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With the recent advances in experimental technologies, such as gas chromatography and mass

spectrometry, the number of metabolites that can be measured in biofluids of individuals has
markedly increased. Given a set of such measurements, a very common task encountered by

biologists is to identify the metabolic mechanisms that lead to changes in the concentrations of

given metabolites and interpret the metabolic consequences of the observed changes in terms of
physiological problems, nutritional deficiencies, or diseases. In this paper, we present the

steady-state metabolic network dynamics analysis (SMDA) approach in detail, together with

its application in a cystic fibrosis study. We also present a computational performance

evaluation of the SMDA tool against a mammalian metabolic network database. The query
output space of the SMDA tool is exponentially large in the number of reactions of the network.

However, (i) larger numbers of observations exponentially reduce the output size, and

(ii) exploratory search and browsing of the query output space is provided to allow users to

search for what they are looking for.
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putational interpretation.
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1. Introduction

Currently, metabolomics data analysis necessitates a time-consuming, extensive,

and manual cross-referencing of metabolic pathways in order to critically evaluate

the measurement data. Recently, a novel in silico approach (IOMA) that integrates

metabolomics data with a metabolic network model and infers metabolic fluxes is

proposed.1 IOMA (a) requires many pieces of information (e.g. availability of the

stoichiometry matrix of the network, dissociation constants, enzyme turnover

rates, mass balance constraints, flux capacity constraints), and (b) infers a single

network state with all the computed metabolic fluxes. On the other hand, manual

analysis of fluxes in small (and usually abstracted) subnetworks is quite common in

life science publications. As examples, see Figs. 5 and 1 in Bederman et al. and

Gasier et al., respectively.2,3 Researchers seek alternative activation/inactivation

scenarios in small-scale networks, without the need/access to the additional

information such as those needed by IOMA. Note that, even for small-size net-

works, as the size of the network grows, the number of possible flow (flux) scenarios

grows exponentially, which makes manual enumeration error prone. This manual

process can be automated using computer science and bioinformatics techniques

that employ biochemistry rules and constraints, pre-stored in a metabolic network

database. Once the results are obtained, users can also visualize and query them,

(e.g. \list those alternative flows where one targeted reaction is active, and another

targeted reaction is inactive").

In this paper, we propose a database-enabled and graph-traversal�based tech-

nique, called steady-state metabolic network dynamics analysis (SMDA) that infers

all allowable (flux) states of a network. Given a set of biofluid- (e.g. blood) and

tissue-based metabolite concentration measurements at steady state, SMDA

Fig. 1. SMDA result as a single GAI graph.
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answers the query \list alternative steady-state metabolic network activation/

inactivation (i.e. flux) scenarios, given the observed measurements." That is,

SMDA takes as input from the user (i) metabolomics data, and (ii) a metabolic

subnetwork, selected from a metabolic network database already made available to

users, and produces a set of possible alternative flow scenarios (i.e. activation/

inactivation scenarios) for the metabolic subnetwork. Then SMDA lets users to

further visualize and query the alternatives (not discussed in this paper).

SMDA can be viewed as both a constraint- and rule-based approach. It is con-

straint based4�6 in that it uses conditions (pre-stored in a database) to locate all

\allowable states"7 of a subnetwork in a metabolic network model (also pre-stored in

a database). And, SMDA is rule-based in that its graph-expansion and merge

strategies employ a number of biochemistry rules to capture the underlying meta-

bolic biochemistry as much as possible.

Advantages of SMDA include:

. Ease of use and simplicity. it is designed as a \first-step" and \online" tool for

biochemists and wet lab researchers to:

� evaluate their hypotheses about observed measurements in small-scale net-

works, and

� be used as a \knowledge discovery" tool e.g. to be used for \what if " types of

questions.

. No flux optimization. SMDA does not require the knowledge of reaction kinetics

or any utility/optimization function for flux optimization.

The disadvantages of SMDA include:

. SMDA returns only two flux values for a reaction: 0 (Inactive), and 1 (Active).

. As is the case with other techniques that return \all allowable states",4 SMDA is

inherently exponential in its output size. However, the computational perform-

ance of SMDA is acceptable for networks with up to 60 reactions (with some

paths/pathways abstracted into \abstract reactions"; see Sec. 5 and Ref. 8).

SMDA is implemented and functional as a prototype both as an online tool, called

PathCase-SMDA,9 which is part of PathCase family of applications,10 and as an

iPad application named \PathCase MAW".11

1.1. SMDA Overview

Prior Preparation. We assume a fully hierarchical and compartmentalized meta-

bolic network i.e. one with tissues, organelles, etc. already available in a metabolic

network database. The steady-state \activation conditions" (or, the ACT condition

set) for each reaction and transport process to be active are characterized a priori,

saved in a database, and used during query-time analysis. Initially, the status values

of all reactions and all metabolite pools in the metabolic network are Unknown.
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Query-time Analysis. At query time, the user chooses a smaller metabolic subnetwork

(i.e. query network) to query. SMDA takes the observedmetabolite set and the selected

subnetwork, referred to as \query network," as input and executes the following steps.

Initialization. (i) For each biofluid-based metabolite observation, identify

whether its transport processes are active (by checking, for each transport

process, whether all conditions in its ACT set are satisfied). (ii) For each tissue-

based metabolite observation, derive its metabolite pool label, which is one of

the following: Unavailable, Available, Accumulated, or Severely Accumulated.

Expansion and Merge: Metabolic Subnetwork Traversal and Active�Inactive

Reaction Assessment. Starting with active/inactive transport processes and

tissue-based observed metabolites, and continuing with metabolic reactions in

tissues of the query network, locate iteratively those reactions with satisfied or

unsatisfied ACT condition sets, and mark (i) those reactions whose ACT

conditions are completely satisfied as Active, and (ii) those reactions whose

ACT conditions contain at least one unsatisfied ACT condition as Inactive.

(This process results in multiple expansions). When two disconnected \active/

inactive subnetworks" \touch" each other, merge them to obtain a larger

active�inactive subnetwork.

The above-summarized query-time analysis creates and iteratively expands

multiple possible metabolic flux subgraphs, called Active�Inactive Graphs (GAIÞ,

where, in each GAI graph, the status of each reaction and the label of each

metabolite pool are clearly marked (i.e. no reactions or metabolite pools with

\Unknown" status/label exist). The result is a set of GAI graph sets, where each GAI

graph set specifies one distinct alternative steady-state activation/inactivation

scenario for the metabolic network. An alternative output to GAI graphs is flow-

graphs, where a flow-graph is a GAI graph without metabolite pool labels; flow-

graphs are utilized in Sec. 5. We give an example.

Example 1. Assume that the user selects catabolism of cysteine in liver as the

metabolic subnetwork to be queried (as shown in Fig. 1), and has three observed

metabolite measurements in cytosol: O2 as 80mM/L (we assume that O2 is

\estimated" as it is very difficult to measure O2 in tissue of intact organ), cysteine as

60�M/L, and SO3 (3-sulifino-L-Alanine) as 80�M/L. Assume that the database

conditions state that, in liver cytosol, \O2 is marked as Available if it is in between

½1; 100� mM/L", \cysteine is marked as Available if it is in between ½1; 100��M/L",

and \SO3 is marked as Available if it is in between ½1; 100��M/L". Thus, the SMDA

initialization step concludes that O2, cysteine, and SO3 are all Available. Also, the

execution of the expansion step as summarized above concludes that there is only

one flow-graph with only one GAI graph in the output of the query, as shown by the

(actual) SMDA output of Fig. 1.

In summary, given metabolomics observations and a query network, SMDA

locates all possible alternative active�inactive network scenarios on the selected
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subnetwork. This approach provides compact and complete steady-state views of

possible metabolism dynamics as independent and alternative snapshots in the form

of user-friendly visual steady-state views of the metabolic network. There are four

issues. The first issue is prioritizing and ranking different alternatives produced by

SMDA. This issue is not discussed in this paper; please see Ref. 8 for a number of

ranking mechanisms.

The second issue is related to the space complexity of SMDA: what happens

when, for a large subnetwork, there are many alternative GAI graphs? As a first

response to this issue, SMDA switches to the use of flow-graphs, as opposed to GAI

graphs, where a single flow-graph captures multiple GAI graphs. Second, SMDA

allows for an exploratory search of the resulting GAI graphs. That is, an \interactive

query" execution takes place where, as a response to the query, the user is given the

total number of \possible results" (i.e. GAI graphs) and is then prompted to choose

and view different GAI graphs or flow-graphs in the output with respect to parti-

cipating metabolites and reactions. For example, the user is told, say, that pyruvate

dehydrogenase is active in two flow-graphs and inactive in four flow-graphs, and is

given the option of viewing only the first two, or the latter four, or all six flow-

graphs. We refer to this process as \exploratory search and browsing" of the SMDA

query output search space.

The third issue is related to the time complexity of SMDA. Given a large

metabolic network, SMDA output may increase so fast and so large that SMDA

may not complete its execution within a reasonable amount of time. When this case

occurs, our suggestion to the user is to reduce the network size either by eliminating

subnetworks or by \abstracting" a subnetwork (e.g. a pathway of a metabolism)

into an \abstract reaction." From our interactions with wet-lab biochemists, both

approaches are quite common and, used extensively in practice to (manually)

analyze the behavior of metabolic networks.2,3

Finally, the fourth issue is about the way SMDA works: as described earlier,

SMDA discretizes metabolite observations into four categories, namely, Unavail-

able, Available, Accumulated, or Severely Accumulated. This discretization can be

done by users employing their domain expertise, as is done in Sec. 5, or it can be

done automatically on the basis of ranges for each discretization, which are in turn

obtained from the HMDB data source.12 However, in some cases, HMDB classifies

multiple levels of \normal" ranges for metabolites, leading to \observation mis-

classifications" in SMDA. This issue and the SMDA actions taken are discussed in a

separate study.13

All figures in this paper are obtained from the web-based SMDA application.9

The observation set of Example 1 is available on the web site of the browser-based

application PathCase-MAW as \Sample Observation 0" and running the SMDA

Tool with Sample Observation 0 produces the results of Example 1. Figure 1 and

Example 1 are from a manually constructed mammalian network database, avail-

able at PathCase-MAW site.14 All other examples and visualizations in figures of

this paper are obtained from the PathCase-RCMN (ReConstructed genome-scale
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Metabolic Network) application,15 which is, in turn, built by importing the SBML

of reconstructed metabolic network of Trypanosoma cruzi bacteria:16 The SMDA

tool, an evolution of the OMA Tool,17 is currently being beta-tested in cystic fibrosis

metabolomics data analysis.

This paper is organized as follows. Section 2 specifies a complete condition- and

rule-based model of the metabolic network behavior. We

. list the assumptions of our model and define the notion of (quasi-) steady-state for

the metabolic network,

. introduce the notion of metabolite pool label identifiers,

. employ a three-valued logic to specify metabolite pool label conditions and

Activation Condition Sets for reactions as well as transport processes,

. list transport process rules, and, finally,

. specify a number of basic biochemistry-based rules.

Section 3 presents the SMDA algorithm with the three steps, namely, GAI (flow-)

graph initialization, expansion, and merge steps. The SMDA algorithm iteratively

constructs a GAI Generation Hierarchy where, when it terminates, each leaf node of

the hierarchy contains one possible activation/inactivation scenario within the query

subnetwork. In Sec. 4, we specify three different alternative expansion strategies for

the expansion step, namely,Na€{ve Expansion, Selective Expansion#1, and Selective

Expansion #2. Section 5 illustrates the usefulness of SMDA within a cystic

fibrosis�related metabolomics research context. Section 6 presents a computational

performance evaluation of the SMDA tool by using PathCase-MAW mammalian

metabolic network database. SMDA can be viewed as a new approach within the

category of metabolic network flux analysis techniques such as flux balance anal-

ysis,18 elementary fluxmodes,19 and extreme pathways.20 Section 7 compares SMDA

with these other techniques. Section 8 briefly concludes and lists future work.

2. Condition-Based Modeling

2.1. Assumptions and terminology

We make the following assumptions about our environment.

. The complete metabolic network is pre-captured and available in a metabolic

network database.

. The metabolic network database models tissue-level compartmentalization; that

is, it is a multi-tissue and a multi-compartment (e.g. cytosol, mitochondrion, etc.)

environment.

. The metabolic network is \sound" in the sense that all metabolites that are not in

biofluids are both produced by (i.e. are a product of) at least one reaction and

consumed by (i.e. are a substrate of) at least one reaction.

. Initially, we label each unmeasured metabolite pool size with the identifier

\Unknown." During query-time analysis, the labels may change into one of
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\Unavailable", \Available", \Accumulated," or \Severely accumulated." The

reason for non-quantitative labeling (as opposed to numerical size values) is that

this paper does not employ quantitative pool size estimation techniques, as dis-

cussed in more detail in Sec. 2.2.

. No a priori knowledge of the size of each metabolite pool is assumed, except for

measured metabolites.

. Given a reaction r and a metabolite m as a substrate, co-factor-in, activator

(product, co-factor-out, inhibitor) of r, the knowledge of the lowest (highest)

metabolite pool size label of m at steady state for m to activate (inhibit) a

reaction so that r is \active" (\inactive") is assumed to be available. This is

discussed in more detail in Sec. 2.4.

. The organism (represented by its metabolic network database) is queried when it

is at a steady state for a time interval T . Steady state is defined in terms of two

properties:

(a) Production-Consumption Rate Equality (PCRE ): During the time interval T ,

the rate of formation of every metabolite m is (almost) equal to its rate of

degradation i.e. all metabolite pool sizes (concentrations) remain (almost)

constant during the time interval T . Put another way, production rate of each

metabolite is equal to its consumption rate.

(b) Metabolite Pool Label Invariability (MPLI ): During the time interval T , all

metabolite pool labels stay the same. That is, if the label of a metabolite pool

is Available, it stays Available during the time interval T .

The PCRE property at steady state is a natural property, referring to the state of

constancy or the homeostasis (equilibrium) of the organism. As an example, in the

\fed" state of, say, humans, glucose, through glycolysis, is catabolized to acetyl

CoA, which is converted to fatty acids or oxidized in the TCA cycle. Although acetyl

CoA is available to both metabolic pathways (i.e. fatty acid synthesis and the TCA

cycle), it does not accumulate, as the combined consumption rate of acetyl CoA by

fatty acid synthesis and the TCA cycle is (almost) the same as its production by

glycolysis.

We use the MPLI property in order to capture a snapshot of the metabolism

when metabolite pool size labels also stay constant during steady state. Next we

define some terminology.

Definition. (Metabolic Network). A metabolic network is a connected graph

GðV , EÞ with a vertex set V of reactions and metabolite pools (a metabolite pool can

be a substrate, regulator or product in a reaction), and a directed edge set E such

that there is an edge from node u to node v if (i) v is a reaction, and u is a substrate,

regulator of v, or (ii) u is a reaction, and v is a product of u.

Definition. (ProductionRate and ConsumptionRate of metabolite pool m): Con-

sider any metabolite pool m, its producer reactions p1, p2; . . . ; pi, and its consumer

A New Metabolomics Analysis Technique: SMDA
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reactions c1; c2; . . . ; cj. Let prm;k denote the production contribution rate of reaction

pk; 1 � k � i, for metabolite m, and crm;v denote the consumption contribution rate

of reaction cv; 1 � v � j, for metabolite m during time period T . Then

. Pm ¼ fðp1, prm;1Þ, (p2, prm;2Þ; . . . ; (pi, prm;iÞg is the active producer set of m,

where each pair (pi, prm;iÞ refers to a producer pi of m and its contribution rate

prm;i; and (prm;1 þ prm;2 þ � � � þ prm;iÞ is the ProductionRateðmÞ of m; and

. Cm ¼ fðc1, crm;1Þ, (c2, crm;2Þ; . . . ; (cj, crm;jÞg is the active consumer set of m,

where ðcj, crm;jÞ refers to an activated consumer cj of m and its consumption rate

crm;j; and (crm;1þ crm;2 þ � � � þ crm;jÞ is the ConsumptionRateðmÞ of m.

Below we formally characterize the notion of (quasi-)steady state for the

metabolism.

Definition. ((quasi-)steady state for an organism during a time period): Given an

organism Org, its metabolites ml; 1 � l � n, and two constants "ml and T , the

organism Org is said to be in a steady state during the time period T if

(a) ProductionRateðmlÞ ¼ ConsumptionRateðmlÞ � "ml for each ml; 1 � l � n;

during the time period T , and

(b) Label of each metaboliteml; 1 � l � n, stays the same during the time period T .

2.2. Metabolite pool label identifiers

The purpose of metabolite pool label identifiers is to simplify the ACT (activation

condition) set specifications for reactions and transport processes.

Definition. (Metabolite pool label during a time period): Let TAVAILðmÞ;TACCðmÞ;

and TSACðmÞ;TAVAILðmÞ < TACCðmÞ < TSACðmÞ; be three threshold constants for a

metabolite m, stored in the database. Given the metabolite pool m, the label of m

during the time period T is marked with one of the following five identifiers.

. Unknown (id:-1): if the metabolite pool size for m, denoted by SizeðmÞ, is

unknown during time period T .

. Unavailable (id: 0): SizeðmÞ is less than the threshold TAVAILðmÞ and Pro-

ductionRate ðmÞ � "m during time period T , where "m is a small constant.

. Available (id: 1): SizeðmÞ is greater than or equal to the threshold TAVAILðmÞ and

less than the threshold TACCðmÞ during time period T .

. Accumulated (id: 2): SizeðmÞ is equal to or above the threshold TACCðmÞ but less

than the threshold TSACðmÞ during time period T.

. Severely Accumulated (id: 3): SizeðmÞ is equal to or above the threshold TSACðmÞ

in time period T . This label is used for the product inhibition rule BC4 of Sec. 2.5.

Note that there is a need to use different metabolite pool labels of Available and

Accumulated because, for some reactions, \availability" of a metabolite m as a

substrate (or regulator) may be sufficient for the reaction (i) to be active through
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substrate availability (provided that there are no other inhibiting mechanisms) or

(ii) to experience the regulating effect (i.e. inhibition/activation) of m, in those

cases where m is a regulator. However, for activation/regulation, other reactions

may require the \accumulation" of m, at least at moderate levels. We give an

example.

Example 2. Acetyl CoA is an allosteric activator of the first (also the committed)

step in gluconeogenesis, which is catalyzed by pyruvate carboxylase. And,

pyruvate carboxylase activation needs acetyl CoA accumulation. In the fed state of

organism, acetyl CoA is produced by glycolysis (hence, is Available), but does not

accumulate (hence has \Not Accumulated"). Thus, pyruvate carboxylase is not

activated, which leads to the inactivation of gluconeogenesis pathway. But, in the

fasting state of the organism, acetyl CoA is produced by �-oxidation, and

consumed by the TCA cycle and ketone body synthesis. In this case, accumulation

of acetyl CoA occurs (slowly but steadily), since its production rate by

�-oxidation is higher than its combined consumption rate by the TCA cycle

and ketone body synthesis.

2.3. Metabolite label condition characterization

The metabolite label condition C about the label identifier q of a metabolite pool m

is denoted as Chq;mi.

Example 3. Ketone body synthesis requires the accumulation of acetyl CoA to use

it as a substrate. Then, the required condition can be stated as C hAccumulated,

Acetyl CoAi or, equivalently, as C h2, Acetyl CoAi when the identifier of Available

is used.

We employ three-valued logic (True, False, Unknown) in evaluating conditions

about metabolite pool labels of reactions.

Definition. (Satisfaction of a metabolite label condition): A metabolite label con-

dition Chq;mi is

(i) True if m is marked with the identifier qactual where either

(a) 0 < q � id � qactual � id or (b) q � id ¼ qactual � id ¼ 0 holds,

(ii) False ifm is marked with the identifier qactual where either ðqactual � id 6¼ �1 and

qactual � id < q � idÞ or ðq � id ¼ 0 and qactual � id > 0),

(iii) Unknown if m is marked with the identifier qactual where qactual � id ¼ �1.

Example 4. The condition ChAccumulated, Acetyl CoAi (or, Ch2, Acetyl CoAiÞ

from Example 3 is True when the corresponding pool of acetyl CoA has the label

Accumulated (id: 2) or Severely Accumulated (id: 3).

Definition. (Negation of a condition): Negation of a condition Chq;mi is denoted as

:Chq;mi. :Chq;mi is True if m is marked with an identifier qactual such

A New Metabolomics Analysis Technique: SMDA
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that either (a) qactual � id 6¼ �1 and qactual � id < q � id, or (b) q � id ¼ 0 and

qactual � id > 0.

Example 5. The negation of the condition from Example 3 i.e. :C hAccumulated,

Acetyl CoAi, is True only when Acetyl CoA is marked as Available (id: 1) or

Unavailable (id: 0) (i.e. no active producer).

Definition. (Conflicting conditions): Two conditions C1hq1;mi and C2hq2;mi,

which are defined on the same metabolitem are in conflict if there is no possible pool

label identifier for m that would satisfy both C1 and C2.

Example 6. C1hAvailable, Acetyl CoAi is in conflict with C2hAccumulated,

Acetyl CoAi.

Definition. (Condition subsumption): Condition C1hq1, misubsumes another con-

dition C2hq2;mi if C2 is satisfied whenever C1 is satisfied.

Example 7. C1hAccumulated, Acetyl CoAi subsumes C2hAvailable, Acetyl

CoAi.

2.4. Trigger values and activation condition sets for reactions,

transport processes, or pathways

The label of a reaction r, a transport process Tc1�to�c2
from compartment c1 to

compartment c2 (not to be confused by time interval T ), or an \abstract pathway"

can be one of active, inactive, or unknown, as discussed next.

2.4.1. Reaction

We start with the notion of a \metabolite trigger value" for a reaction, which can be

either Available or Accumulated.

Definition. (Trigger value for metabolite m for reaction r to be active): Let m be a

metabolite involved in a reaction r. For r to be active, metabolitem is said to have a

trigger value tm;r, where tm;r 2 fAvailable, Accumulatedg, if

(1) m is a substrate, cofactor-in, or an activator of r, and the metabolite pool

identifier for m is tm;r, or

(2) m is an inhibitor of r, and the metabolite pool identifier for m is below (the

integer id value of) tm;r.

Each reaction r (or pathway) is associated with a set of participating metabolite

pools and their pre-determined trigger values, already available in a database. Each

reaction (or a pathway) is associated with a set of \activation conditions" (i.e. ACT

set), which are created based on the participating metabolites and their trigger

values, as discussed next.
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Definition. (Activation condition set of a reaction/pathway): Activation condition

set of a reaction (or a pathway) r, denoted as ACTðrÞ, defines the conditions for r to

be active, and is constructed as follows.

� For each m in reaction r, where m is a substrate/cofactor-in/activator of r with

trigger value tm;r; Chtm;r;mi 2 ACT(rÞ, where tm;r 2 f1; 2g (1 and 2 are ids of

Available and Accumulated labels, respectively)

� For each m in r, where m is an inhibitor of r with trigger value tmr, :Chtm;r;mi 2

ACTðrÞ, where tm;r 2 f1g.

� For each m in r, where m is a product/cofactor-out of r, :C h3, mi 2 ACTðrÞ

(Product Inhibition rule 4; 3 is the id of Severely Accumulated label).

� If the ratio Tr ¼ Sizeðm1Þ=Sizeðm2Þ of energy metabolite pairs is specified as an

activator for r, then C1(Accumulated, m1Þ 2 ACTðrÞ, and :C2 (Accumulated,

m2Þ 2 ACTðrÞ. If Tr is an inhibitor for r, then :C1(Accumulated,m1Þ 2 ACTðrÞ,

and C2 (Accumulated, m2Þ 2 ACTðrÞ.

As mentioned earlier, the activation condition set ACT of each reaction is defined

a priori (offline) before any metabolomics analysis is carried out.

2.4.2. Transport processes

We view each transport process Tc1�to�c2
as having one metabolite transported from

compartment c1 to compartment c2, subject to the activation condition set ACT for

Tc1�to�c2
. We give an example.

Example 8. The transport process Tblood�to�muscle (glucose) of glucose from blood to

muscle may be characterized within the ACT set as fChAvailable, blood.glucosei,

ChAvailable, blood.insulinig. That is, for glucose to be transported from blood to

muscle, both glucose and insulin must be at least Available. On the other hand,

transport process Tmuscle�to�blood (glutamine) of glutamine from muscle to blood can

be conditioned based on its availability in muscle i.e. ACT(Tmuscle�to�blood(gluta-

mine)) contains fChAvailable, blood.glutamineig.

We have the following transport process rules.

Rule TR1. Let c1 and c2 be two compartments, m be an observed metabolite in

compartment c1, and Tc1�to�c2
ðm; c1; c2Þ be m’s transport process from c1 to c2.

Assume that pool label of m in c2 is Unknown. Then if ACT(Tc1�to�c2
Þ is satisfied

then Tc1�to�c2
ðmÞ is active; otherwise, it is inactive.

Rule TR2. For active transport processes (i.e. the ACT set is satisfied), we assume

that the metabolite pool of the product has the same label with the substrate.

Rule TR3. For transport processes, the product inhibition rule (Please see rule

BC4 of Sec. 2.5) does not apply.
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2.4.3. Steady-state labels for reactions and transport processes

We define the steady-state label of a reaction/transport process as one of Active,

Inactive, or Unknown, based on the satisfaction of its associated activation con-

dition set ACT.

Definition. (Active, Inactive, or Unknown reaction/transport process state): Given

a reaction/transport process r with an associated activation condition set ACTðrÞ

defined on the participating metabolites, r is said to be Active (i.e. having a non-zero

flux) during the steady-state time period if.

(i) All conditions in ACTðrÞ are satisfied; i.e. all conditions that involve sub-

strates, cofactors, and products of r are satisfied, and

(ii) Among the conditions involving regulators of r, those conditions that include

regulator(s) with the highest precedence are satisfied.

Reaction/transport process r is Inactive if there is at least one unsatisfied condition

in ACTðrÞ. Otherwise, the state of r is Unknown.

Note that, for some reactions there may be multiple activators and inhibitors, in

which case, we assume that (a) we have a priori information about the precedence of

regulators, and (b) we make use of such precedence information in deciding whether

the reaction is active or inactive.

2.5. Biochemistry-based rules

Next, we list a number of basic biochemistry (BC)-based rules that we use in the

rest of the paper.

Rule BC1. For each reaction, when multiple regulators with conflicting regulatory

effects (activation or inhibition) on an enzyme are in place, the regulator with the

strongest effect (highest precedence) on the enzyme is considered, and the other

regulators are ignored.

The regulated reactions in a pathway may be classified as rate-limiting and com-

mitted steps. Once the committed step takes place, other reactions in the pathway

follow this reaction until the end-product is produced, provided that none of the other

regulated processes are blocked or inhibited. A committed step of a pathway is usually

one of the early irreversible reactions in the pathway.As an example, in glycolysis, the

committed step is the same as the rate-limiting step, PFK1.

Rule BC2. If the committed step of a pathway p is blocked (i.e. inactive), then p is

Inactive (i.e. all reactions in p are Inactive).

We associate each compartment with particular pools of metabolites as its input

and output. We then connect two compartments in the metabolic network if a

transport process connects the two.

Rule BC3. Each input and/or output metabolite of a compartment is associated

with a transport process (pre-captured and modeled in the database). A transport
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reaction and an enzymatic metabolic reaction are connected if they share at least

one metabolite pool (i.e. as their substrate and/or product).

Due to similarities in the way they bind to enzymes, substrates are in compe-

tition with products to bind to their enzymes. As the concentration of products

increase, this competition slows down the rate of enzymes binding the substrates.

Hence, the reaction rate decreases. Eventually, when the product accumulation

reaches to high levels, the corresponding reaction is inhibited dramatically.

Rule BC4. Whenever a non-biofluid metabolite m is marked as \severely accu-

mulated," all reactions that produce (and, therefore, due to the steady-state

assumption) and consume m are Inactive.

The next set of rules follows from the steady-state assumption.

Rule BC5. If all producers (consumers) of a metabolite pool m are inactive then,

due to the PCRE property, regardless of the pool label of m, labels all consumers

(producers) of m are Inactive.

Rule BC6. If at least one producer (consumer) of a metabolite m is Active, then

(i)m is either Available or Accumulated, and (ii) at least one consumer (producer) of

m is Active.

Rule BC7. If the metabolite m is Unavailable, then all consumers (and, thus, due

to the steady-state assumption) and all producers of m are Inactive.

Rule BC8. Substrate and product labels of a transport process with no conditions

are always the same.

Next, using rules BC1-8, we specify the notion of \inconsistent" metabolite pool

and reaction label assignments.

Definition. (Inconsistency): For each Rule BCi; 1 � i � 8, violation of Rule BCi in

terms of metabolite pool and/or reaction label assignments constitutes an incon-

sistency in metabolite pool and reaction labels.

For example, as a product of an Active reaction r, the label of metabolite pool m

should not be Severely Accumulated, since it violates Rule BC4.

3. Active/Inactive Graph Generation and Expansion

Starting from a given set of observations, we employ iterative backward and for-

ward reasoning with the goal of identifying possible metabolic mechanisms which

may have led to the observed changes. We first give some definitions.

Definition. (Reaction participants): Given a reaction r, RPðrÞ is the set of sub-

strates, products, and regulators of r (i.e. \Reaction Participants" of r).

We refer to a metabolite pool concentration measurement as an observation.

Next we define the notion of Active/Inactive graph, which has labeled reactions and

labeled reaction participants.
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Definition. (Active/Inactive graph GAIÞ: An active/inactive graph GAI(RAI; �AI,

SRP; �RP;M;OÞ is a connected subgraph of the metabolic network M with respect to

a set O of observations where (i) RAI consists of a set of reactions or pathways in the

subgraph GAI (RAI; �AI, SRP, �RP;M;OÞ, (ii) each reaction/pathway in RAI is

assigned a label of Active or Inactive through the function �AI :RAI !fActive,

Inactiveg, (iii) SRP is the set of reaction participants (i.e. substrates, products,

activators, etc.) of reactions in RAI, and (iv) each reaction participant of a reaction

in SRP is assigned a label of Unavailable, Available, Accumulated, Severely Accu-

mulated through the function �RP :SRP ! fUnavailable, Available, Accumulated,

Severely Accumulatedg.

During the GAI graph generation process, inconsistencies in GAI are avoided

where inconsistency is as defined in Sec. 2.5.

3.1. Initial GAI generation

A generated GAI graph should be valid, as defined below.

Definition. (Valid Active/Inactive graph): A GAI graph is valid when

(a) all metabolite pool/reaction labels in GAI are consistent

(b) for all active reactions r in GAI, ACTðrÞ is satisfied, and

(c) for all inactive reactions r in GAI, ACTðrÞ contains at least one unsatisfied

condition.

3.1.1. Converting observations into metabolite pool labels

As discussed in Sec. 1, there are two alternative ways of converting metabolite

observations into discretized metabolite pool labels of Available, Unavailable,

Accumulated, or Severely Accumulated. In the first way, users can decide on these

labels themselves using their domain expertise. In the second way, given a quan-

titative concentration statement on a metabolite poolm, SMDA compares the value

with threshold constants (obtained from HMDB) for the metabolite m, and then

marksm with the corresponding label identifier label. SMDAmarksm only with one

identifier, which is the highest satisfied identifier. However, thresholds obtained

fromHMDBmay be problematic: (1) HMDBmay havemore than one \normal" level

for a metabolite, or (2) there may be no information at all. Please see Cicek et al.13 for

more details.

When observations on metabolite concentrations are converted into one of

Unavailable, Available, Accumulated, or Severely Accumulated, to distinguish

between metabolites in different compartments, we use the underscore notation and

refer to metabolite m in compartment c as \m c."

Finally, for each observed biofluid metabolite, we investigate iteratively which of

the possible GAI graphs (initially, each contains only one measured biofluid

metabolite) is valid. We illustrate the initial GAI graph construction with an
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example from the metabolic network of T. cruzi (all network visualizations, except

Fig. 1, are from PathCase-RCMN for T . cruzi).

Example 9. Let pi be an observed metabolite in compartment cytosol, denoted as

pi c, and the label of pic c be Available. Let phosophatetransporter, peroxisome and

phosphatetransportl be two such transport processes transporting pi c from

compartment cytosol to compartment glycosome, and from cytosol to compartment

mitochondria, respectively (see Fig. 2). By evaluating their ACT sets, we locate

whether the two transport processes phosophatetransporter, peroxisome and

phosphatetransportl are active (By Rule BC8, at least one must be active). This

means that one of the three alternative GAI graphs involving pi c is consistent.

3.2. GAI graph expansion

Each valid GAI graph is iteratively expanded at each step with a set of reactions

and/or transport processes. We start with some definitions.

Definition. (Distance between two metabolite pools): The number of reactions on

the shortest path that connect two metabolite pools, regardless of reaction direc-

tions, is the distance between two metabolite pools.

Definition. (Border metabolite pool): Given a metabolite pool m and a non-empty

active/inactive graph GAI (RAI; �AI, SRP�RP, M, O), m is called a border metabolite

Fig. 2. Illustration of three alternative versions of transport processes.
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pool of GAI if, in the metabolic network M, there is a pair of reactions (r1; r2Þ such

that m participates in both r1 and r2, and r1 2 RAI; r2 62 RAI.

Note that when a GAI graph contains only a single metabolite poolm,m becomes

a border metabolite pool of GAI. Also, the label of a border metabolite in a GAI graph

is one of Unavailable, Available, Accumulated, or Severely Accumulated, and never

Unknown. We denote the border metabolite pool set of GAI as BMP(GAIÞ.

The process of extending a given GAI graph to a new GAI graph via the addition

of new reactions connected to its border metabolite pools is called GAI graph

expansion. The newly added reactions of the GAI graph are assigned the label values

of either Active or Inactive (which are consistent i.e. not in conflict with the existing

reaction label assignments in the graph). If there is no such consistent expansion,

then the expansion is terminated. Next we characterize the GAI graph expansion

process.

Definition. ðGAIgraph expansion): Let GAI (RAI; �AI, SRP; �RP, M, O) denote the

original GAI graph to be expanded;

G exp
AI ðR

exp
AI ; �

exp
AI ; S

exp
RP ; �

exp
RP ;M,O) denote one of the alternative GAI graph expan-

sions of GAIðRAI; �AI; SRP; �RP,M,O);

BMP(GAIÞ denote the set of all border metabolite pools of GAI;

NRS(BMP(GAIÞÞ denote the set of (\new") reactions involved with border

metabolites and not (yet) in GAI, i.e. those reactions r, where r has, as a substrate/

product/regulator, a metabolite pool in BMP(GAIÞ and r is not in RAI;

NMP(NRS(BMP(GAIÞÞ) denote the set of (new) metabolite pools p, where p

participates, as a substrate, product, or regulator, in a reaction of NRS(BMP(GAIÞÞ

and p is not RAI. Then the expansion G exp
AI (R exp

AI ; �
exp
AI , S

exp
RP ; �

exp
RP , M, O) is charac-

terized as follows.

(i) R exp
AI ¼ RAI U NRS(BMP(GAIÞÞ

(ii) S exp
RP ¼ SRP U NMP(NRS(BMP(GAIÞÞ)

(iii) Each r in R exp
AI is assigned the label of Active or Inactive through the function

� expAI : R
exp
AI !fActive, Inactiveg

(iv) Each metabolite in S exp
RP is assigned one of the labels Unavailable, Available,

Accumulated, Severely Accumulated through the function � expRP : S exp
RP !

fUnavailable, Available, Accumulated, Severely Accumulatedg.

(v) � expAI is consistent with �AI.

(vi) � expRP is consistent with �RP.

End of Definition

Border metabolite pools of G exp
AI can be characterized as those metabolite pools which

(i) are not in GAI, and (ii) participate in reactions that are not in G exp
AI . Clearly,

border metabolite pools of G exp
AI are always within one reaction distance from any

border metabolite pool of GAI.

Note that the GAI graph expansion process is not unique. Each expansion step of

GAI graph generates a new \alternative" GAI graph by assigning different labels to
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new reactions. At each step, the newly formed set of GAI graphs that are alternatives

of each other is called a GAI-group. Each GAI graph in the same GAI-group is non-

redundant, meaning each GAI graph has at least one reaction or metabolite pool

assignment differing from the corresponding assignment in any other GAI graph in

the same group.

GAI graph generation/expansion process is represented as a hierarchy, called the

GAI generation hierarchy, where each node represents a GAI graph of the metab-

olism, and each edge from parent to child in the GAI generation hierarchy represents

the expansion of the parent GAI graph in the next step by additional reactions

leading to a new child GAI graph. Branching in the GAI generation hierarchy occurs

whenever alternative (i.e. OR-connected), but conflicting, graph extension steps are

taken, which leads to alternative GAI graphs. Each such set of alternative graphs

forms a GAI-group.

The GAI generation hierarchy is a directed acyclic graph, with only one node that

does not have any incoming edges, called root, and with any other node containing a

GAI-group. The hierarchy is constructed as follows.

Initialization:

Level 0: root is a dummy node at level 0 i.e. it does not contain any information.

Root has jOj immediate children, one for each observation in O.

Level 1: Each immediate child of root is a GAI-group, with only one GAI graph

containing (i) a single node corresponding to a measured metabolite pool in the set

O of observations, and (ii) no reactions.

Expansion-and-merge:

Level i: Nodes in each level i; I > 1, of the hierarchy are constructed from the GAI-

groups in level ði� 1Þ in two steps, as follows.

Expansion step: let Gr be a GAI-group node in level ði� 1Þ. Each GAI graph in Gr

is expanded by following a GAI graph expansion as specified by the GAI graph

expansion definition. The set of all such expanded graphs of Gr forms a new GAI-

group node at level i in the hierarchy.

Merge step: Let GAI-groups GrX and GrY be two newly expanded GAI-groups of

the expansion step. Let Gx and Gy be the GAI graphs of GAI-groups GrX and GrY,

respectively. If Gx and Gy have a non-zero number of common border metabolites

with identical border metabolite labels, then GrX and GrY are merged into a single

GAI-group, say, GrZ, in the hierarchy by (i) merging Gx with Gy, and placing the

result in GrZ, and (ii) replacing GrX and GrY by GrZ into the hierarchy at level i.

Example 10. Consider a part of a metabolic network M, shown in Fig. 3. Reaction

malatedehydrogenasel is already decided as Active, and oaa m is a border

metabolite with a label value other than Unknown. Assume that oaa m is already

assigned the pool label identifier Available. The border metabolite oaa m is involved
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in two reactions, namely, aspartatetransaminase and citratesynthase, whose label

assignments are not yet made.

Based on the network of Fig. 3 and given the pool label identifier information of

Available on oaa m, we would like to generate possible valid GAI graphs with active/

inactive reactions in the metabolic network. At the same time, each valid GAI graph

must preserve the observed Available pool label mark for oaa m.

Next, starting from the border metabolite oaa m, we generate different possible

GAI graphs. New GAI graphs are generated by expanding the initial metabolic

subgraph with reactions from the larger metabolic network M. Figure 4 shows the

original GAI graph and the next level of the GAI generation hierarchy. Each of GAI1,

GAI2, GAI3, and GAI4 is distinct and non-redundant. Thus, they form alternatives of

each other, called a \GAI-group."

Fig. 4. The first level of the GAI graph generation hierarchy for the metabolic network in Fig. 3.

Fig. 3. A partial metabolic network M. Circle nodes are metabolites, rectangle nodes are reactions and
edges represent relations between reactions (which consume and/or produce metabolites) and

metabolites.
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End of Example 10

We next discuss the creation of GAI graphs in more detail. For a given metabolite

pool m, RðmÞ denotes the set of producer and consumer reactions of m in the

metabolic network; and r.label represents the current label (i.e. active, inactive,

unknown) assignment for reaction r.

Definition. (Label assignment for reactions in the reaction set RðmÞof metabolite

m): Given a metabolite pool m, SA(RðmÞ, �SA;mÞ is a label assignment for reactions

in RðmÞ, where each reaction in RðmÞ is assigned a label of either Active or Inactive,

through a function �SA;m: RðmÞ ! fActive, Inactiveg.

Note that the number of possible label assignments for a set of consumer/pro-

ducer reactions of a given metabolite pool m is exponential in the number of con-

sumers and producers of m.

Remark 3.1: Given a metabolite poolm, let i be the number of consumer reactions

of m, and j be the number of producer reactions of m in the metabolic network.

Then, the maximum number of possible distinct label assignments form’s producers

and consumers is 2 iþj.

Note that one does not need to evaluate each such combination of reaction label

assignment as a valid GAI graph expansion.

Metabolite pool label assignment for metabolite m in GAI is subject to three

requirements:

(1) Conditions that involve m are either True or False, but not Unknown, and

(2) For each reaction r in GAI, either all conditions in ACTðrÞ are True, or ACTðrÞ

contains at least one False condition, and

(3) All rules (of Secs. 2.4.2 and 2.5) are satisfied.

To check the satisfaction of all three requirements above, our approach (described

in Sec. 3.4 next) is as follows. For initialization, start with observed biofluid

metabolites and non-biofluid metabolites as \seed" metabolites; use satisfied con-

ditions of observed biofluid metabolites to locate their transport processes (i) with

ACT sets having only satisfied conditions (in which case they are Active transport

processes), or (ii) with at least one unsatisfied condition (in which case they are

Inactive transport processes). When (i) and (ii) fail for a transport process, then the

label of transport process is unknown. Next, after the initialization (of GAI graphs),

repeat the GAI graph expansion process (as defined above) via the \border

metabolites" of GAI graphs, until there are no more border metabolites involved in

active reactions. For more details, see the supplement.6

Next, for a given border metabolite m, we define the notion of a \valid label

assignment for RðmÞ," the reaction set (i.e. all producers and consumers) of m.

Definition. (Valid label assignment for reactions in the reaction set of a border

metabolite m): Given the graph GAI (RAI; �AI, SRP; �RP, M, O), a border metabolite
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poolm in GAI, the reaction set RðmÞ ofm, let SA(RðmÞ; �SA;mÞ be a label assignment

for all reactions in RðmÞ of m. Then, SA(RðmÞ; �SA;mÞ is said to be a valid label

assignment for RðmÞ with respect to GAI if the following conditions hold.

(a) No Label Conflict Among Reactions: For each reaction r where r 2 RðmÞ;

�SA;mðrÞ ¼ �AIðrÞ or r 62 RAI.

(b) Backward Compatibility : The label assignment SA(RðmÞ; �SA;mÞ results in a set

Q of pool label assignments for the border metabolitem, each resulting in a new

expanded GAI graph. Then, for a GAI and the metabolite pool assignment q in

Q, the following two conditions hold:

� With m having the label q, all the conditions in the ACT sets of \active"

reactions in RAI [ R(m) are satisfied by the assignment q.

� With m having the label q, for each \inactive" reaction r in RAI [ R(m) that

involves the border metabolite m in its ACT set, there is at least one

unsatisfied condition.

3.3. Merging GAI graphs

During the GAI graph expansion, it is possible to have two GAI graphs in two

different GAI groups to intersect, in which case the two graphs are reconciled into a

single GAI graph (leading to a GAI graph generation \hierarchy," rather than a GAI

generation \tree"). If the reconciliation is not possible, then it means that the two

GAI graphs are not consistent, and the metabolic network model characterized by

merging the two GAI graphs is inconsistent. In such a case, this specific merger of the

two GAI graphs is stopped, the inconsistency is noted, and the expansion of the GAI

generation hierarchy is continued for other possibilities.

To expedite the process of expanding the GAI graphs, we start by assigning labels

to observed metabolites and forming single-node GAI graphs. Initially, each

observed metabolite in a biofluid results in a single GAI-group with a single GAI

graph. We attempt to merge GAI graphs in different GAI-groups when they intersect

i.e. when two GAI graphs that are in two distinct GAI-groups have the same border

metabolite(s). We illustrate the process with an example (see Ref. 8 for the full

Example 11).

Example 11. Consider the metabolic network M of Fig. 5. Assume ChAvailable,

akg mi and ChAvailable, succoa mi are satisfied from observed measurements, as

shown in Fig. 5. Let us say, after multiple expansions, we reach a point where GAI-

Group-1 has GAI3 with border metabolites foaa m, sdhlam mg; and GAI-Group-2

has GAI4 with border metabolites fsucc m, sdhlam mg, as shown in Fig. 6.

Since both groups have the same border metabolites fsdhlam mg, we merge the

two groups of GAI graphs into one group: Let the new GAI graph to be created

by merging GAI3 and GAI4 be GAI6. For each reaction with active or inactive label

in GAI3 and GAI4, we assign the same label in GAI6. For border metabolites in GAI6,
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Fig. 5. A metabolic network M. Circle nodes are metabolites, rectangle nodes are reactions, and edges
represent relations between reactions (which consume and/or produce metabolites) and metabolites.

Fig. 6. The GAI graphs before merging two GAI-groups.
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we assign each border metabolite a common possible label that both GAI3 and GAI4

have as the border metabolite e.g. the label of sdhlam m becomes Available.

3.4. Algorithm sketch

Input to the SMDA algorithm is a set of quantitative metabolite concentration

values and a metabolic subnetwork to which the user wants to restrict the analysis.

The very first initialization step starts from an observed, possibly a biofluid

metabolite, and results in a GAI graph per observed metabolite, where each such

single-node graph is placed in a single GAI-group. In each expansion step, a GAI

graph is expanded with a producer/consumer reaction set of a \border metabolite"

while the validity of reaction label assignments are enforced, as described in Sec. 3.2.

Each possible expansion with a different label assignment on the same metabolite

pool, or expansions on different metabolite pools, leads to a distinct GAI graph.

Expansion can result in alternative GAI graphs, all placed into a yet another GAI-

group. This process builds the GAI generation hierarchy, where nodes are GAI-

groups, and, distinct extensions lead to branching in the hierarchy. At the end, each

leaf level node in the hierarchy represents a complete GAI graph set i.e. one possible

activation/inactivation scenario. At any point during the expansion process, if a

border metabolite with no valid label assignment is encountered, then the expansion

of the GAI graph is stopped, and it is eliminated as an invalid GAI graph. The

expansion process is performed in a breadth-first manner. In Fig. 7, we present a

sketch of the SMDA algorithm. Note that GAI graphs in different GAI-groups are

AND-alternatives. GAI graphs in the same GAI-group are XOR-alternatives.

4. GAI Graph Expansion Strategies

As explained in detail in Secs. 3.2 and 3.4.2, GAI graph expansion is the process of

generating new GAI graphs from a given GAI graph by adding new reactions (with

labels), which are attached to the border metabolite pools. The performance of the

algorithm is highly dependent on the expansion strategy chosen, as the number of

new GAI graphs generated depends on the strategy used. Intuitively, an expansion

strategy that avoids the generation of those GAI graphs that will be ruled out later

will result in better performance and smaller output size. Next we discuss alterna-

tive expansion strategies.

Naïve Expansion is the strategy that is presented in Sec. 3.2. The new reactions to

be added to new GAI graphs are selected as those that have a metabolite pool, as a

substrate/product/regulator, which is a border metabolite of the GAI graph being

expanded. More formally, given the border metabolite pool set BMP(GAIÞ, the

reactions expanded are NRS(BMP(GAIÞÞ. That is, we expand GAI graphs with

reactions we encounter via border metabolites. This is the most straightforward

expansion strategy and generates a more bushy expansion hierarchy as many

reactions are covered at a single step.
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Fig. 7. Sketch of the SMDA algorithm.
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Selective Expansion #1: Excluding energy metabolites and those with

regulatory roles. Energy metabolites such as NADþ/NADH and AMP/ADP/

ATP are metabolite pools that play a mostly regulatory energy production/con-

sumption role in many reactions in the metabolic network. Energy metabolite pools

are highly connected in the metabolic network and therefore, once one of these

metabolite pools is placed in the border metabolite pool set BMP(GAIÞ, the naïve

expansion results in expanding all reactions that energy metabolite pools play a role

in. This in general increases the number of alternative GAI graphs generated,

especially in cases where the number of observed metabolite pools is low. The reason

is, many reactions in the metabolic network will be expanded and it is very likely

that the pools in the set NMP(RS(BMP(GAIÞÞ) will have Unknown labels, thereby

forcing the algorithm to generate all possible labeling combinations. To avoid this

problem, selective expansion #1 considers only a subset of the border metabolite

pools, and excludes from the expansion the set of energy metabolite pools as well as

any pool playing a regulatory role in the reaction to be expanded.

Selective Expansion #2: Expansion with partial information. Both Naive

and Selective Expansion #1 strategies use the border metabolite pools, and all

combinations of the newly encountered pools to assign statuses to reactions. A third

approach is to generate all possibilities for the metabolite pools with Unknown

status first, as the algorithm needs complete information about metabolite pool

labels of all metabolite pools participating in a reaction. However, this might not be

the case at all times. There can be a case where the knowledge about the metabolite

pool labels of only the border metabolite pools might be sufficient to assign a status

to a reaction. As an example, by biochemistry rules BC7 and BC8, the availability/

unavailability of a pool can lead to activation or inactivation of a reaction regardless

of the pool statuses of the rest of the metabolite pools.

Considering the above issues leads to the generation of fewer number of GAI

graphs during expansion. Note that there might be multiple metabolite pool label

assignments that create multiple scenarios. Moreover, using those inferred metab-

olite pool labels can enable us to assign status to a reaction, which could not be done

using the border metabolite pools only. So it may be the case that, even if we could

not assign a status to a reaction with the metabolite pool labels given in the border

metabolite pool list, we might be able to do so, given the extra information of

assigning a status to another reaction (as illustrated in Ref. 8).

5. Use of SDMA in Cystic Fibrosis Metabolomics Analysis

In this section, we present an example analysis that illustrates the use of SMDA in a

real-world setting, involving cystic fibrosis data.21 Cystic fibrosis is a lethal disease

caused by a mutation on the cystic fibrosis transmembrane receptor (CFTR) gene,

which results in lung infection and digestive system disorders. One of the major

symptoms is low BMI (body mass index) i.e. unhealthy body weight.22 In order to
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verify that SMDA produces valid and useful results that can be furthered by manual

analysis, we present our approach on experimental data21 from a mouse model of

cystic fibrosis.

5.1. Data

The mice used in the experiments, referred to as DF508 mice or CF mice, are six

weeks old. DF508 mice are homozygous for the F508delmutation on the CFTR gene

and are compared against wild-type (WT) control mice. Metabolome data are

obtained for each genotype and averaged. The metabolite measurements we use in

this test are for the metabolites: D-glucose, palmitate, stearate, palmitoleic acid,

oleic acid and triacylglcerol in cytosol of liver and succinate, fumarate, citrate in

mitochondrion of liver. Gene expression data reveal that the expression of gene

ELOVL, which is responsible for the transcription of the enzyme that elongates

palmitate is down by 3-fold and the expression of the gene SCD1 that desaturates

palmitate to palmitoleic acid and stearate to oleic acid is down by 22-fold. By carbon

labeling, the production of palmitate and stearate from D-glucose is down by two-

fold as compared against the WT mice.

5.2. Input of the algorithm

Metabolite observation labels: Sometimes, in deciding about the observed metabolite

labels, users can use their insight as opposed to using thresholds directly. Following

this approach, here we do not classify observations using the thresholds and instead

use the statistics that are available in the data to define the metabolite label dis-

cretization i.e. Available, Accumulated, etc. as follows. We compare the metabolite

levels of WT vs. DF508 to decide on the metabolite pool labels for DF508 measure-

ments. For example, if ameasurement is decided to beAvailable inWT, and, p-values

are significantly high at 0:05ðp ¼ 0:05Þ in DF508 then the DF508 observation is

labeled asAccumulated; or if p-values of DF508measurement are significantly high at

p ¼ 0:01 then the DF508 observation is labeled as Severely Accumulated. The same

reasoning applies for being significantly low as well. The DF508 observations men-

tioned above translate to Available for the following metabolites: D-glucose, succi-

nate,fumarate, and citrate. And, they translate to Accumulated for metabolites:

Palmitate, Stearate, Palmitoleic Acid, Oleic Acid, and Triacylglcerol.

Enzyme availability: Although gene expression data do not have one-to-one corre-

spondence with enzyme levels, due to the significance of the observations, for the

reactions mentioned earlier, we input the SCD1 and ELOVL as Unavailable. Rest of

the enzymes are marked as Available.

Choosing the Metabolic subnetwork to use for SMDA: The metabolic network con-

sists of the following pathways: Abstracted version of glycolysis (single reaction with

input D-glucose and output pyruvate), TCA cycle and de novo lipogenesis (DNL).

As stand-alone reactions, we input elongation of palmitate, desaturation of
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palmitate, desaturation of stearate, esterification of palmitate, esterification of

stearate, and hydrolysis of acetyl-CoA. As transport reactions we input, pyruvate

transport (from cytosol to mitochondrion), citrate transport (from mitochondrion to

cytosol), palmitate transport (from blood to cytosol and vice versa), stearate

transport (from blood to cytosol and vice versa), oleic acid transport (from blood to

cytosol and vice versa), palmitoleic acid transport (from blood to cytosol and vice

versa) and triacylglycerol transport (from cytosol to blood).

5.3. Results

The goal of the SMDA analysis is to find alternative activation/inactivation scen-

arios for the flow of carbon from D-glucose to palmitate and then to the successors of

palmitate. We know as the ground truth that the flow from D-glucose to palmitate

and then to stearate is negligible (Glycolysis ! TCA Cycle ! Citrate Transport !

DNL). So, given the metabolite and enzyme observations, we are looking for the

cases in our result space where the above-mentioned path is not completely active.

Given (i) the above input, (ii) the assumption that all enzymes are available

unless specified otherwise, and (iii) if a pool is not Unavailable then it is being

consumed and produced, SMDA returns 144 GAI graphs. In 96 of them, we observe

that the path between D-glucose and palmitate/stearate is Active; therefore, we

disregard these conflicting cases. In 48 out of 144 GAI graph cases, we find that the

above-mentioned path is partially active. That is, although D-glucose is utilized by

glycolysis to pyruvate, after getting into the TCA Cycle, the flow does not go into de

novo synthesis of fatty acids.

Dwelling upon these cases reveals that theremight be two other ways carbon being

directed by a pathway other than DNL, which produces palmitate. The first case

occurs when citrate is not transported out of mitochondrion, and the TCA cycle is

Active either partially or completely. There are 30 suchGAI graph cases. In the second

case, citrate is transported out, andDNL starts by converting citrate into acetyl-CoA

and oxaloacetate; however, acetyl-CoA is hydrolyzed into acetate, instead of con-

tinuing into DNL and producing palmitate. There are 18 such GAI graph cases.

It has been reported in the literature that CF patients face the \fatty liver"

problem.23 This occurs when the fat synthesized in liver is not transported out to

blood and then possibly adipose tissue, but stays there. The literature reports a

possible problem with triacylglycerol transport. In the above-mentioned 48 flow-

graph cases, we find 24 cases where triacylglycerol transport is inactive, which are

\more likely candidates" for this problem. In these cases, triacylglycerol is being

produced, and then hydrolyzed back into fatty acids. In all such 48 GAI graph cases,

we have transport reactions for palmitate, palmitoleic acid, oleic acid, and stearate

active in both ways, which makes sense since we have input their producers as

Inactive, and, as the mice have these fatty acids in their diet, those pools enter and

exit liver. As an example, we pick the GAI graph in Fig. 8 as a good candidate to

explain the ground truth. This is the snapshot of the result provided by the Java
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applet through the web-based SMDA tool. In Fig. 8, thick arrows and white rec-

tangles symbolize active reactions, and gray rectangles with thin arrows symbolize

inactive reactions. Dashed lines represent transport reactions. In this case, D-

glucose is utilized in the TCA cycle to produce energy, rather than being trans-

ported out and converted into fat for storage, which might explain the fact that

cystic fibrosis mice have significantly low fat storage. Inactivity of triacylglycerol

transport into blood is an extra clue. The \availability" of fatty acids in the liver is

explained by the diet input and blood exchange.

In summary, based on the observations, SMDA was able to capture 48 flow-

graph cases that are consistent with the ground truth (i.e. the lack of flux from D-

glucose to palmitate). Based on the literature on triacylglycerol transport, we have

shrunk our result space down to 24 cases and were able to pick the GAI graph shown

in Fig. 8 as a candidate activation scenario to explain the metabolic activity in the

liver of a cystic fibrosis mouse.

6. Computational Performance Evaluation of SMDA

In this section, the computational performance of the SMDA algorithm is empirically

evaluated, and different expansion strategies of Sec. 4 are compared with real data.

6.1. Experimental settings

Environment. The experiments are performed on a Dell PowerEdge R710 Server

with two Intelr Xeonr quad processors and 48GB main memory, running the

Fig. 8. A candidate GAI graph that explains cystic fibrosis data.
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Windows Server 2008. The web application server is Microsoft IIS 7. The database

server is Microsoft SQL Server 2010. The SMDA web site is implemented with

Microsoft ASP.NET; and the client visualization is implemented with Java.

Database. The metabolic network database, constructed from data in the litera-

ture and continually expanded, includes mammalian metabolic pathways that are

built for PathCase Metabolomics Analysis Workbench, with 22 pathways, 202

metabolites, 375 metabolite pools, and 240 reactions. The thresholds are set up

according to the Human Metabolome Database (HMDB).12

Observations. Metabolomics observations used in experiments are from cystic

fibrosis mice metabolomics profiles, although we took to liberty of using observation

subsets in some experiments.

6.2. Experimental results

6.2.1. Relationship between the number of observations

and the number of GAI and flow-graphs.

In this experiment, we evaluate the performance of SMDA for different number of

user observations. We experiment with three different size subnetworks. For each

subnetwork, we change the number of metabolite pool observations and record the

number of graphs in the result, as listed in Table 1.

Observation 1. For small subnetworks, a linear increase in the number of obser-

vations results in an exponential decrease in the number of GAI and flow-graphs in

the output.

From Table 1, regardless of the size of the subnetwork, the number of GAI and

flow-graphs decreases as we provide more observations as input. Note that, in some

cases, increasing the number of observations will not reduce the number of graphs,

since there is only one possible label for the input pools in the results. Then the

input pool observation is really duplicate information with no reduction on the

result size.

Table 1. Number of observations versus number of output graphs for small subnetworks.

Subnetwork # Reactions # M. Pools # Observations #GAI-graphs #flow-graphs

Pentose Pathway 8 16 1 8,938 846

2 860 423
3 588 376

Glycolysis Pathway 14 25 1 152 12
2 8 8

3 4 4

GlycolysisþTCA
Cycle pathways

24 48 2 332,288 160
4 166,144 80

6 128 32
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In another experiment, for a larger subnetwork, we observe how the algorithm

scales. We choose a connected subnetwork with 6 pathways, 48 reactions, and 132

metabolite pools. The number of GAIand flow-graphs vs. different numbers of

observations is shown in Table 2.

From Table 2, we can see that, even in a large subnetwork, we can get reasonably

small numbers of GAIand flow-graphs with increased number of pool observations.

Observation 2. For larger subnetworks, a linear increase in the number of

observations results in an exponential decrease in the number of GAI-graphs and a

linear decrease in the number of flow-graphs in the output.

6.2.2. Algorithm time efficiency

The execution time is composed of two parts: expansion time and merge time. For

each subnetwork, we execute each of the three expansion strategies. The results

show that, in general, increasing the number of observed pool observations

decreases the execution time exponentially. This is due to the fact that, with more

observed values, expansion time is decreased exponentially by reducing the

expansions of many small subnetworks, instead of one large network. However, in

some experiments, increasing the number of pool observations has actually

increased the execution time, instead of decreasing it. In those cases, we have found

that merge time costs are significantly higher than expansion time costs.

Observation 3. A linear increase in the number of metabolite pool observations

results in an exponential decrease in the execution time of the algorithm.

Figure 9 shows how the algorithm behaves with \Selective expansion 1" strategy.

The results are similar for \Naïve expansion" and \Selective expansion 2" strategies.

6.2.3. Comparing expansion strategies for a large subnetwork

Next we use the connected subnetwork of Table 2 with 6 pathways, 48 reactions,

and 132 metabolite pools. Figure 10 shows execution times of different expansion

strategies.

Since \Selective Expansion #1" excludes the set of energy metabolite pools

during the expansion, it takes less time than other two expansion strategies when

the observations are less.

Table 2. Number of observations versus number of graphs for a large network.

# Reactions # M. Pools # Observations # GAI-graphs # flow-graphs

48 132 17 3,072 40

23 1,536 20
31 384 12

33 192 12

35 192 12

37 192 12
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Observation 4. Selective Expansion #1 time costs are invariably much less than

the time costs of Nave Expansion and Selective Expansion #2 Strategies.

7. Related Work

Metabolic network analysis techniques are used to study the dynamics of cellular

metabolism. They include metabolic control analysis (MCA),24 flux balance anal-

ysis (FBA),18 metabolic flux analysis,25 and metabolic pathway analysis (more

specifically, elementary flux mode analysis (EMA)19 and extreme pathway analysis

(EPA)).20 Next we briefly discuss FBA and EMA and briefly compare them with

SMDA.

Fig. 10. Expansion strategy times for a subnetwork with six pathways.

Fig. 9. SMDA time cost for a single network versus the number of observations for Glycolysis and TCA

Cycle combined.
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FBA, a widely applied method for the computation of stationary fluxes in large-

scale metabolic networks, is based on convex analysis imposing an objective

function subject to several constraints, to determine the metabolic flux vector.

Critiques of FBA include (i) identification of only one optimal solution, (ii) pre-

dicted flux distributions being hypothetical (i.e. depending on the choice of the flux

criteria), and (iii) exponential time complexity.

EMA reduces the metabolic network into all possible, unique, non-divisible

paths. Each EMA vector specifies a minimal set of enzymes in that if only the

enzymes of a given EMA vector is operating, inhibition of any of the enzymes would

eliminate the steady-state flux in the system. In comparison, SMDA returns all

possible activation/inhibition scenarios, and since the output space is exponential,

it then employs exploratory search and browsing.

Comparison of MCA, EMA, and SMDA approaches. Next we briefly list the

differences between the MCA (or FBA), EMA, and SMDA approaches:

Different goals. The four approaches are useful in different contexts, focus on pro-

viding different sets of information to users, and have different goals.

(a) MCA focuses on \control as a property of the whole system": One can (i)

measure (at quasi-steady state) the effect of single enzyme perturbations on the

system, and (ii) calculate the control distribution, relating the system behavior

to individual reactions.

(b) EMA can be used for tasks such as the recognition of operational modes,

determination of all optimal paths, and analysis of network flexibility (struc-

tural robustness, redundancy).8 Under steady-state conditions, the metabolic

fluxes of an organism can be expressed as non-negative, linear, weighted com-

binations of elementary flux modes19; however, identifying the weighting fac-

tors to determine the fractional contributions of each elementary mode is

difficult, if not impossible.26,27 Visualizations of elementary flux modes within a

given KEGG pathway are also available (via YANAsquare).

(c) SMDA, working with possibly large metabolic network within a multi-tissue

(organ) environment (i.e. not within a cell) and assuming steady-state behavior,

returns to users all metabolic action scenarios as well as their visualizations

within the metabolic network. Allowing users to quickly concentrate on locating

possibly activated paths for a given set of observed metabolite concentration

changes. SMDA does not derive (steady-state) flux values of the MCA (FBA)

method, and, thus, there are no control-related (i.e. rate limitation) conclusions

(of the MCA method).

Different underlying fundamentals. SMDA is rule-based and employs graph tra-

versal and expansion algorithms across the metabolic network. In comparison,MCA

and FBA involve solving a set of under-constrained differential equations corre-

sponding to a possibly smaller metabolic network at hand. EMA determines
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elementary fluxes via a linear combination of \null space basis vectors" of the

stoichiometry matrix.28

Ease of use. MCA (or FBA), even with the easiest-to-use GUI-oriented software

tools (such as COPASI), requires (i) additional information to be collected and

provided by the users including the stoichiometry information, and (ii) setup and

usage expertise, for biologists to use them. The EMA tools YANA and YANAsquare

do provide user-friendly elementary flux derivations and their visualizations. In

comparison, SMDA uses a metabolic pathways database, which already contains

the metabolic network, biochemistry-based rules and other information, so that all

that a user is to provide is a set of observed metabolite changes and the selected

subnetwork.

Modeling-related restrictions/assumptions. As listed earlier,MCA has a number of

assumptions (such as requiring a connected network of pathways)29 that are not

needed for SMDA. EMA also requires connectivity.

Computational Complexity. Computational complexity of MCA is exponential in

the number of reactions involved, forcing users to use various techniques such as

compaction, aggregation, and clustering/merging. Computational complexity of

EMA is also exponential,30 and various approaches to tackle the high complexity are

proposed such as parallel computing,31 network decomposition, and \functional

conversion of flux cones". SMDA is also exponential in the number of reactions.

8. Conclusions and Future Work

We have presented a new approach for classifying activation�inactivation scen-

arios, given a set of metabolite observations and a metabolic subnetwork. One

future research direction is to incorporate Exploratory Data Mining and Analysis

capabilities for the SMDA query output search space.
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