMC 0.335 0.298 0.333 0.404
Wine 0.516 0.512 0.516 0.715

3

Iris 0.744 0.740 0.744 0.892
Glass 0.422 0.378 0.427 0.548

Cancer 0.834 0.817 0.834 0.872
CMC 0.303 0.250 0.303 0.404
Wine 0.538 0.519 0.553 0.715

3.5

Iris 0.770 0.660 0.762 0.892
Glass 0.396 0.373 0.396 0.548

Cancer 0.832 0.820 0.835 0.872
CMC 0.332 0.298 0.332 0.404
Wine 0.502 0.530 0.535 0.715

The results of numerical experiments are presented in Table 6 for KHM, PSO, and
PSOKHM when p = 2.5 and indicate that the proposed MHTSASM algorithm performed
better than results for KHM, PSO, and PSOKHM for all datasets [28]. Furthermore, the
PSOKHM performed better than results for KHM and PSO for datasets Iris and Glass.
KHM performed better than results for PSO and PSOKHM for the CMC dataset. PSOKHM
and KHM performed the same for datasets Wine and Cancer.

The results of numerical experiments are presented in Table 6 for KHM, PSO, and
PSOKHM when p = 3 and show that the proposed MHTSASM algorithm performed better
than results for KHM, PSO, and PSOKHM for all datasets. The PSOKHM performed better
than results for KHM and PSO for datasets Glass and Wine. The PSOKHM and KHM
performed the same for datasets Iris, Cancer, and CMC.

The results of numerical experiments are presented in Table 6 for KHM, PSO, and
PSOKHM when p = 3.5 and show that the proposed MHTSASM algorithm performed
better than results for KHM, PSO, and PSOKHM for all datasets. PSOKHM performed
better than results for KHM and PSO for datasets Cancer and Wine. The KHM performed
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better than results for PSO and PSOKHM for the Iris dataset. The PSOKHM and KHM
performed the same for datasets Glass and CMC.

4.3. Discussion

As shown in Table 4, the proposed MHTSASM algorithm could reach the best results
compared with all others cluster techniques for the German towns dataset. Furthermore,
it achieved the best results for all numbers of clusters for the first Bavarian postal zones
dataset. TS achieved the best results for all numbers of clusters except cluster five, where
it gave a bad result for the second Bavarian postal zones dataset. Cluster three gave bad
results for K-M [24], TS, GA, and SA [23]. Cluster four gave better results for K-M, TS, GA,
and SA than cluster three. Furthermore, GA gave good results except for cluster three. The
results indicated that the proposed MHTSASM algorithm could reach better or very similar
solutions to those found using the global optimization methods. Therefore, the proposed
MHTSASM algorithm could deeply compute the local minimum in the clustering problem
for the objective function.

As shown in Table 5, the results of the Fisher´s iris dataset indicated that the proposed
MHTSASM algorithm achieved better performance than the K-M [42] technique for all
numbers of clusters, except for K = 2, and better results than J-M+ for K = 2, 3. Hence, the
results indicate that the results deviation found using the proposed MHTSASM algorithm
from the comprehensive minimum is equal to or less than zero for all K.

As shown in Table 6, the results of numerical experiments indicate that the pro-
posed MHTSASM algorithm performed better than results for KHM [25], PSO, and
PSOKHM [26,27] for all datasets.

5. Conclusions

Clustering is a common data analysis and data mining problem. It aims to group
similar data objects into sets of disjoint classes. Symmetry can be considered as a pre-
attentive feature which that improves the shapes and objects, as well as reconstruction
and recognition. The symmetry-based clustering methods search for clusters that are
symmetric with respect to their centers. In addition, the K-M algorithm is one of the
most common clustering methods. It can be easily implemented and works faster in most
conditions. However, it is sensitively initialized and it can be easily trapped in the local
targets. The TS algorithm is a stochastic global optimization technique. A new algorithm
using the TS with K-M clustering, called MHTSASM, was presented in this paper. The
MHTSASM algorithm fully uses the merits of both TS and K-M algorithms. It uses TS to
make economic exploration for data with the help of ASM. It uses different strategies of
TS, such as the intensification and diversification. The proposed MHTSASM algorithm
performance is compared with multiple clustering techniques based on both optimization
and meta-heuristics. The experimental results ensure that the MHTSASM overcomes
initialization sensitivity of K-M and reaches the global optimal effectively. However,
dealing and identifying clusters with non-convex shapes is one of the paper’s limitation,
and it will be one of the future research direction.
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