
Turk J Elec Eng & Comp Sci

(2018) 26: 162 – 171

c⃝ TÜBİTAK
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Abstract: In this paper, we deliver a new method to remove salt and pepper noise, which we refer to as based on

pixel density filter (BPDF). The first step of the method is to determine whether or not a pixel is noisy, and then we

decide on an adaptive window size that accepts the noisy pixel as the center. The most repetitive noiseless pixel value

within the window is set as the new pixel value. By using 18 test images, we give the results of peak signal-to-noise

ratio (PSNR), structural similarity (SSIM), image enhancement factor (IEF), standard median filter (SMF), adaptive

median filter (AMF), adaptive fuzzy filter (AFM), progressive switching median filer (PSMF), decision-based algorithm

(DBA), modified decision-based unsymmetrical trimmed median filter (MDBUTMF), noise adaptive fuzzy switching

median filter (NAFSM), and BPDF. The results show that BPDF produces better results than the above-mentioned

methods at low and medium noise density.
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1. Introduction

One of the most important issues in image processing is removing noise from images by preserving their details

and features such as edges, textures, and colors [1–7]. Hence, there has been much research on this subject [8].

The success of image denoising affects the success rate of segmentation, classification, and similar procedures.

When the images are captured, some disruption occurs in the pixels during the digitalization process

of the image. Additionally, vibrations may occur on the sensors during the imaging process [2–6,9,10]. This

deterioration is classified as salt and pepper noise (SPN) and random valued impulse noise [11,12].

SPN degrades the image quality to a great extent [13]. Therefore, many linear/nonlinear filters have

been developed to solve the problem. Several of these filters can only be applied to noisy pixels [3,10,14,15],

whereas others work on all pixels [16]. In general, the nonlinear filters with fixed/adaptive window size, such

as median, average, mean, and adaptive Wiener filters, are stronger than linear filters. To set the new value of

a pixel, these filters use a window consisting of the neighboring pixels of the noisy pixel accepted as the center

pixel. The most familiar filter is the standard median filter (SMF) [3,17,18]. SMF works on all pixels, not only

on noisy ones. Applying the filter in this way, however, blurs the image and distorts the original pixel values.

Although SMF works well in low-intensity noise by using the small window size, it does not work well in other

environments, which is a disadvantage for SMF [19,20].
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Recently, certain filters, such as adaptive median filter (AMF) and adaptive fuzzy filter combined with

median filter (AFM), have been using the adaptive window size instead of the fixed one. These filters adjust

the window size adaptively according to the noise density [21–25]. In this filter, the window size is not fixed

as in SMF; instead, it changes according to changing conditions [26]. A disadvantage of the AMF method is

that when the window size is enlarged, it moves away from the original pixel information. AFM is a three-step

method: firstly, the noisy pixel of the image is determined, secondly, the noise is removed by using the adaptive

fuzzy filter, and finally, SMF is applied to the remaining noisy pixels from the second step [27].

Several other popular methods are progressive switching median filter (PSMF), decision-based algorithm

(DBA), modified decision-based unsymmetrical trimmed median filter (MDBUTMF), and noise adaptive fuzzy

switching median filter (NAFSM). PSMF is one of the most successful median filter types in removing noise.

The image is made locally smooth and the edges are removed. The location of the noise is determined and

then SMF is applied locally to the image [28]. PSMF produces better results than SMF. However, because of

PSMF’s recursive feature, high computational complexity becomes a disadvantage [29]. DBA emerges from the

changes to SMF. The filter determines the noisy pixels and applies SMF to them [30]. In MDBUTMF, the

noisy pixel value is replaced with the average value of all pixels in the window accepting this pixel as the center

pixel. In this case, even if all pixel values in the window are 0 or 255, the filter assumes that these pixels are

not corrupted. This is an inefficient way of reaching the value close to the original pixel value [31,32]. NAFSM

removes noise in two stages. Firstly, the noisy pixels are identified by the histogram of the corrupted image.

Secondly, the filter is applied to the noisy pixels [33]. Fuzzy reasoning is employed to handle uncertainty in the

extracted local information about the noisy pixels, and the values of the corrupted pixels are replaced with a

median filter or are estimated via the values of the neighboring pixels [34,35].

In this study, we developed a method called based on pixel density filter (BPDF) to remove SPN. The

basic idea in this new method is that the most repetitive pixel value among the uncorrupted neighboring pixels

of the noisy pixel is set as the new value.

2. Proposed algorithm

In this section, we develop the BPDF method to remove SPN. Determining whether a pixel with value 0 (or

255) is noisy or not plays an important role in noise removal. To that end, BPDF assumes that all pixels with

value 0 (or 255) are not noisy, on the condition that the uncorrupted pixel values, if any, are less than 10 (or

higher than 245) in the window. Of course, the threshold value determined as 10 can change according to the

noise density of the images. Furthermore, the most crucial feature of this method is that if all the pixels in the

window are noisy, this increases the window size until an uncorrupted pixel is reached.

The BPDF algorithm is as follows:

Let X : = [x(i, j) ] be a noisy image consisting of pixels x(i, j) , where i and j range from 1 to m and

n , respectively.

Step 1. For all i and j ,

Step 1.1. If x(i, j) is noisy, and at least one pixel in the window with a 3 × 3 size that accepts this pixel as

the center pixel is not noisy, then

For all i and j in the window, if there is at least one x(i, j) such that 0 < x(i, j) < 10 or 245

< x(i, j) < 255, then
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ERKAN and GÖKREM/Turk J Elec Eng & Comp Sci

a. Find the maximum repetitive pixel values in the window;

b. Evaluate the median of the values;

c. Overwrite this value to the x(i, j) .

Step 1.2. If x(i, j) is noisy, and at least one pixel in the window with 5 × 5 size that accepts this pixel as

the center pixel is not noisy, then

For all i and j in the window, if there exists at least one x(i, j) such that 0 < x(i, j) < 10 or 245

< x(i, j) < 255, then

a. Find the maximum repetitive pixel values in the window;

b. Evaluate the median of the values;

c. Overwrite this value to x(i, j) .

...

Step 1.3. If x(i, j) is noisy, and at least one pixel in the window with (2k +1) × (2k + 1) size that accepts

this pixel as the center pixel is not noisy, then

For all i and j in the window, if there exists at least one x(i, j) such that 0 < x(i, j) < 10 or 245

< x(i, j) < 255, then

a. Find the maximum repetitive pixel values in the window;

b. Evaluate the median of the values;

c. Overwrite this value to the x(i, j) .

where 0 < k < min{m,n} .

Step 2. Otherwise, keep the value of x(i, j) .

Example 2.1 Assume that X is a noisy image with a size of 512 × 512. Let x(40,41) = 0, and the window

with the 3 × 3 size shown in Figure 1a be the window that accepts this pixel as the center pixel. At least one

pixel in this window is not noisy; for example, x(39,41) ̸= 0 (or x(39,41) ̸= 255) since x(39,41) = 236.

Similarly, at least one pixel value in this window is between 245 and 255; for example, 245 < x(40,40) = 252

< 255. Therefore, the window satisfies the conditions given in Step 1.1. In that case, the maximum repetitive

pixel values in the window are found as 240 and 244, and the median value of these values is evaluated as 242.

Therefore, the value of 242 is set to the noisy pixel, and the window becomes as in Figure 1b.

Example 2.2 Assume that X is a noisy image with a size of 512 × 512. Let x(314,350) = 255 and the

window with the 3 × 3 size shown in Figure 2a be the window that accepts this pixel as the center pixel. All

pixels in this window are noisy. Therefore, the window does not satisfy the conditions given in Step 1.1. Let the

window with the 5 × 5 size, shown in Figure 2b, accept the pixel x(314,350) as the center pixel. Clearly, at least

one pixel in this window is not noisy; for example, x(312,350) ̸= 0 (or x(312,350) ̸= 255), since x(312,350)

= 8. Similarly, at least one pixel value in this window is between 0 and 10; for example, 0 < x(314,348) = 8
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Figure 1. Illustration of Example 2.1.

< 10. That is, the window satisfies the conditions given in Step 1.2. In that case, the maximum repetitive pixel

values in the window are found as 0 and 8, and the median value of these is evaluated as 4. Therefore, value 4

is set to the noisy pixel, and the window becomes as is shown in Figure 2c.

Figure 2. Illustration of Example 2.2

3. Algorithm results

3.1. Algorithm evaluation criteria

In this subsection, we compare the results of AMF, SMF, AFM, PSMF, DBA, MDBUTMF, NAFSM, and

BPDF methods, by using 18 test images with a size of 512 × 512 and three metrics. The images are “Lena”,

“Cameraman”, “Barbara”, “Peppers”, “Plane”, “Baboon”, “Bridge”, “Pirate”, “Elaine”, “Boat”, “Lake”,

“Flintstones”, “Living Room”, “Blonde Woman”, “Dark-haired Woman”, “House”, “Parrot”, and “Flower”.

The first of these metrics, PSNR, is commonly used in literature and is defined as

PSNR := 10 log

(

2552

MSE

)

, (1)

where MSE stands for the mean square error, and is defined as

MSE :=
1

mn

m
∑

i=1

n
∑

j=1

(e(i, j)− f(i, j))
2

(2)

Here E := [e(i, j)] is the earliest form/original image and F := [f(i, j)] is the final form/corrupted image.

The second of these metrics, SSIM, which is given in [36], is simplified and defined as

SSIM :=
(2µxµy + C1) + (2σxy + C2)

(

µ2
x + µ2

y + C1

)

+
(

σ2
x + σ2

y + C2

) , (3)
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where µx , µy , σx , σy , and σxy are the average intensities, standard deviations and cross-covariance for images

x and y , respectively. In addition, C1 := (K1L)
2
and C2:= (K2L)

2
are two constants, such that K1K2 ≪ 1

are small constants and L = 255 for eight-bit grayscale images.

The last of these metrics, simplified. image enhancement factor (IEF), given in [32], is defined as

IEF :=

m
∑

i=1

n
∑

j=1

(x(i, j)− e(i, j))
2

m
∑

i=1

n
∑

j=1

(f(i, j)− e(i, j))
2

(4)

Here E := [e(i, j)] is the earliest form/original image, F := [f(i, j)] is the final form/corrupted image, and X :

= [x(i, j) ] is the noise image.

3.2. Algorithm evaluation results

Table 1 shows the mean PSNR-SSIM-IEF results of 18 test images. In Table 1, the noise densities (NDs) range

from 10% to 50%. According to Table 1, BPDF is the most successful method in the 10% and 20% ND, whereas

it is the second most successful method in the 30% and 40% ND. As a result, it is safe to state that BPDF is

the most successful method when the ND is low.

Table 1. Mean results of the methods for the eighteen test images.

ND Evaluation AMF SMF AFM PSMF DBA MDBUTMF NAFSM BPDF

10%

PSNR 29.16 31.09 29.48 33.99 35.46 33.78 36.46 37.55

SSIM 0.9503 0.8936 0.8527 0.9664 0.9709 0.9458 0.9768 0.9815

IEF 25 49 37 92 159 89 240 251

20%

PSNR 26.35 27.30 28.81 30.22 31.23 30.20 33.47 33.76

SSIM 0.9374 0.8481 0.8382 0.9343 0.9287 0.8574 0.9532 0.9585

IEF 26 34 62 69 113 68 230 201

30%

PSNR 24.55 22.72 28.52 26.76 28.05 28.68 31.62 31.06

SSIM 0.9173 0.7132 0.8336 0.8615 0.8696 0.7998 0.9282 0.9289

IEF 26 17 84 45 78 72 220 158

40%

PSNR 23.22 18.47 28.12 23.58 25.24 28.84 30.21 28.71

SSIM 0.8907 0.4900 0.8281 0.7501 0.7914 0.8243 0.9014 0.8897

IEF 25 8 97 28 51 106 207 119

50%

PSNR 22.06 14.93 27.08 19.24 22.67 29.06 29.01 26.40

SSIM 0.8559 0.2750 0.8036 0.5294 0.6957 0.8569 0.8715 0.8354

IEF 24 5 87 13 33 164 191 85

In Table 2, the PSNR-SSIM-IEF results of the methods for 18 test images with 20% ND are shown.

According to Table 2, BPDF produced the best results in 13 images for each metric.

Figure 3 shows the cameraman images of DBA, MDBUTMF, NAFSM, and BPDF in 10% noise density

as well as the PSNR-SSIM-IEF results. BPDF gives the best results in 10% ND.

Figure 4 shows the Lena images, where BPDF is applied to various NDs. BPDF produces outstanding

results in low and medium ND.
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Table 2. Results of the methods for the eighteen test images in 20% ND.

Evalution AMF SMF AFM PSMF DBA MDBUTMF NAFSM BPDF

Lena

PSNR 27.04 28.95 30.91 32.64 33.38 32.17 35.66 36.10
SSIM 0.9439 0.8656 0.8734 0.9627 0.9422 0.8693 0.9667 0.9659
IEF 29 44 70 104 123 93 208 230

Cameraman

PSNR 26.96 28.36 30.77 31.21 32.58 30.94 33.91 35.07
SSIM 0.9697 0.9175 0.9351 0.9443 0.9659 0.8391 0.9643 0.9798
IEF 31 43 74 82 113 77 153 199

Barbara

PSNR 24.54 23.37 24.03 24.93 26.62 27.24 30.18 29.49
SSIM 0.9073 0.7495 0.7425 0.8466 0.8944 0.8454 0.9482 0.9430
IEF 17 13 15 18 27 31 61 52

Peppers

PSNR 26.35 26.15 27.15 29.32 28.92 28.58 29.47 31.56
SSIM 0.9430 0.8469 0.8443 0.9421 0.9134 0.8785 0.9212 0.9511
IEF 23 22 28 46 42 39 48 78

Plane

PSNR 26.56 28.01 29.73 31.08 32.71 31.66 36.36 34.78
SSIM 0.8962 0.7839 0.7720 0.9209 0.9098 0.8458 0.9553 0.9467
IEF 27 37 55 75 109 86 254 176

Baboon

PSNR 25.37 24.58 24.96 27.06 27.39 27.91 29.63 30.25
SSIM 0.9058 0.7581 0.7311 0.8911 0.8820 0.8614 0.9230 0.9350
IEF 20 17 19 30 32 37 54 63

Bridge

PSNR 26.62 27.60 28.41 31.18 31.18 30.70 33.60 33.84
SSIM 0.9338 0.8324 0.8209 0.9495 0.9220 0.8602 0.9512 0.9548
IEF 26 33 40 75 75 67 131 139

Pirate

PSNR 26.77 28.07 30.78 32.25 33.60 32.55 37.56 36.05
SSIM 0.8884 0.7351 0.7449 0.9250 0.8969 0.8554 0.9542 0.9402
IEF 27 37 68 96 130 102 325 229

Elaine

PSNR 26.27 26.48 27.14 29.32 29.86 29.79 31.52 32.43
SSIM 0.9175 0.7997 0.7811 0.9249 0.9052 0.8714 0.9384 0.9448
IEF 24 25 29 48 54 53 79 98

Boat

PSNR 26.47 27.64 30.00 29.48 31.91 30.32 33.58 34.63
SSIM 0.9616 0.9052 0.9124 0.9130 0.9558 0.8177 0.9685 0.9736
IEF 28 37 63 56 98 68 144 184

Lake

PSNR 26.98 29.74 30.92 32.06 36.87 33.15 41.44 39.75
SSIM 0.9770 0.9357 0.8656 0.9561 0.9777 0.8444 0.9828 0.9854
IEF 30 56 73 96 289 123 828 562

Flintstones

PSNR 26.23 27.02 27.95 29.64 29.36 29.23 31.54 32.56
SSIM 0.9307 0.8292 0.8302 0.9136 0.9195 0.8346 0.9501 0.9542
IEF 26 32 39 58 54 53 89 113

Living room

PSNR 26.27 26.75 27.58 29.50 29.99 29.97 31.81 32.51
SSIM 0.9121 0.7891 0.7878 0.9152 0.9057 0.8624 0.9417 0.9447
IEF 24 27 33 51 57 57 87 102

Blonde woman

PSNR 24.31 23.45 22.78 25.18 25.00 25.88 26.39 27.45
SSIM 0.9101 0.8100 0.7612 0.9070 0.8988 0.8523 0.9330 0.9414
IEF 18 15 13 22 21 26 29 38

Dark-haired woman

PSNR 25.72 25.39 25.76 28.46 27.14 28.06 28.72 29.45
SSIM 0.9612 0.9025 0.8876 0.9592 0.9303 0.9288 0.9442 0.9574
IEF 22 20 22 41 30 37 43 51

House

PSNR 26.54 28.18 28.12 31.19 29.83 29.54 30.68 31.58
SSIM 0.9553 0.8882 0.8762 0.9537 0.9423 0.8858 0.9632 0.9671
IEF 25 36 36 73 53 50 65 80

Parrot

PSNR 26.06 27.13 27.06 30.45 28.95 28.55 29.47 30.57
SSIM 0.9126 0.7940 0.7897 0.9418 0.9132 0.8605 0.9464 0.9470
IEF 22 28 28 61 43 39 48 62

Flower

PSNR 27.05 29.83 36.74 33.26 38.77 32.53 42.04 40.96
SSIM 0.9660 0.9117 0.9365 0.9517 0.9692 0.8166 0.9814 0.9802
IEF 32 60 295 133 472 112 1000 780
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Figure 3. Cameraman image filter results: (a) original image, (b) image with 10% ND, (c) image after DBA, (d) image

after MDBUTMF, (e) image after NAFSM, (h) image after BPDF.

Figure 4. Lena images with noise, and Lena images after noise removal: (a) 1% cleaned, (b) 10% cleaned, (c) 30%

cleaned.
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For the NDs that range from 1% to 9%, Table 3 shows the mean results of the methods for all images.

The results show that BPDF is more successful than other methods at very low NDs.

The time performances of the methods have been measured in seconds and are shown in Table 4. In

comparison, the computer that has been used has Windows 7, 64-bit, Intel Core i7-4720 CPU @ 2.60 GHz,

16 GB memory, and MATLAB R2016b. The mean results show that BPDF is faster than its most powerful

competitors, MDBUTMF and NAFSM.

Table 3. Mean results of all methods at very low ND.

ND Evaluation AMF SMF AFM PSMF DBA MDBUTMF NAFSM BPDF

1%

PSNR 34.98 33.51 31.56 38.49 44.28 45.13 45.62 47.41
SSIM 0.9527 0.9064 0.8899 0.9861 0.9976 0.9967 0.9975 0.9982
IEF 11 13 7 54 195 208 222 274

2%

PSNR 33.70 33.30 31.17 37.80 42.29 42.24 43.03 44.66
SSIM 0.9517 0.9054 0.8840 0.9841 0.9951 0.9935 0.9954 0.9966
IEF 15 25 12 70 201 203 230 283

3%

PSNR 32.77 33.04 30.82 37.34 40.90 40.54 41.39 43.01
SSIM 0.9513 0.9042 0.8786 0.9821 0.9924 0.9901 0.9930 0.9947
IEF 18 31 16 90 208 206 236 288

4%

PSNR 32.03 32.88 30.55 36.81 39.78 39.36 40.22 41.81
SSIM 0.9516 0.9031 0.8738 0.9801 0.9898 0.9868 0.9907 0.9930
IEF 20 40 20 93 202 203 239 294

5%

PSNR 31.31 32.55 30.31 36.39 38.77 38.40 39.38 40.76
SSIM 0.9514 0.9018 0.8692 0.9781 0.9869 0.9833 0.9884 0.9911
IEF 21 42 23 102 184 192 241 278

6%

PSNR 30.83 32.32 30.08 35.81 37.86 37.47 38.58 39.98
SSIM 0.9514 0.9003 0.8652 0.9759 0.9839 0.9793 0.9861 0.9894
IEF 22 48 26 102 169 176 244 273

7%

PSNR 30.45 31.86 29.88 35.31 37.29 36.54 37.93 39.29
SSIM 0.9518 0.8987 0.8612 0.9737 0.9809 0.9739 0.9837 0.9874
IEF 24 44 29 100 177 149 238 274

8%

PSNR 29.94 31.67 29.73 34.86 36.63 35.72 37.42 38.66
SSIM 0.9514 0.8971 0.8582 0.9712 0.9778 0.9674 0.9816 0.9855
IEF 24 47 31 96 171 131 245 265

9%

PSNR 29.53 31.40 29.59 34.37 36.08 34.74 36.86 38.02
SSIM 0.9506 0.8951 0.8554 0.9686 0.9745 0.9579 0.9791 0.9836
IEF 24 50 34 93 170 106 236 255

Table 4. Time comparisons of the methods (in seconds).

ND AMF SMF AFM PSMF DBA MDBUTMF NAFSM BPDF
10% 4.09 3.88 16.31 1.58 12.04 12.42 4.35 3.33
20% 4.03 4.14 15.54 1.81 10.57 13.85 8.97 6.73
30% 4.12 4.17 16.02 2.02 12.39 18.98 13.53 9.84
40% 3.90 4.19 10.42 1.38 11.10 22.22 16.45 12.93
50% 5.13 4.63 15.56 2.48 12.20 29.98 24.54 18.51
60% 4.52 4.15 17.17 0.68 11.75 29.86 25.05 19.83
70% 8.23 4.30 15.06 0.87 11.85 36.64 33.46 23.76
80% 16.22 4.41 15.13 0.85 11.99 36.02 37.49 27.26
90% 35.73 4.35 14.90 0.55 11.50 37.81 39.56 30.24
Mean 9.55 4.25 15.12 1.36 11.71 26.42 22.60 16.94
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4. Conclusion

BPDF removed the salt and pepper noise by looking at the repeat numbers of the pixels, and succeeded more

than the others in ND up to 50%. This success is more distinct when ND is low. When processing noisy pixels,

BPDF does not remove those pixels from the window via a threshold value, but takes them into account if

there is any doubt about any neighboring pixels of the processed pixel being noiseless. Each filter has its unique

difficulties and successes. Perhaps it is best is to define a hybrid filter that determines the NDs of images and

uses the most successful filter for each ND slice.
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[2] González-Hidalgo M, Massanet S, Mir A, Ruiz-Aguilera D. A fuzzy filter for high-density SPN removal. Lect Notes

Comp Sci 2013; 8109: 70-79.

[3] Xiao L, Li C, Wu Z, Wang T. An enhancement method for X-ray image via fuzzy noise removal and homomorphic

filtering. Neurocomputing 2016; 64: 195: 56-64.

[4] Coupe P, Manjon JV, Robles M, Collins DL. Adaptive multiresolution non-local means filter for three-dimensional

magnetic resonance image denoising. IET Image Process 2012; 6: 558-568.

[5] Baljozovic D, Kovacevic B, Baljozovic A. Mixed noise removal filter for multi-channel images based on halfspace

deepest location. IET Imag Proc 2013; 7: 310-323.

[6] Vijendran AS, Lukose B. Fast and efficient method for image denoising. IJEIT 2013; 3: 200-208.

[7] Sakthidasan K, Sankaran A, Nagappan VN. Noise free image restoration using hybrid filter with adaptive genetic

algorithm. Comput Elec Eng 2016; 54: 382-392.

[8] Thanha DNH, Dvoenkoa SD. A method of total variation to remove the mixed Poisson–Gaussian noise. Pattern

Recogn 2016; 26: 285-293.

[9] Zhang C, Wang K. A switching median–mean filter for removal of high-density impulse noise from digital images.

Optik 2015; 126: 956-961.

[10] Gellert A, Brad R. Context-based prediction filtering of impulse noise images. IET Image Process 2016; 10: 429-437.

[11] Vasanth K, Kumar VJS. Decision-based neighborhood-referred unsymmetrical trimmed variants filter for the re-

moval of high-density salt-and-pepper noise in images and videos. Signal Image Video P 2015; 9: 1833-1841.

[12] Chan RH, Ho CW, Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving

regularization. IEEE T Image Process 2005; 14: 1479-1485.

[13] Zhao F, Ma RC, Ma JQ. An algorithm for SPN removal based on information entropy. Appl Mech Mater 2012;

220–223: 2273-2279.

[14] Erkan U, Kilicman A. Two new methods for removing salt-and-pepper noise from digital images. ScienceAsia 2016;

42: 28-32.

[15] Roig B, Estruch VD. Localised rank-ordered differences vector filter for suppression of high-density impulse noise

in colour images. IET Image Process 2016; 10: 24-33.

[16] Hwang H, Haddad RA. Adaptive median filters: new algorithms and results. IEEE T Image Process 1995; 4:

499-502.

[17] Jin L, Xiong C, Liu H. Improved bilateral filter for suppressing mixed noise in color images. Digit Signal Process

2012; 22: 903-912.

[18] Sreenivasulu P, Chaitanya NK. Removal of SPN for various images using median filters: a comparative study. IUP

J Telecommunications 2014; VI.

170

http://dx.doi.org/10.1016/j.aeue.2014.09.018
http://dx.doi.org/10.1007/978-3-642-40643-0_8
http://dx.doi.org/10.1007/978-3-642-40643-0_8
http://dx.doi.org/10.1049/iet-ipr.2011.0161
http://dx.doi.org/10.1049/iet-ipr.2011.0161
http://dx.doi.org/10.1049/iet-ipr.2012.0105
http://dx.doi.org/10.1049/iet-ipr.2012.0105
http://dx.doi.org/10.1016/j.compeleceng.2015.12.011
http://dx.doi.org/10.1016/j.compeleceng.2015.12.011
http://dx.doi.org/10.1016/j.ijleo.2015.02.085
http://dx.doi.org/10.1016/j.ijleo.2015.02.085
http://dx.doi.org/10.1049/iet-ipr.2015.0702
http://dx.doi.org/10.1007/s11760-014-0665-0
http://dx.doi.org/10.1007/s11760-014-0665-0
http://dx.doi.org/10.1109/TIP.2005.852196
http://dx.doi.org/10.1109/TIP.2005.852196
http://dx.doi.org/10.4028/www.scientific.net/AMM.220-223.2273
http://dx.doi.org/10.4028/www.scientific.net/AMM.220-223.2273
http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.028
http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.028
http://dx.doi.org/10.1049/iet-ipr.2014.0838
http://dx.doi.org/10.1049/iet-ipr.2014.0838
http://dx.doi.org/10.1109/83.370679
http://dx.doi.org/10.1109/83.370679
http://dx.doi.org/10.1016/j.dsp.2012.06.012
http://dx.doi.org/10.1016/j.dsp.2012.06.012
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