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Summary
A new monaural method for the suppression of late room reverberation from speech signals, based on spectral sub-
traction, is presented. The problem of reverberation suppression differs from classical speech de-noising in that the
“reverberation noise” is non stationary. In this paper, the use of a novel estimator of the non-stationary reverberation-
noise power spectrum, based on a statistical model of late reverberation, is presented. The algorithm is tested on real
reverberated signals. The performances for different RIRs with ranging from 0.34 s to 1.7 s consistently show
significant noise reduction with little signal distortion. Moreover, when used as a front end to an automatic speech
recognition system, the algorithm brings about dramatic improvements in terms of automatic speech recognition scores
in various reverberant environments.

PACS no. 43.00.Xx, 00.00.Xx

1. Introduction

Reverberation is an acoustical noise appearing in enclosed

spaces through the multiple reflections and diffractions of the

sound on the walls and objects of a room. When a speaker

talks in a room, these multiple echoes add to the direct sound

and blur its temporal and spectral characteristics. Its effect

can be alleviated by the use of a microphone close to the

source of the signal of interest. However, this is not con-

venient for “hand free” applications, such as for instance

men-machine communication. Indeed many applications for

which a distant sound pick up is required perform poorly

in the presence of reverberation. This is the case for Auto-

matic Speech Recognition (eg. [1]) or Automatic Speaker

Verification (eg. [2]). Dereverberation can also be of benefit

to hearing impaired listeners since reverberation can reduce

speech intelligibility [3].

The problem of speech dereverberation has received a lot

of attention from the seventies until now. The process of re-

verberation can be modeled as a filtering process: the speech

signal is convolved by the impulse response of the acoustic

channel defined by the emitter, the receiver and the surround-

ing environment. Such an impulse response is referred to as

a Room Impulse Response (RIR)

A first set of methods rely on this model and aims at de-

convolving the reverberated speech signal ([4, 5, 6, 7]). How-

ever, deconvolution methods require the RIR to be known

precisely, and have been shown to be little robust to small

changes in the RIR ([8, 9]). In the applications considered
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The name “Room Impulse Response” can be misleading, since
it is not the room that a RIR caracterizes,but rather a specific acoustic
channel within this room.

here, the RIR is unknown and varying. Techniques such as

sub-band envelope deconvolution ([10, 11, 12]) or envelope

expansion methods are more robust to RIR variation. They

aim at increasing the modulation depth of the reverberated

speech. They have been suggested to tackle both noise [13]

and reverberation [14].

Another set of methods use the spatial and directional

properties of the reverberation noise, considered to be an

additive noise. Array processing techniques have been pro-

posed (eg. [15, 16]). Methods inspired by the mechanisms of

audition in the hearing system of animals -and humans- have

been suggested ([17, 18, 19, 20, 21, 22]) along with more

classical array processing methods ([23]). A group of algo-

rithms that use the spatial decorrelation of late reverberation

stemmed from the work of Allen, Berkley and Blauert [24]:

[25, 26, 27, 28, 29, 8, 30].

In this paper, we focus on an important effect of rever-

beration on speech which is referred to as overlap-masking

[31, 32]: the energy of previous phonemes is smeared over

time, and overlaps following phonemes. This results in the

blur and masking of the spectral features of the phonemes.

The actual physical process underlying this smearing is

the multiple reflections and diffusions of the sound waves

on the boundaries and obstacles of the room, corresponding

to late reverberation. As a result of the phenomena of ab-

sorption by the air and the reflectors, the reverberated energy

decays exponentially, with a time constant depending on the

characteristics of the room.

Intuitively, the evolution along time of the energy of the

reverberant tails for a phoneme will have an exponential de-

cay behaviour similar to that of the Room Impulse Response

(RIR). The repartition along frequency of the reverberant en-

ergy will depend on the repartition along frequency of the

energy of the excitation, that is the spectrum of the considered

phoneme.
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It therefore seems that the smearing of the energy of the

speech signal into reverberation tails can be coarsely modeled

from the knowledge of the preceding phonemes and of the

reverberation time of the room. This modeling can in turn be

used to estimate and suppress part of the reverberant energy

from the reverberant speech signal.

The following study will try to formalize these ideas by

using of a statistical model of late reverberation. This model

is detailed in section 2 and leads to an equation linking the

power spectral density (PSD) of the reverberation part of

the signal to that of the reverberated signal. Section 3 then

details the dereverberation algorithm based on this model.

In section 4 the performance of the algorithm is assessed

for different situations. Section 5 presents a discussion on

possible improvements for the algorithm.

2. Model

2.1. Model for the Room Impulse Response

The Room Impulse Response is modeled as the outcome of

a non-stationary random process:

for

for

where is a zero-mean Gaussian stationary noise, consid-

ered in first approximation to be white, and is linked to

the reverberation time through:

This model was proposed by Polack [33], after Moorer [34],

for application to artificial reverberation.

2.2. Model for the Reverberant Signal

Let us consider to be the anechoic speech signal, and

to be the reverberated speech signal, resulting from the

convolution of by the RIR :

since is causal. Then, if and are considered to be

independent random processes, the autocorrelation of at

time t is:

Since is considered to be a white noise of power :

where represents the Dirac function.

Equation (3) leads to:

Let us now consider the autocorrelation of at a later time

: :

This equation can have different interpretations. They are

detailed in the next paragraph.

2.3. Interpretations

From equation (4), it can be seen that:

The autocorrelation of at time is the sum of two

terms. The first term depends on the past reverberated signal,

whereas the second depends on the anechoic signal between

time and . The first term is considered as being re-

sponsible for overlap masking, since its energy over the time

interval is entirely due to the reverberated signal

present at times prior to .

Another interpretation of the two terms in equation (4) is

possible: let be split into two components, and

, so that:

if

otherwise,

if

otherwise.

Let and be the results of the convolution of by

respectively and . If is relatively much smaller

compared to , is made up of the direct signal and a

few early echoes. As a first approximation it can be consid-

ered as being the direct signal, whereas corresponds to all

the later echoes, that is to late reverberation. It can be shown

[35] that the first term in equation (4) equals

and the second term equals . Equation (4)

can therefore equivalently be written:
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with:

In practice the signals can be considered as stationary over

periods of time that are short compared to . This is justified

by the fact that the exponential decay is very slow, and that

speech is quasi-stationary. Let be the typical time span over

which the signal can be considered stationary. We consider

that . In practice, the order of magnitude of

is about 50 ms and that of the reverberation times considered

is around 1 s. Under these approximations, the counterpart of

Eqs. (6 and 7) in terms of short-term power spectral densities

are:

3. Algorithm

3.1. Overview

The overview of the algorithm is presented in Figure 1.

The signals are digitized with a sampling rate of .

In the following, the discrete time indexes will be notated

or , and the discrete frequency index .

The reverberated signal is decomposed into a Short-

Time Fourier Transform (STFT) filter bank. The analysis

window is a 128 point Hamming window, and the over-

lap between two successive windows is set to 75 %. Each

frame is zero padded to 256 points in order to avoid wrap

around errors. The power spectral density of the reverber-

ation noise is estimated according to equation (9), as

detailed in section 3.3. The square root of this estimate is

then subtracted from the amplitude spectrum of the reverber-

ated signal, , yielding an estimate of the amplitude

spectrum of the dereverberated signal, . In practice,

this is realized by a short-term spectral attenuation, equiva-

lent to spectral subtraction. This modification is detailed in

section 3.2. The estimated dereverberated signal is then

reconstructed from its estimated amplitude spectrum and the

noisy phase, through the overlap-add technique (eg. [36]).

3.2. Short-Term Spectral Modification

A formulation for amplitude spectral subtraction is:

with being the sub-band time index, being the frequency

index, and

where , is an estimate of the

amplitude spectrum of the signal, and is an estimate of

the average PSD of the noise.

In a comparative study of different short time spectral

attenuation algorithms, Ayad [37] concludes that amplitude

subtraction gives very good performance, compared with

other more sophisticated methods. This method is the one

retained in this article.

One of the problems arising from such implementation is

that in practice, the term can have

negative values. This is due to the fact that is

an estimate of the average noise spectrum. But the noise

component in can be inferior to the average. This

leads to negative values for the estimate when no

or little signal energy is present in the considered frame.

To make up for this problem, a commonly used solution

is to set to the negative values of .

However, this nonlinear rectification yields a specific residual

noise, often referred to as “musical noise” to account for its

perceptual characteristics.

Whenever the signal is present, musical noise is masked,

but it is clearly perceptible during periods of silence. As a

matter of fact, at times when the noise only is present, some

frequency bands of contain more energy than the

average . The effect of the spectral subtraction is to

set all the other frequency bands to 0, while only attenuating

those bands with more energy. The spectrum of the pro-

cessed signal therefore contains peaks positioned randomly

at isolated frequencies, lasting for an average duration of the

length of the analysis window [38].

Many solutions have been proposed in the literature to

tackle the problem of musical noise (see eg. [39, 40]. . . ).

In this article, two standard modifications are added to the

algorithm to alleviate the problem of musical noise. The first

one consists in averaging the term in the calculation

of the gain, yielding a reduction of the random variations

due to the noise contribution in . The second one

consists in using a spectral floor, as proposed in [41].

Smoothing

in equation (10) can be substituted by:

The term in equation (11) is defined as:

It is estimated through a running average:

The operator prevents the inclusion of negative

values of which have no physical meaning.
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Figure 1. Overview of the algorithm.
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Figure 2. Estimation of the reverberant PSD.

Spectral Floor

Instead of putting the negative estimates of to

0, the values of less than a threshold, equal to

, are set to this threshold. In practice ,

corresponding to an attenuation of dB, is used.

when

otherwise.

The gain used in the algorithm is finally:

if

otherwise.

3.3. Estimation of the Reverberant PSD

From equation (9), it can be seen that two terms need to be

estimated to obtain an estimate of the reverberation PSD,

as shown in Figure 2: the parameter of the model (or

equivalently the reverberation time ) and the PSD of the

past reverberated signal.

Then

Since the duration of stationarity of the signals is assumed

to be about ms, according to the approximation stated in

paragraph 2.3, is set to: ms.

Estimation of the PSD of the past reverberated signal

The PSD of the past reverberated signal is estimated by av-

eraging the periodograms of the signal. This is done by a

running average according to:

If is close to 1, the variance of the estimate of the PSD

is small, but the equivalent averaging duration long. The

averaging time should be kept small since the signal is non

stationary. should be chosen as a compromise so that the

variance of the estimate is as small as possible while the

assumption of quasi-stationarity is respected. In practice,

was set to .

Estimation of

The reverberation time is a characteristic of the room. It can

change if the environment of the system changes, but its

variations can be considered as very slow. It therefore only

needs to be estimated from time to time, with the assumption

that it does not change between the update periods. The

estimation of comprises two distinct stages:

, where the energy of the rever-

berated signal decays exponentially. This is realized in

two steps: first, the zones where the smoothed energy

envelope of the signal is decreasing are automatically de-

tected. Amongst these zones, only the longest ones are

selected: they are deemed to correspond to silences in the

speech signal, and therefore present the exponential decay

corresponding to the reverberation time of the room.

. The slope of

the logarithm of the smoothed energy envelope over the

decreasing periods is estimated through linear regression.
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Figure 3. On-line estimation of
for RIR6; Real value: 0.55 s.

In Figure 3, an example of the running estimation of

over a reverberated phrase is presented.

In the upper panel, the smoothed energy envelope of a

reverberated speech sentence is represented, along with the

automatically selected ’exponential decay’-zones. The lower

panel shows the values of estimated over these areas.

The estimated values have been found to be in good accor-

dance with the values of estimated on the Room Impulse

Responses by the method proposed by Schroeder in [42].

4. Results

4.1. Methods of Assessment

The reverberated speech signals used were obtained by con-

volution of anechoic phrases by real room impulses (RIRs),

measured by two closely spaced omni directional micro-

phones on a dummy head. Six different RIRs were used,

having reverberation times ranging from 0.4 s to 1.7 s. RIR3,

RIR5 and RIR6 correspond to different acoustic channels in

the same room. To assess the efficiency of the algorithm we

have used four types of objective measurement:

We used the time

varying method proposed in [8]. The reverberated sig-

nal is decomposed into a sum of a direct signal and a

reverberant part , obtained by convolving the anechoic

signal with the first 5 ms of the RIR, and with the RIR

minus its first 5 ms. While the complete reverberated sig-

nal is being processed, the time varying, signal-dependent

gain is recorded. The recorded gain is then applied sep-

arately to the direct signal and reverberant part, giving

respectively and . The SNR gain is then defined

as:

It is calculated globally over the periods of speech activity.

When no speech energy is present in

a frame, the noise reduction is calculated in the same way

by:

The separation between speech and silence zones has been

made through manual segmentation.

A cepstral distance (CD) [43] between the

direct signal at the input and the output of the system is

used as a measure of distortion. Only the first 8 cepstral

coefficients, which are linked to the first LPC coefficients,

are taken into account. The distance used therefore reflects

the dissimilarity in term of the formant structure of the two

signals. This measure, along with the SNR gain, reflects

how the speech quality is affected by the algorithm.

A commercially avail-

able isolated-words speech recognizer is first trained in
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Figure 4. Reverberated (a), Processed
(b), and anechoic (c) signals for RIR5.

anechoic conditions on a set of 240 isolated English words

uttered by a male speaker, so that it achieves 99% recogni-

tion. The recognition score is then measured on the same

set of words, artificially reverberated by convolution by

one of the RIR. Since this does not correspond to the

training conditions, the recognition rate drops dramati-

cally. The recognition scores are then measured on the

processed reverberated signal. The difference between the

two last measures reflects the benefits of the algorithm.

4.2. Performance

Each measure of performance is estimated both for the pre-

sented algorithm (referred to as “Monaural” algorithm) and a

reference algorithm, referred to as “Bloom” algorithm [44].

4.2.1. Objective Measurements

The lower panel of Figure 4 shows the waveform of the

French sentence , in

anechoic conditions. The upper panel shows the same sen-

tence when reverberation is added. The middle panel shows

the signal after is has been processed by our algorithm. The

attenuation of the reverberant tails is striking.

The performance of the Monaural algorithm is presented

in Table II and III. Table II shows the results for the algorithm

without the on-line estimation of (the true value of is

fed into the algorithm).

For comparison, the performance of the “Bloom” algo-

rithm, in exactly the same conditions, are presented in Ta-

ble I.

Table III shows the results for the algorithm including the

on-line estimation of .

The performance of the algorithm is not significantly dif-

ferent whether is set to its true value or to the values

obtained from the on-line estimation. This shows that the

influence of the value of is not critical, and the on-line

estimation provides sufficiently accurate estimates of for

the purpose of the algorithm. Indeed if is overestimated,

this is equivalent to overestimating the average noise PSD,

which is classically done (eg. [41, 38]) in order to suppress

more noise.

The main improvement brought about by the algorithm is

the noise reduction over silence periods. In most cases, the

distortion of the signal remains fairly low. Informal listening

has shown that some musical noise remains after processing,

especially for the two longest RIR. This can be reduced

further by adjusting the parameters of the algorithm, to the

detriment of the noise reduction performance.

4.2.2. Automatic Speech Recognition Scores

Automatic speech recognition scores for the reverberated

signals processed by the algorithm are presented in Table IV.

The algorithm used for these tests is the one where is

not estimated on-line, but fed into the algorithm. The results

are compared to the ones obtained with a classical algorithm

based on the spatial decorrelation of late reverberation: the

“Bloom algorithm”.

For the two longer room impulse responses, RIR1 and

RIR2, the monaural algorithm proposed outperforms the

classical Bloom algorithm by 30 points. RIR3 and RIR6

are somewhat milder in that they have a shorter reverbera-

tion time, but still a poor direct to reverberant ratio. Here,

the Monaural algorithm yields recognition performance su-

perior by 15 points. For RIR4, which corresponds to the
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smaller , and RIR5, which corresponds to the largest di-

rect to reverberant ratio, the performance of both algorithms

is equivalent.

In spite of the stronger distortion of the signal, the strong

improvement obtained in SNR gains and noise reduction is

beneficial for automatic speech recognition. It can be hypoth-

esized that the improvement in automatic speech recognition

performance reflects the monaural algorithm’s ability to re-

duce ’overlap masking’ by cancelling out the energy in the

signal which corresponds to the spreading by reverberation

of previous phonemes.

5. Discussion

The main drawback of the algorithm is the presence of a

residual musical noise. It can be efficiently reduced by the

use of a spectral floor, to the detriment of the SNR gain and

noise reduction performance. For automatic speech recog-

nition application, the signal is intended for machine use

only. Subjective quality of the speech signal is not relevant

in this case. However, for hearing aid applications, the signal

is presented to human ears after processing. A subjective test

campaign would be the only way to confirm whether benefits

can be brought about by the treatment whilst maintaining a

tolerable subjective quality.

The model of late reverberation on which the algorithm

is based is quite simplified. After the first echoes, the late

reverberation part of real RIRs such as RIR1 to RIR6 used

here, do exhibit an exponential decay behavior. However, the

decay rate can vary along frequency. Moreover, the noise-

like signal modulated by the exponential decay curve is only

approximately white.

Direction for future work on the algorithm could be to

improve this modeling. Differences in reverberation times

along frequency can be readily integrated into the model,

by estimating the reverberation time in sub-bands rather than

globally. However, since the value of used in the algorithm

appeared not to be critical, it is probable that the improve-

ment gained would be small if compared with the increase in

computational complexity.

An other limit of the model that could be addressed is the

hypothesis that the signal modulated by a decaying exponen-

tial in the RIR is a white noise. This is a first approximation

that does not account for the differences between RIR3, RIR5

and RIR6 for instance. The inversion of the minimum phase

part of the RIR results in a whitening of the RIR [8]. To keep

the algorithm blind, such a deconvolution could be realized

as a first stage processing by cepstral deconvolution, prior to

the monaural algorithm.

6. Conclusion

A novel algorithm for suppression of late reverberation from

speech signals has been presented. It is based on amplitude

spectral subtraction. Its novelty lies in the use of a model

of the exponential decay of late reverberation. This model

makes it possible to predict the PSD of reverberation, which

Table I. Bloom algorithm. NR- and G SNR-values are given in dB.

RIR 1 2 3 4 5 6

in s 1.01 1.7 0.55 0.34 0.55 0.55

NR 3.9 4.4 4 3.6 4.4 4.8

G SNR 1.3 1.2 1 1.2 1.5 1.7

CD 0.05 0.06 0.05 0.05 0.03 0.04

Table II. Performance without on-line estimation of . NR- and G
SNR-values are given in dB.

RIR 1 2 3 4 5 6

in s 1.01 1.7 0.55 0.34 0.55 0.55

NR 16.8 13.5 13.3 8.4 13.4 11.8

G SNR 0.8 0.6 0.2 0.3 1 0.7

CD 0.09 0.12 0.09 0.05 0.08 0.1

Table III. Performance with on-line estimation of . NR- and G
SNR-values are given in dB.

RIR 1 2 3 4 5 6

in s 1.01 1.7 0.55 0.34 0.55 0.55

estimated 0.88 1.1 0.64 0.46 0.54 0.70

NR 16 10.3 14.5 10.5 13 13.2

G SNR 0.7 0.3 0.3 0.3 1 0.9

CD 0.08 0.1 0.09 0.06 0.08 0.1

Table IV. Speech recognition scores, Monaural and Bloom algo-
rithms. “None” means . . .

RIR 1 2 3 4 5 6

None 41% 25 % 49% 58% 59% 49%

Monaural 78% 65% 75% 76% 73% 77%

Bloom 48% 32% 62% 76% 78% 63%

can be then subtracted from the total PSD of the reverberated

signal, yielding an estimate of the direct signal.

The system designed uses only one sensor. It can be added

as a front end to other types of algorithms, such as auto-

matic speech recognizer or cocktail party processors. Since

the parameter of the model ( ) can be estimated on-line,

the algorithm can automatically adapt to different rooms and

acoustical situations. Moreover, is related to , the rever-

beration time, which is a characteristic of the room. There-

fore, changes in the acoustic channel within the same room

do not affect dramatically the performance of the algorithm.

For applications such as distant sound pick-up automatic

speech recognition, this means in practice that the user can

move about the room while dictating to the speech recognizer,

without it impairing the performance of the dereverberation
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front end. It also means that the dereverberation will be the

same whatever the position of the speaker. Hence in a cocktail

party situation, the speech from people at different locations

in the room will be equally dereverberated.

The algorithm achieves a strong reduction of the reverber-

ant energy. It results in significant improvements in speech

recognition scores, leading for all the RIR considered to

recognition scores from 65% to 78%. For RIRs with long re-

verberation time and poor direct to reverberant ratio, signifi-

cant improvements in speech recognition scores are achieved

compared to a classical reference algorithm.
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