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Abstract

Peridynamics is a non-local continuum theory which is able to model discontinuities in the displacement field, such as

crack initiation and propagation in solid bodies. However, the non-local nature of the theory generates an undesired stiffness

fluctuation near the boundary of the bodies, phenomenon known as “surface effect”. Moreover, a standard method to impose

the boundary conditions in a non-local model is not currently available. We analyze the entity of the surface effect in ordinary

state-based peridynamics by employing an innovative numerical algorithm to compute the peridynamic stress tensor. In order

to mitigate the surface effect and impose Dirichlet and Neumann boundary conditions in a peridynamic way, we introduce

a layer of fictitious nodes around the body, the displacements of which are determined by multiple Taylor series expansions

based on the nearest-node strategy. Several numerical examples are presented to demonstrate the effectiveness and accuracy

of the proposed method.

Keywords Ordinary state-based Peridynamics · Surface effect · Peridynamic boundary conditions · Peridynamic stress

tensor · Extrapolation over fictitious nodes

1 Introduction

The propagation of cracks in solids and structures is one

of the most common problems in structural engineering. In

recent years, a new non-local continuum theory able to simu-

late crack propagation, named peridynamic theory, attracted

the attention of many researchers. Each point in a body mod-

elled with peridynamics interacts with all the neighboring

points within a distance �훿. The non-locality of the peridy-

namic theory is essential to describe fracture phenomena

in solid bodies without ad hoc criteria. Firstly, the so-called

“bond-based peridynamics” was developed [40], which how-

ever has a limited capability of prescribing the Poisson’s

ratio. This shortcoming is avoided by the second formula-

tion of the theory, named “state-based peridynamics” [42].
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The non-local nature of the theory leads to two interrelated

problems near the boundary of the body: the “surface effect”

and the difficulty to impose the boundary conditions [9]. The

surface effect, sometimes also called “skin effect”, is due to

the fact that peridynamic points near the boundary lack some

neighboring points, leading to an undesired variation of the

stiffness properties in the most external layer of the body

[16,19]. Bond-based and state-based peridynamic models

exhibit respectively a softening and a hardening-softening

behavior near the boundary [2,20,35].

Imposing boundary conditions in a peridynamic model

is not a trivial task to accomplish. The application of the

boundary conditions to the points on the boundary, as one

would do in a local model, leads to large fluctuations of the

solution near the boundary [16]. In [21] it is suggested that

external loads and constraints should be imposed on a layer

of finite thickness respectively inside and outside the body.

This strategy is surely closer to a non-local concept, but it

is not really clear the proper procedure to “distribute” the

boundary conditions over the finite layers. In the following,

we present some of the most commonly used methods to mit-

igate the surface effect and impose the boundary conditions

in a peridynamic model.
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A possible approach is to couple peridynamics with clas-

sical continuum mechanics: peridynamics is employed only

in the interior of the body and the layer of material near

the boundary is modelled, for instance, with the Finite Ele-

ment Method [11,25,38,45,47,48], with the Carrera Unified

Formulation [30], with the Extended Finite Element Method

[13,14] or with the Meshless Local Exponential Basis Func-

tions method [39]. In this way, the surface effect and the

problem of the imposition of the boundary conditions in

peridynamics is avoided. However, if cracks initiate or prop-

agate near the boundary, those regions must inevitably be

modelled with peridynamics and the coupling approach is

not suitable to avoid the boundary issues. Furthermore, there

are some spurious effects at the interface of the coupling

region due to the different formulations of peridynamics and

classical continuum mechanics (see the computation of out-

of-balance forces in [26]).

The maximum distance of interaction, namely �훿, is a mea-

sure of the non-locality of the theory. Therefore, the external

layer of the body which is affected by the surface effect is

thinner as �훿 approaches 0. Similarly, the imposition of the

boundary conditions in a local way (constraints and loads

applied only to the points closest to the boundary) becomes

a better approximation if �훿 tends to 0. Since the number of

nodes is bound to increase as �훿 decreases, the computational

effort may become excessive. In this case, the variable hori-

zon method can be employed to decrease the value of �훿 near

the boundaries [2,3,6,31–33,44]. However, this approach of

reducing the non-local nature of the peridynamic theory

is solely capable of confining the solution fluctuation in a

smaller region, but never of completely correcting it.

The approach of modifying the stiffness properties of the

bonds near the boundary has been proposed in many meth-

ods: the force normalization method [20], the force density

method [15], the energy method [21,27], the volume method

[1] and the position-aware linear solid constitutive model

[23]. The comparison of these methods, carried out in [16],

highlights that there are still some residual fluctuations of the

solution near the boundary because they do not cope with

the problem of the imposition of the boundary conditions in

a non-local way. Another recently devised approach consists

in modifying the peridynamic formulation in points which

are affected by the surface effect in order to recover the clas-

sical mechanics solution for �훿 → 0 [4,46]. Nevertheless, the

treatment of the boundaries becomes much more complex.

The method of the “fictitious nodes” consists in adding

around the body some nodes which provide the previously

lacking interactions near the boundary, mitigating in this

way the surface effect [12,15,34]. The fictitious nodes have

been employed also to impose the boundary conditions:

the displacements of the fictitious nodes are extrapolated

by means of various types of functions, such as constant,

linear, polynomial, sinusoidal or odd functions, in order

to obtain the desired value of the constraint or load [6–

8,16,21,22,28,29,31,49]. Moreover, the displacements of the

fictitious nodes can be determined also by means of the

formulae of classical continuum mechanics to enforce the

desired load at the boundary [16,22,28,31,49]. However,

these procedures to impose the boundary conditions are case-

dependent and are applicable only for simple geometries and

boundary conditions.

We proposed a new version of the “Taylor-based extrapo-

lation method” adopting the nearest-node strategy [35]: the

displacements of the fictitious nodes are determined as func-

tions of the displacements of their closest real nodes by means

of multiple Taylor series expansions truncated at a general

order �푛�푚�푎�푥 . The surface effect is sensibly reduced by this

effective method. Moreover, the boundary of the body is dis-

cretized by a new type of nodes, named “boundary nodes”. As

the fictitious nodes, the boundary nodes do not constitute new

degrees of freedom in the model because their displacements

are determined by means of the Taylor-based extrapolation

method. Dirichlet boundary conditions are included in the

Taylor series expansion of the displacements of the bound-

ary nodes about their closest real nodes, whereas Neumann

boundary conditions are imposed through the peridynamic

concept of force flux.

The paper is organized as follows: Sect. 2 presents a

brief review of the ordinary state-based peridynamic theory,

particularly focusing on the peridynamic stress tensor, the

force flux, the surface effect and the imposition of boundary

conditions; Sect. 3 illustrates the Taylor-based extrapola-

tion method and the imposition of boundary conditions in

a peridynamic model; Sect. 4 shows the discretization of the

peridynamic model, the numerical evaluation of the peridy-

namic stress tensor and of the force flux, and the numerical

implementation of the proposed method; Sect. 5 compares

the numerical results of several meaningful 2-dimensional

examples obtained without any corrections at the boundary

and by using the proposed method; Sect. 6 shows the differ-

ences that may arise in crack propagation near the boundaries

between corrected and uncorrected models; Sect. 7 draws the

conclusions.

2 Review of peridynamic theory

Peridynamic points interact with each other, even within

finite distance, through entities named “bonds”. A bond is

identified by the relative position vector in the reference con-

figuration as

/ = x′ − x , (1)

where x and x′ are the position vectors of two points in a

body B modelled with peridynamics. The bond vanishes if
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Fig. 1 Body modelled with ordinary state-based peridynamics in the

reference configuration B�푟 and deformed configuration B�푑: a pairwise

force density f arises in the bond / due to the deformation of the body

the distance between the interacting points exceeds the value

�훿, called “horizon”. A point x therefore interacts with all the

points x′ inside its neighborhood, which is defined as

Hx =

{
x′ ∈ B�푟 : ‖/ ‖ ≤ �훿

}
, (2)

where B�푟 is the body in the reference configuration. Point x

is named “source point” and the points within Hx are named

“family points”.

In the deformed body configuration B�푑 at time �푡, the

relative displacement vector ( is defined as

( = u(x′, �푡) − u(x, �푡) , (3)

where u is the displacement field. Note that /+( is the relative

position of points x and x′ in the deformed configuration.

The peridynamic equation of motion of a point x within

the body B is given by [40,42]:

�휌(x) ¥u(x, �푡) =
∫

Hx

f (x, x′, �푡) d�푉x′ + b(x, �푡) , (4)

where �휌 is the material density, ¥u is the acceleration field, f is

the pairwise force density, d�푉x′ is the differential volume of

a point x′ within the neighborhood Hx and b is the external

force density field. The pairwise force density represents the

force (per unit volume squared) in a bond.

The peridynamic equilibrium equation is derived from

Eq. 4 by dropping the dependence on time:

−
∫

Hx

f (x, x′) d�푉x′ = bx . (5)

where bx = b(x). f (x, x′) is the force density applied to point

x due to the interaction with a point x′ inside its neighbor-

hood. Conversely, point x belongs to the neighborhood Hx′ ,

thus a force density f (x′, x) = −f (x, x′) is applied to point

x′ (see Fig. 1). The formulae to compute the pairwise force

density depending on the deformation of the body are shown

in the following section.

2.1 Ordinary state-based peridynamics

In state-based peridynamics, the pairwise force density is

defined as [42]

f (x, x′) = T[x]〈/〉 − T[x′]〈−/〉 , (6)

where T is the force density vector state. T[x]〈/〉 and

T[x′]〈−/〉 depend respectively on points x and x′, and they

respectively operate on bonds / and −/.

In an ordinary peridynamic material, the force density

vector state is aligned with the corresponding bond for any

deformation, as depicted in Fig. 1, and it can be written as

T[x]〈/〉 = �푡 [x]〈/〉 M〈/〉 , (7)

where �푡 is the force density scalar state (magnitude of T) and

M is the deformed direction vector state (unit vector in the

direction of T), defined as

M〈/〉 = / + (

‖/ + (‖ . (8)

Note that M〈/〉 = −M〈−/〉.
Furthermore, under the assumption of small deformation

(( ≪ /), the deformed direction vector state can be approx-

imated with the bond direction unit vector in the reference

configuration:

m =
/

‖/‖ . (9)

Therefore, the pairwise force density can be rewritten as

f (x, x′) =
(
�푡 [x]〈/〉 + �푡 [x′]〈−/〉

)
m . (10)

The reference position scalar state �푥, representing the bond

length in the reference configuration, and the extension scalar

state �푒, describing the elongation (or contraction) of the bond

in the deformed body configuration, are respectively defined

as

�푥 = ‖/ ‖ , (11)

�푒 = ‖/ + (‖ − ‖/‖ . (12)

The influence of the neighborhood Hx on a source point

x is expressed by two non-local properties of that point, the
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weighted volume �푚 and the dilatation �휃, which are defined

as

�푚x =

∫

Hx

�휔 �푥2 d�푉x′ , (13)

�휃x =
�푐 �휃

�푚x

∫

Hx

�휔 �푥 �푒 d�푉x′ , (14)

where �휔 is a prescribed spherical influence function and �푐 �휃
is a peridynamic constant. We adopt the Gaussian influence

function

�휔 = �푒
− ‖/ ‖2

�훿2 , (15)

since it assures a smooth convergence of the numerical inte-

gration [36].

The weighted volume describes the “fullness” of the

neighborhood: a neighborhood completely full of peridy-

namic points results in the maximum value of �푚, whereas

the weighted volume of an incomplete neighborhood has a

lower value. This lack of neighboring points is the origin

of stiffness fluctuations, the so-called “surface effect” [16],

near the boundary of the body. The surface effect is further

analyzed in Sect. 2.4.

On the other hand, the dilatation represents the volumetric

deformation of the neighborhood. Consider a point x sub-

jected to a homogeneous, isotropic and small deformation �휀,

so that �푒 = �휀 �푥 for each bond. The peridynamic dilatation �휃 of

point x corresponds to the dilatation �휃�푐�푙 in classical contin-

uum mechanics under the same deformation if the constant

�푐 �휃 is chosen as [17,35,42]

�푐 �휃 =




3 in 3D,

2 in 2D plane strain,
2(1−2�휈)

1−�휈 in 2D plane stress,

1 − 2�휈 in 1D axial loading,

(16)

where �휈 is the Poisson’s ratio.

The force density scalar state can be computed as [35]

�푡 [x]〈/〉 = �푘 �휃
�휔 �푥

�푚x

�휃x + �푘�푒
�휔 �푒

�푚x

. (17)

where �푘 �휃 and �푘�푒 are the peridynamic stiffness constants.

These constants are derived by equalizing the peridynamic

strain energy density in a point x with a complete neigh-

borhood under homogeneous deformation, with the classical

continuum mechanics strain energy density in a point sub-

jected to the same deformation [17,35,42]:

�푘 �휃 =




−3(1−4�휈)
2(1+�휈) (1−2�휈) �퐸 in 3D,
−(1−4�휈)

(1+�휈) (1−2�휈) �퐸 in 2D plane strain,
−(1−3�휈)

(1+�휈) (1−2�휈) �퐸 in 2D plane stress,

�휈
(1+�휈) (1−2�휈) �퐸 in 1D axial loading,

(18)

�푘�푒 =




15
2(1+�휈) �퐸 in 3D,

4
1+�휈 �퐸 in 2D plane strain or plane stress,

1
1+�휈 �퐸 in 1D axial loading,

(19)

where �퐸 is the Young’s modulus.

By substituting Eq. 17 in Eq. 10, the pairwise force density

is computed as

f (x, x′)=
[
�푘 �휃

(
�휃x

�푚x

+ �휃x′

�푚x′

)
�휔 �푥+�푘�푒

(
1

�푚x

+ 1

�푚x′

)
�휔 �푒

]
m .

(20)

Note that the magnitude of the pairwise force density in ordi-

nary state-based peridynamics depends on the neighborhood

properties (�푚 and �휃) of the two points x and x′ connected by

the bond. Hence, the resultant of all the bond forces in a point

x, obtained with the integral of the peridynamic equilibrium

equation (Eq. 5), depends on the deformation of the points

within a 2�훿-distance from x.

2.2 Peridynamic stress tensor

The peridynamic stress tensor, introduced in [18], is defined

in a point x with a complete neighborhood as

3x =
1

2

∫

�훺

∫ �훿

0

∫ �훿

�푠

f (x − �푠m, x + (�푟 − �푠)m)

⊗m �푟2 d�푟 d�푠 d�훺m , (21)

where �훺 is a unit sphere centered in x and d�훺m is the differ-

ential solid angle on �훺 in any bond direction m. The points

x − �푠m and x + (�푟 − �푠)m are connected by a bond passing

through point x, and we respectively name them x′ and x′′.
Therefore, �푠 = ‖x′ − x‖ and �푟 = ‖x′′ − x′‖, as shown in

Fig. 2. �푠 is the distance between points x and x′, whereas �푟

is the length of the bond between x′ and x′′. The definition

of the integration domain allows to take into account all the

bonds passing through point x. Note that each bond passing

through x (between x′ and x′′) has a corresponding bond in

the opposite direction (between x′′ and x′), so that the same

pairwise force density is integrated twice in Eq. 21. This is

the reason why the factor 1/2 appears at the beginning of the

formula.

The integral over the unit sphere �훺 is not affected by the

variables �푠 and �푟, but it depends only on the bond direction
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x′

x′′

s

r δ

Fig. 2 Main variables involved in the computation of the peridynamic

stress tensor in point x: the bond direction m lies on the unit sphere �훺

(dotted line); point x′ lies on the opposite direction of m at a distance

�푠 from x, with 0 < �푠 < �훿 (dashed line); point x′′ lies on the direction

m at a distance �푟 from x′, with �푠 < �푟 < �훿 (dashdotted line)

m. On the other hand, the integrals related to d�푠 and d�푟 are

interdependent, as shown by the integration domain depicted

in Fig. 3. For later use, the peridynamic stress tensor in a point

x with a complete neighborhood is rewritten by changing the

order of the integrals:

3x =
1

2

∫

�훺

∫ �훿

0

∫ �푟

0

f (x′, x′′) ⊗ m �푟2 d�푠 d�푟 d�훺m

=
1

2

∫

Hx

∫ �푟

0

f (x′, x′′) ⊗ m d�푠 d�푉x′′ ,

(22)

where d�푉x′′ = �푟2 d�푟 d�훺m.

Under the assumption of homogeneous deformation, the

bonds with the same length and direction have the same

pairwise force density in any position of the body. This means

that, for each bond of length �푟 and direction m, its pairwise

force density does not depend on �푠 anymore. Therefore, 3x

can be simplified from Eq. 22 as follows:

3x =
1

2

∫

Hx

(∫ �푟

0

d�푠

)
f (x, x′′) ⊗ m d�푉x′′

=
1

2

∫

Hx

�푟 f (x, x′′) ⊗ m d�푉x′′ .

(23)

Note that, since the value of �푠 does not affect f (x′, x′′) in

a body under homogeneous deformation, we conveniently

choose the pairwise force density for �푠 = 0, i.e., f (x, x′′).
We want to compare the peridynamic stress tensor with the

stress tensor in classical continuum mechanics for the same

deformation conditions. For simplicity sake, we choose the

s

r

0 δ

δ

r = s

Fig. 3 Integration domain for the computation of the peridynamic

stress tensor for a fixed bond direction: for any value of �푠 in the interval

]0, �훿 [, �푟 lies in the interval ]�푠, �훿 [ (see limits of integration in Eq. 21);

for any value of �푟 in the interval ]0, �훿 [, �푠 lies in the interval ]0, �푟 [ (see

limits of integration in Eq. 22)

2-dimensional plane stress peridynamic model for a body

subjected to two different conditions of homogeneous and

small deformation: isotropic deformation, indicated by the

superscript iso, and simple shear deformation, indicated by

the superscript sh. Under those conditions, the strain and

stress tensors in a point x are given in classical continuum

mechanics as

9 �푖�푠�표
x = �휀 �푖�푠�표

[
1 0

0 1

]

⇒ 2 �푖�푠�표
x =

�퐸

1 − �휈
�휀 �푖�푠�표

[
1 0

0 1

]
= �휎 �푖�푠�표

[
1 0

0 1

]
,

(24)

9 �푠ℎ
x = �휀 �푠ℎ

[
0 1

1 0

]

⇒ 2 �푠ℎ
x =

�퐸

1 + �휈
�휀 �푠ℎ

[
0 1

1 0

]
= �휎 �푠ℎ

[
0 1

1 0

]
,

(25)

where �휀 �푖�푠�표 and �휀 �푠ℎ are the values of the imposed deforma-

tions and �휎 �푖�푠�표 and �휎 �푠ℎ are the corresponding stresses.

In the following analysis of the peridynamic stress tensor,

only points with complete neighborhoods are considered.

The inclination of a bond with respect to the �푥-axis is called

�휙. Therefore, the bond direction in a 2-dimensional model

can be written as m = {cos �휙, sin �휙}⊤. Furthermore, the

weighted volume of a point x with a complete neighborhood

is given from Eq. 13 by
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�푚x =

∫ 2�휋

0

∫ �훿

0

‖/ ‖3 �푒
− ‖/‖2

�훿2 ℎ d�휉 d�휙

=
�휋(�푒 − 2)

�푒
ℎ�훿4 ,

(26)

where ℎ is the thickness of the 2-dimensional body.

In the case of a body subjected to a small isotropic defor-

mation, any extension scalar state is �푒 �푖�푠�표
= �휀 �푖�푠�표�푥 and the

corresponding dilatation in a point x with a complete neigh-

borhood is �휃 �푖�푠�표
x = �푐 �휃 �휀

�푖�푠�표. The peridynamic stress tensor

under this condition is given from Eq. 23 as

3 �푖�푠�표
x =

1

2

∫ 2�휋

0

∫ �훿

0

(�푐 �휃 �푘 �휃 + �푘�푒) �휀 �푖�푠�표 2

�푚x

�푟2�푒
− �푟2

�훿2 ·

·
{
cos �휙

sin �휙

}
⊗
{
cos �휙

sin �휙

}
ℎ �푟 d�푟 d�휙

=
�퐸

1 − �휈
�휀 �푖�푠�표 2�푒 ℎ

�휋(�푒 − 2)ℎ�훿4

∫ �훿

0

�푟3�푒
− �푟2

�훿2 d�푟 ·

·
∫ 2�휋

0

[
cos2 �휙 cos �휙 sin �휙

cos �휙 sin �휙 sin2 �휙

]
d�휙

=
�퐸

1 − �휈
�휀 �푖�푠�표 2�푒

�휋(�푒 − 2)�훿4
· (�푒 − 2)�훿4

2�푒

[
�휋 0

0 �휋

]

=
�퐸

1 − �휈
�휀 �푖�푠�표

[
1 0

0 1

]
.

(27)

The obtained peridynamic stress tensor yields the same

result of the stress tensor computed with classical continuum

mechanics in a point under isotropic deformation. Note that

only a tensile stress �휏11 = �휏22 = �휎 �푖�푠�표 arises from the imposed

deformation �휀 �푖�푠�표 and there is no shear stress (�휏12 = 0).
In the case of a body subjected to a small shear defor-

mation �휀 �푠ℎ, the extension scalar state can be computed
by substituting / = {‖/ ‖ cos �휙, ‖/‖ sin �휙}⊤ and ( =

{�휀 �푠ℎ‖/‖ sin �휙, �휀 �푠ℎ‖/ ‖ cos �휙}⊤ in Eq. 12:

�푒 �푠ℎ
=

√[
‖/‖(cos �휙 + �휀 �푠ℎ sin �휙)

]2 +
[
‖/‖(sin �휙 + �휀 �푠ℎ cos �휙)

]2

− ‖/‖

= ‖/‖
√

1 + 4 �휀 �푠ℎ cos �휙 sin �휙 − ‖/‖

= 2 �휀 �푠ℎ ‖/‖ cos �휙 sin �휙

(28)

where the formula is simplified under the assumption of

sufficiently small deformation by dropping the second order

terms and employing the Taylor series expansion for the

square root. The corresponding dilatation in a point x with a

complete neighborhood is �휃 �푠ℎ
x = 0 given the anti-symmetry

of the integrand and the symmetry of the integration domain.

The peridynamic stress tensor under this condition is given

from Eq. 23 as

3 �푠ℎ
x =

1

2

∫ 2�휋

0

∫ �훿

0

2 �푘�푒 �휀
�푠ℎ 2

�푚x

�푟2�푒
− �푟2

�훿2 cos �휙 sin �휙 ·

·
{
cos �휙

sin �휙

}
⊗
{
cos �휙

sin �휙

}
ℎ �푟 d�푟 d�휙

=
4�퐸

1 + �휈
�휀 �푠ℎ 2�푒 ℎ

�휋(�푒 − 2)ℎ�훿4

∫ �훿

0

�푟3�푒
− �푟2

�훿2 d�푟 ·

·
∫ 2�휋

0

[
cos3 �휙 sin �휙 cos2 �휙 sin2 �휙

cos2 �휙 sin2 �휙 cos �휙 sin3 �휙

]
d�휙

=
4�퐸

1 + �휈
�휀 �푠ℎ 2�푒

�휋(�푒 − 2)�훿4
· (�푒 − 2)�훿4

2�푒

[
0 �휋/4
�휋/4 0

]

=
�퐸

1 + �휈
�휀 �푠ℎ

[
0 1

1 0

]
.

(29)

The obtained peridynamic stress tensor yields the same

result of the stress tensor computed with classical continuum

mechanics in a point under simple shear deformation. Note

that only a shear stress �휏12 = �휎 �푠ℎ arises from the imposed

deformation �휀 �푠ℎ and there is no tensile stress (�휏11 = �휏22

= 0).

We showed that the peridynamic solution for the stress ten-

sor corresponds to that of the classical continuum mechanics

for homogeneous and small deformations, as shown also

in [26] for bond-based peridynamic models. However, this

statement is not valid near the boundaries of the body due to

the surface effect.

2.3 Force flux

The force flux 3(x, n) at point x in the direction of the unit

vector n (see Fig. 4) is derived from Eq. 21 as [18]:

3(x, n) = 1

2

∫

�훺

∫ �훿

0

∫ �훿

�푠

f (x′, x′′) (m · n) �푟2 d�푟 d�푠 d�훺m,

(30)

where x′
= x − �푠m and x′′

= x + (�푟 − �푠)m. As in the defini-

tion of the peridynamic stress tensor, a factor 1/2 is required

since the integration domain takes into account the magni-

tude of the pairwise force density of each bond twice (for

both direction m and −m).

We briefly recall the mechanical interpretation of the force

flux [18]. Consider a plane P with normal n passing through

point x, as shown in Fig. 5. Points x′ and x′′ respectively

lie in the different half-spaces generated by plane P. The

differential volumes of those points are d�푉x′ = �푟2 d�푠 d�훺m and

d�푉x′′ = �푟2 d�푟 d�훺m. The differential area of point x′, which

is perpendicular to the bond direction m, is the portion of

a sphere centered in x′′ with a radius �푟 which subtends the

differential solid angle d�훺m, namely d�퐴x′ = �푟2 d�훺m. By the

same token, the differential area d�퐴x′′ on a sphere centered

in x′ with a radius �푟 is equal to d�퐴x′ . As shown in Fig. 5, the
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x

Hx

n

P

m

Ω

x′

x′′

τ (x,n)

Fig. 4 Force flux 3 (x, n) at point x in direction n, computed with any

bond direction m on the unit sphere �훺, any point x′ lying within Hx on

the opposite direction of m (dashed line) and any point x′′ lying within

Hx′ on the direction m (dashdotted line). Points x′ and x′′ lie in the

different half-spaces generated by the plane P passing through point x

with normal n

differential area of point x with normal n is the projection in

direction m of d�퐴x′ = d�퐴x′′ on plane P:

d�퐴x =
�푟2 d�훺m

m · n
. (31)

The differential pairwise force acting through the bond

between points x′ and x′′ is f (x′, x′′) d�푉x′ d�푉x′′. Therefore,

the differential pairwise force per unit area on plane P is

given by

f (x′, x′′) d�푉x′ d�푉x′′

d�퐴x

= f (x′, x′′) (m · n) �푟2 d�푟 d�푠 d�훺m . (32)

Note that the integrand in Eq. 30 is the pairwise force per unit

area on plane P. This provides the mechanical interpretation

of the force flux as the resultant of the pairwise forces per

unit area of all the bonds intersecting P in x.

2.4 Surface effect

The non-local formulation of the peridynamic theory exhibits

some issues near the boundaries due to the incomplete neigh-

borhoods of points close to free surfaces. The peridynamic

constants �푘 �휃 and �푘�푒 in Eqs. 18 and 19 are derived for points

with a complete neighborhood. Therefore, the points near

the boundaries, whose neighborhood is lacking some bonds,

have different stiffness properties with respect to the points

in the bulk. This phenomenon is called “surface effect” [16].

x

m

x′x′ dAx
′ ds

x′′x′′ dAx
′′ dr

s

r

dΩm

dΩm

n

x

dAx

P

Fig. 5 Differential variables involved in the computation of the force

flux3 (x, n): the differential volumes of points x′ and x′′ are respectively

d�푉x′ = d�푠 d�퐴x′ and d�푉x′′ = d�푟 d�퐴x′′ , where d�퐴x′ = d�퐴x′′ = �푟2 d�훺m,

and the differential area d�퐴x = �푟2 d�훺m/(m · n) is the projection of

d�퐴x′ and d�퐴x′′ on the plane P

In ordinary state-based peridynamics, there are two non-

local properties of a point which may contribute to the surface

effect: the weighted volume�푚 and the dilatation �휃. The latter

(Eq. 14) is independent from the neighborhood “fullness”

because it is normalized by the value of the weighted volume.

Therefore, we focus on the value of �푚. We define the value

�푑�푏 as the minimum distance of a peridynamic point from any

boundary of the body. The weighted volume has its maximum

value when �푑�푏 ≥ �훿, and it decreases gradually from points

with �푑�푏 = �훿 towards points with �푑�푏 = 0 on the boundary.

Moreover, points approaching corners, with respect to those

approaching edges or surfaces, exhibit a steeper reduction

in the weighted volume and a lower minimum value at the

boundary.

The equilibrium of a peridynamic point x (Eq. 5) is deter-

mined by the sum of the pairwise forces of all its bonds.

Therefore, x primarily interacts with the points inside its

neighborhood Hx. However, the magnitude of the pairwise

force density (Eq. 20) depends on the weighted volumes and

dilatations of both point x and point x′ withinHx. This means

that x secondarily interacts with points up to a distance of 2�훿

from itself. Thus, as shown in Fig. 6, we can discriminate 3

types of points depending on �푑�푏:

• if �푑�푏 ≥ 2�훿, the point is of type-I;

• if �훿 ≤ �푑�푏 < 2�훿, the point is of type-II;

123



8 Computational Mechanics (2022) 70:1–27

Fig. 6 Types of state-based peridynamic points depending on the dis-

tance �푑�푏 from the closest boundary: points are of type-I, also named

points in the “bulk”, if �푑�푏 ≥ 2�훿, type-II if �훿 ≤ �푑�푏 < 2�훿 and type-III

if �푑�푏 < �훿. The source point x interacts primarily with the family points

within the neighborhood Hx (dashed line) and secondarily with all the

points in the neighborhoods of the family points (dotted line)

• if �푑�푏 < �훿, the point is of type-III.

Type-I points are said to be in the “bulk” of the body and

they are the only ones which are not affected by the surface

effect.

As the weighted volume of one or both the points of a bond

decreases, the pairwise force density of that bond increases

according to Eq. 20. As shown in Fig. 6, type-II points inter-

act with at least one point with a partial neighborhood, so

that the peridynamic forces applied to those points increase.

Therefore, in the layer of the body where �훿 ≤ �푑�푏 < 2�훿

the peridynamic material is stiffer and exhibits a harden-

ing behavior. The pairwise forces applied to type-III points

increase even more. However, a type-III point is affected by

less bonds than type-I or type-II points due to the lack of at

least one family point. Therefore, the most external layer of

the body (�푑�푏 < �훿) exhibits a hardening-softening behavior

towards the boundary. This hardening-softening behavior can

also be observed in the analytical solution of a 1-dimensional

state-based body subjected to a homogeneous small defor-

mation [35]. However, we expect that the stiffness fluctuation

would be amplified near the corners of the body because the

points in those regions have the smallest partial neighbor-

hood.

Figures 7 and 8 show the components of the peridy-

namic stress tensor 3x in a 2-dimensional body subjected

respectively to a isotropic deformation �휀 �푖�푠�표 and to a simple

shear deformation �휀 �푠ℎ. 3x is computed numerically with

a relatively high density of nodes within each neighbor-

hood (�푚 = 10) and normalized with the analytical solutions

derived in Sect. 2.2. Please refer to Sect. 4.3 for the numeri-

cal procedure to compute the peridynamic stress tensor. The

numerical result for the points in the bulk of the body is

really close to the analytical solution, whereas there are large

differences for the points near the boundary, especially near

Fig. 7 Components of the peridynamic stress tensor 3x for every point

in a 2-dimensional body subjected to a isotropic deformation �휀 �푖�푠�표. The

plots are normalized with the analytical solution of the tensile stress

�휎 �푖�푠�표 for a peridynamic point with a complete neighborhood

the corners. Moreover, the points near the corners, due to the

asymmetry of their neighborhood with respect to both �푥- and

�푦-axis, have a non-zero value of the peridynamic stress even

without the corresponding deformation: �휏12 ≠ 0 in the case

of isotropic deformation �휀 �푖�푠�표 and �휏11 = �휏22 ≠ 0 in the case

of simple shear deformation �휀 �푠ℎ.

2.5 Imposition of the boundary conditions

Another issue in peridynamics, which is related to the surface

effect, is the proper definition of the boundary conditions.

The easiest method to impose the peridynamic boundary

conditions would be to assign the desired value to the bound-

ary points, as in classical continuum mechanics. However,

this method does not consider the non-local nature of the

theory and results in additional fluctuations of the solution

near the application of the boundary conditions.

A widely used method suggests that external loads and

constraints should be imposed on a layer of finite thickness
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Fig. 8 Components of the peridynamic stress tensor 3x for every point

in a 2-dimensional body subjected to a simple shear deformation �휀 �푠ℎ.

The plots are normalized with the analytical solution of the shear stress

�휎 �푠ℎ for a peridynamic point with a complete neighborhood

respectively inside and outside the body [21]. The finite thick-

ness is defined to be 2�훿 in state-based peridynamics [37].

Since this method involves type-II and type-III points in the

boundary conditions, it is undoubtedly more accurate than

the previous one. However, it is not really clear the exact

procedure of “distributing” the boundary conditions over the

finite layer.

We propose in the next section a novel method capable of

reducing considerably the surface effect and of imposing the

boundary conditions in a “peridynamic way”.

3 Taylor-based extrapolation method

A fictitious layer F of thickness �훿 is added around the body

B [12], as shown in Fig. 9. The neighborhoods of the family

points of type-II points are completed thanks to the additional

fictitious points, so that type-II points can be considered as

points in the bulk (type-I points). Similarly, the neighbor-

Fig. 9 Types of state-based peridynamic points depending on the dis-

tance from the closest boundary �푑�푏 in a body with a fictitious layer of

thickness �훿: there is no difference between type-I and type-II points

anymore, whereas type-III points lack some secondary interactions in

the neighborhoods of the family points

hoods of type-III points are completed by the fictitious layer,

but some of the neighborhoods of their family points are not.

However, we assign to the fictitious points the value of the

full weighted volume. In this way, all the points inside the

body B behave as points in the bulk. The next section shows

a procedure to evaluate the displacement and dilatation fields

over the fictitious layer.

3.1 Extrapolation procedure to mitigate the

surface effect

The displacements and the dilatations of the fictitious points

are determined by means of the Taylor-based extrapola-

tion method [35]. Consider the displacement u �푓 = u(x �푓 )
of a fictitious point, where x �푓 = {�푥 �푓 , �푦 �푓 , �푧 �푓 }⊤. We name

u�푏 = u(x�푏) the displacement of the boundary point with the

minimum distance from that fictitious point (nearest-point

strategy). The Taylor series expansion of u �푓 about x�푏 =

{�푥�푏 , �푦�푏, �푧�푏}⊤ truncated at the maximum order �푛�푚�푎�푥 ≥ 1 is

given by

u �푓 = u�푏 +
�푛�푚�푎�푥∑

�푛=1

�푛∑

�푛1=0

�푛−�푛1∑

�푛2=0

(�푥 �푓 − �푥�푏)�푛1 (�푦 �푓 − �푦�푏)�푛2 (�푧 �푓 − �푧�푏)�푛3

�푛1! �푛2! �푛3!
·

· �휕�푛1+�푛2+�푛3 u�푏

�휕�푥�푛1 �휕�푦�푛2 �휕�푧�푛3
with �푛3 = �푛 − �푛1 − �푛2,

(33)

where �푛 is the global order (�푛 = 1 is related to the gradient,

�푛 = 2 to the Hessian matrix, etc.) and �푛1, �푛2 and �푛3 are the

orders respectively in �푥, �푦 and �푧 directions.

Similarly, consider the dilatation �휃 �푓 = �휃 (x �푓 ) of a fictitious

point and the dilatation �휃�푏 = �휃 (x�푏) of the boundary point

closest to x �푓 . The Taylor series expansion of �휃 �푓 about x�푏
truncated at the maximum order �푛�푚�푎�푥 − 1 is given by
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�휃 �푓 =




�휃�푏 if �푛�푚�푎�푥 = 1,

�휃�푏 +
�푛�푚�푎�푥−1∑

�푛=1

�푛∑

�푛1=0

�푛−�푛1∑

�푛2=0

(�푥 �푓 − �푥�푏)�푛1

�푛1!
·

·
(�푦 �푓 − �푦�푏)�푛2

�푛2!
·
(�푧 �푓 − �푧�푏)�푛3

�푛3!
·

· �휕�푛1+�푛2+�푛3 �휃�푏

�휕�푥�푛1 �휕�푦�푛2 �휕�푧�푛3

if �푛�푚�푎�푥 > 1,

(34)

with �푛3 = �푛−�푛1−�푛2. Note that the dilatation is a measure of

the strain, thus its truncation of the Taylor expansion occurs

with 1 order less than that of the displacement.

This method allows to determine the displacement field

and the dilatation field in the fictitious layer F as a function

of the respective fields in the bodyB. Since the displacement

and dilatation fields in F are approximated by means of a

Taylor series expansion, more accurate results are obtained

by increasing the truncation order �푛max or by reducing the

thickness of the fictitious layer.

The new bonds between real and fictitious points, called

“fictitious bonds”, are the interactions that are lacking in

the peridynamic models without fictitious layer. The Taylor-

based extrapolation method provides the displacement and

dilatation values of the fictitious points, which are required

to compute the pairwise forces of the fictitious bonds. In

this way, the proposed method is able to mitigate the surface

effect.

3.2 Peridynamic boundary conditions

We propose hereinafter a novel method to impose the

boundary conditions in a peridynamic way when using the

previously described fictitious layer method [35]. The desired

boundary conditions are applied solely on the boundary

points, exactly as in classical continuum mechanics. How-

ever, the influence of the boundary conditions on the body is

non-local thanks to the Taylor-based extrapolation method.

This concept is explained for Dirichlet and Neumann bound-

ary conditions in the following.

A constraint u imposed in a boundary point x�푏 is simply

given as

u(x�푏) = u . (35)

This boundary condition determines the displacement field

in the fictitious layer through the Taylor-based extrapolation

method (by substituting Eq. 35 in Eq. 33). Therefore, the

influence of the constraint can be seen as distributed in the

whole thickness of the fictitious layer, as suggested in [21,

pp. 29–30].

An external load per unit area p applied to a boundary

point x�푏 is expressed by means of the peridynamic concept

of force flux (see Eq. 30):

3(x�푏, n) = p , (36)

where n is the unit vector perpendicular to the boundary in

x�푏. By definition of force flux, 3(x�푏, n) is the sum of the pair-

wise forces (per unit area) of all the bonds passing through

x�푏. Since point x�푏 lies on the boundary, all the bonds involved

in Eq. 36 are fictitious bonds. On the one hand, the pairwise

forces of those bonds applied to the fictitious points, which

do not constitute new degrees of freedom, are ignored. On

the other hand, the corresponding pairwise forces applied to

the real points are the only ones “perceived” by the body. For

how the magnitude of those forces is computed (see Eq. 20),

the boundary condition in point x�푏 affects the displacement

in a sphere of radius 2�훿 centered in x�푏. Therefore, the exter-

nal load, expressed by means of the definition of the force

flux, is distributed on the points in a layer of thickness 2�훿

within the body, as suggested in [21, pp. 30–32].

The proposed method for imposing the boundary condi-

tions, which makes use of the Taylor-based extrapolation on

the fictitious layer, defines a peridynamic way to distribute

the constrains or the loads in the non-local region near the

boundary.

Remark 1 The reaction force acting on a boundary point x�푏,

due to a constraint imposed as in Eq. 35, can be computed

as the force flux in x�푏 in the direction of the unit vector n

perpendicular to the boundary, i.e., 3(x�푏, n).

Remark 2 The zero-traction boundary condition is some-

times applied by removing the fictitious layer in literature

[22]. However, in order to maintain the correction of the sur-

face effect, we suggest to keep the fictitious layer and impose

the condition 3(x�푏, n) = 0 to all the points of that boundary.

4 Numerical implementation

In order to discretize the domain, a mesh-free method is

adopted [36,41]. For simplicity sake, the peridynamic grid

consists of a finite number of equally-spacednodes, as shown

in Fig. 10. Each peridynamicnode is representative of a finite

volume �훥�푉 = ℎ�훥�푥2, where �훥�푥 = �훥�푦 is the grid spacing and ℎ

is the thickness of the body. Please note that the most external

real nodes do not lie exactly on the boundary of the body since

the nodes are positioned at the center of the volume �훥�푉 . The

ratio between the horizon and the grid spacing is defined as

�푚-ratio: �푚 = �훿/�훥�푥. The value of this parameter determines

the density of peridynamic nodes within a neighborhood.

Furthermore, the fictitious layer (empty dots in Fig. 10) is

added to the real body to complete the neighborhoods of the

nodes near the boundary.
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Fig. 10 Uniform peridynamic

grid of real nodes (solid dots)

and fictitious nodes (empty dots)

4.1 Numerical Taylor-based extrapolation method

The Taylor-based extrapolation procedure in the discretized

model aims to determine the values of the variables of the

fictitious nodes (displacements �푢 and �푣 respectively in �푥 and

�푦 directions and dilatations �휃 in the case of a peridynamic 2-

dimensional body). The numerical procedure to determine,

for instance, the displacement �푢�푖 in a fictitious node �푖 with

coordinates (�푥�푖 , �푦�푖) is carried out as follows:

– find the real node of index �푗 closest to node �푖;

– perform a Taylor series expansion of �푢�푖 about node �푗

with coordinates (�푥 �푗 , �푦 �푗 ):

�푢�푖 = �푢 �푗 +
�푛�푚�푎�푥∑

�푛=1

�푛∑

�푛1=0

(�푥�푖 − �푥 �푗 )�푛1 (�푦�푖 − �푦 �푗 )�푛2

�푛1! �푛2!
·
�휕�푛1+�푛2 �푢 �푗

�휕�푥�푛1 �휕�푦�푛2
,

(37)

where �푢 �푗 and
�휕�푛1+�푛2�푢 �푗

�휕�푥�푛1 �휕�푦�푛2
are the displacement of node �푗

and its derivatives, �푛�푚�푎�푥 is the maximum order of the

truncated Taylor series, �푛1 and �푛2 are the orders respec-

tively in �푥 and �푦 directions and �푛 is the global order so

that �푛2 = �푛 − �푛1.

Since the coordinates of nodes �푖 and �푗 are known, the

displacement �푢�푖 in Eq. 37 is written as a function of the dis-

placement �푢 �푗 and its derivatives. However, we aim to express

�푢�푖 as a function solely of the displacement of the real nodes.

The total number of derivatives of �푢 �푗 , considered before

truncating the Taylor series, is �푛�푑 = (�푛�푚�푎�푥 (�푛�푚�푎�푥 +1)/2) −1.

They can be determined as functions of the displacements of

the �푛�푑 real nodes near node �푗 by following another Taylor-

based extrapolation procedure:

– find the �푛�푑 real nodes with indices �푗�푘 closest to node �푗 ,

where �푘 = 1, . . . , �푛�푑 (see Remark below for the condi-

tions on the node search);

– for each of those nodes with coordinates (�푥 �푗�푘 , �푦 �푗�푘 ), per-

form a Taylor series expansion of their displacements �푢 �푗�푘

about node �푗:

�푢 �푗�푘 = �푢 �푗 +
�푛�푚�푎�푥∑

�푛=1

�푛∑

�푛1=0

(�푥 �푗�푘 − �푥 �푗 )�푛1 (�푦 �푗�푘 − �푦 �푗 )�푛2

�푛1! �푛2!

·
�휕�푛1+�푛2 �푢 �푗

�휕�푥�푛1 �휕�푦�푛2
with �푘 = 1, . . . , �푛�푑;

(38)

– solve the system of equations in Eq. 38 to obtain the

derivatives of �푢 �푗 as a function of the displacements �푢 �푗

and �푢 �푗�푘 :

�휕�푛1+�푛2 �푢 �푗

�휕�푥�푛1 �휕�푦�푛2
= �푓 (�푢 �푗 , �푢 �푗�푘 ) with �푘 = 1, . . . , �푛�푑 .

(39)

Therefore, by combining Eqs. 37 and 39 , the displacement

of a fictitious node is a function only of the displacements of

some real nodes. Note that the adopted nearest-node startegy

is really simple to implement also for complex geometries.

This procedure can be applied to determine the displace-

ments �푢 and �푣 and the dilatations �휃 of all the fictitious nodes.
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j4 j2

j3 j1 j

Fig. 11 Taylor-based extrapolation method for a fictitious node �푖 near

a corner of the body: node �푗 is the real node closest to node �푖 and nodes

�푗�푘 with �푘 = 1, . . . , 5 are the real nodes closest to node �푗

In the case of the dilatations, the truncation order �푛�푚�푎�푥 must

be replaced by �푛�푚�푎�푥 − 1.

Remark 3 There might be some cases in which the system

of equations (Eq. 38) is not solvable for the nodes �푗�푘 that

are the closest to node �푗 . For instance, if we want to deter-

mine the second derivative in �푥 direction, the nodes �푗�푘 must

include at least two �푥 �푗�푘 coordinates different from each other

and from �푥 �푗 (see example in Sect. 4.5). However, given the

adoption a uniform grid in which nodes on the same lines

share the same coordinates, this condition is not always met

when searching for nodes �푗�푘 via the closest-node strategy

without any additional condition. Therefore, in order for the

system of equations to be solvable, the nodes �푗�푘 should com-

prise at least �푛1 different �푥 �푗�푘 coordinates and �푛2 different

�푦 �푗�푘 coordinates (excluding �푥 �푗 and �푦 �푗 ) for each derivative of

order �푛1 in �푥 direction and �푛2 in �푦 direction.

In the following we present an example for determining

the displacement �푢�푖 of a fictitious node �푖 near a corner of the

body by means of the Taylor-based extrapolation methodwith

�푛�푚�푎�푥 = 2. As shown in Fig. 11, the node �푗 near the corner

is the real node closest to node �푖. Thus, the displacement �푢�푖
can be given via a Taylor series expansion about node �푗 (see

Eq. 37) as

�푢�푖 = �푢 �푗 + �푙�푥 ·
�휕�푢 �푗

�휕�푥
+ �푙�푦 ·

�휕�푢 �푗

�휕�푦
+ �푙2�푥

2
·
�휕2�푢 �푗

�휕�푥2
+ �푙�푥 �푙�푦 ·

�휕2�푢 �푗

�휕�푥 �휕�푦

+
�푙2�푦

2
·
�휕2�푢 �푗

�휕�푦2
, (40)

where �푙�푥 = �푥�푖 − �푥 �푗 and �푙�푦 = �푦�푖 − �푦 �푗 . Note that the number of

derivatives of the displacement �푢 �푗 is �푛�푑 = 5.
As shown in Fig. 11, �푗�푘 with �푘 = 1, . . . , 5 are the 5

indices of the real nodes closest to node �푗 . Note that, in order

to be compliant with the condition given in Remark 3, the
search for the closest nodes should be carried out in terms
of Manhattan distance. A system of 5 equations is written
by performing a Taylor series expansion of �푢 �푗�푘 about node �푗
(see Eq. 39):




�푢 �푗1 = �푢 �푗 − �훥�푥 ·
�휕�푢 �푗

�휕�푥
+ �훥�푥2

2
·
�휕2�푢 �푗

�휕�푥2

�푢 �푗2 = �푢 �푗 − �훥�푦 ·
�휕�푢 �푗

�휕�푦
+ �훥�푦2

2
·
�휕2�푢 �푗

�휕�푦2

�푢 �푗3 = �푢 �푗 − 2�훥�푥 ·
�휕�푢 �푗

�휕�푥
+ 2�훥�푥2 ·

�휕2�푢 �푗

�휕�푥2

�푢 �푗4 = �푢 �푗 − �훥�푥 ·
�휕�푢 �푗

�휕�푥
− �훥�푦 ·

�휕�푢 �푗

�휕�푦

+ �훥�푥2

2
·
�휕2�푢 �푗

�휕�푥2
+ �훥�푥�훥�푦 ·

�휕2�푢 �푗

�휕�푥 �휕�푦
+ 2�훥�푦2 ·

�휕2�푢 �푗

�휕�푦2

�푢 �푗5 = �푢 �푗 − 2�훥�푦 ·
�휕�푢 �푗

�휕�푦
+ 2�훥�푦2 ·

�휕2�푢 �푗

�휕�푦2

(41)

The factors of the Taylor series expansions, which are multi-

plied by the derivatives of �푢 �푗 , are easily derived from Fig. 11.

After some manipulations, the system in Eq. 41 yields:




�휕�푢 �푗

�휕�푥
=

3�푢 �푗 − 4�푢 �푗1 + �푢 �푗3

2�훥�푥

�휕�푢 �푗

�휕�푦
=

3�푢 �푗 − 4�푢 �푗2 + �푢 �푗5

2�훥�푦

�휕2�푢 �푗

�휕�푥2
=
�푢 �푗 − 2�푢 �푗1 + �푢 �푗3

�훥�푥2

�휕2�푢 �푗

�휕�푥 �휕�푦
=
�푢 �푗 − �푢 �푗1 − �푢 �푗2 + �푢 �푗4

�훥�푥�훥�푦

�휕2�푢 �푗

�휕�푦2
=
�푢 �푗 − 2�푢 �푗2 + �푢 �푗5

�훥�푦2

(42)

Therefore, by substituting Eq. 42 in Eq. 40, the displacement

�푢�푖 of the fictitious node is expressed as a function solely of

the displacements of the real nodes. This procedure can be

repeated for the required variables of all the fictitious nodes.

4.2 Numerical formulation of peridynamics

Consider a real node �푖, as shown in Fig. 12. The neighborhood

H�푖 of node �푖 embeds the complete volume of the nearest

nodes and the partial volume of the nodes near the horizon

limit. Therefore, all the nodes with at least a portion of their

own volume within the horizon limit are considered part of

the neighborhood H�푖 . For each family node �푗 , the volume

correction coefficient �훽�푖 �푗 ≤ 1 is computed as the fraction of

volume actually contained in the neighborhood [36]. If �훥�푉 of

node �푗 is completely inside the neighborhood, then �훽�푖 �푗 = 1.

The bond �푖 �푗 , which connects node �푖 to node �푗 , could

be either a real bond or a fictitious bond. In both cases,
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βij = 1

βij < 1

Fig. 12 The neighborhood H�푖 of a node �푖 is constituted by the nodes

(black dots) with at least a part of their volume inside the horizon (gray

line). The volume correction coefficient �훽 is the fraction of the volume

of the family nodes �푗 within the horizon limit

its reference scalar state �푥�푖 �푗 , Gaussian influence function

�휔�푖 �푗 and inclination �휙�푖 �푗 with respect to the �푥-axis, can be

computed from the coordinates of the two nodes. Under the

assumption of small displacements, the extension scalar state

of bond �푖 �푗 is given as

�푒
�푖 �푗
= (�푢 �푗 − �푢�푖) cos �휙�푖 �푗 + (�푣 �푗 − �푣�푖) sin �휙�푖 �푗 , (43)

where �푢�푖 and �푢 �푗 are the displacements in �푥 direction respec-

tively of nodes �푖 and �푗 and �푣�푖 and �푣 �푗 are the displacements in

�푦 direction respectively of nodes �푖 and �푗 . If the family node

�푗 is fictitious, Eq. 43 holds and �푢 �푗 and �푣 �푗 are determined

as a function of the displacements of the real nodes by the

Taylor-based extrapolation method exposed in Sect. 4.1.

The weighted volume of node �푖 is evaluated by performing

a mid-point Gauss quadrature from Eq. 13:

�푚�푖 =

∑

�푗∈H�푖

�휔�푖 �푗 �푥
2
�푖 �푗 �훽�푖 �푗 �훥�푉 . (44)

Since the neighborhoods of all the real nodes are complete

thanks to the presence of the fictitious nodes, the weighted

volume is constant in the whole body. Furthermore, the value

of the weighted volume of the real nodes is assigned also to

the fictitious nodes, as dictated by the Taylor-based extrapo-

lation method.

Similarly, the dilatation of a real node �푖 is computed from

Eq. 14 as

�휃�푖 =
�푐 �휃

�푚�푖

∑

�푗∈H�푖

�휔�푖 �푗 �푥�푖 �푗 �푒�푖 �푗 �훽�푖 �푗 �훥�푉 . (45)

On the other hand, the dilatations of the fictitious nodes are

determined as a function of the dilatations of the real nodes

by means of another Taylor-based extrapolation, as illustrated

in Sect. 4.1.

The magnitude of the pairwise force density in bond �푖 �푗 is

given from Eq. 20 as

f�푖 �푗=

[
�푘 �휃

(
�휃�푖

�푚�푖

+
�휃 �푗

�푚 �푗

)
�휔�푖 �푗 �푥�푖 �푗+�푘�푒

(
1

�푚�푖

+ 1

�푚 �푗

)
�휔�푖 �푗 �푒�푖 �푗

]
�훽�푖 �푗 .

(46)

Note that the constants �푘 �휃 and �푘�푒 are determined by the

constitutive modelling of the peridynamic theory, the param-

eters �푚�푖 , �푚 �푗 , �휔�푖 �푗 , �푥�푖 �푗 and �훽�푖 �푗 depend only on the geometric

coordinates of the nodes in the reference configuration and

the variables �푒�푖 �푗 , �휃�푖 and �휃 �푗 can be written as functions of

the displacements of the real nodes (by using the proposed

Taylor-based extrapolation method for the variables of the fic-

titious nodes). Therefore, by combining Eqs. 43–46 together,

one can write an equation for each bond �푖 �푗 , either real or ficti-

tious, to relate the magnitude f�푖 �푗 of its pairwise force density

to the displacements of the real nodes.

Finally, under the assumption of small deformation, the

peridynamic equilibrium equation (multiplied by the node

volume �훥�푉) is written for every real node �푖 as

−
∑

�푗∈H�푖

f�푖 �푗 m�푖 �푗 �훥�푉
2
= b�푖 �훥�푉 ∀�푖 ∈ B (47)

where m�푖 �푗 = {cos �휙�푖 �푗 , sin �휙�푖 �푗 }⊤ is the bond direction in the

reference configuration and b�푖 is the external force density

vector applied to node �푖. The system of equations in Eq. 47

can be rewritten in the standard form

K ũ = f̃ , (48)

where K is the peridynamic stiffness matrix (size: 2�푁 ×2�푁),

ũ is the displacement vector (size: 2�푁 × 1) and f̃ is the force

vector (size: 2�푁 × 1). �푁 is the number of real nodes. The

stiffness matrix K includes the contributions of the fictitious

bonds, thus it embeds the correction of the surface effect by

means of the Taylor-based extrapolation method.
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4.3 Numerical evaluation of the peridynamic stress

tensor

This section deals with the numerical procedure to compute

the peridynamic stress tensor. The theoretical background

can be found in Sect. 2.2.

In the discretized peridynamic model, we name the nodes

corresponding to the points x, x′ and x′′ (see Fig. 2) respec-

tively as �푖, �푗 and �푘. Under the assumption of point �푖 being in

the bulk of a body subjected to a homogeneous deformation

(see Eq. 23), the peridynamic stress tensor can be computed

as

3�푖 =
1

2

∑

�푘∈H�푖

�푟�푖�푘 f�푖�푘 m�푖�푘 ⊗ m�푖�푘 �훥�푉 , (49)

where �푟�푖�푘 is the length of the bond �푖�푘. Equation 49 provides

a good approximation also in the case of non-homogeneous

deformations if the horizon �훿 is sufficiently small, as shown

in [10] for bond-based peridynamics. However, Eq. 49 is not

valid for nodes near the boundary which are affected by the

surface effect (if no fictitious layer is employed).

In order to compute numerically the peridynamic stress

tensor 3�푖 in a general node �푖, also not in the bulk of the

body, the integrand of Eq. 22 should be evaluated for each

bond �푗 �푘 between node �푗 and node �푘. The differential volume

d�푉x′′ corresponds simply to the finite volume of node �푘, i.e.,

�훥�푉 . On the other hand, we must distinguish two types of

bonds, which are shown in Fig. 13, to determine �훥�푠 as the

corresponding of the differential length d�푠 of point x′ in the

direction of the bond m:

�훥�푠 =




�훥�푥
| cos �휙 �푗�푘 | if | cos �휙 �푗 �푘 | ≥

√
2

2
,

�훥�푦

| sin �휙 �푗�푘 | if | cos �휙 �푗 �푘 | <
√

2
2
,

(50)

where the trigonometric functions are within the absolute

value because �훥�푠 > 0. In the former case bond �푗 �푘 is a type-A

bond and, in the latter, a type-B bond, which are respectively

shown in Fig. 13a and b. A type-A bond contributes to 3�푖
if it intersects the area �훥�퐴A

�푖 = ℎ�훥�푦 passing through node �푖

perpendicular to �푥 direction, where ℎ is the thickness of the

2-dimensional body. Similarly, a type-B bond contributes to

3�푖 if it intersects the area �훥�퐴B
�푖 = ℎ�훥�푥 passing through node

�푖 perpendicular to �푦 direction. Therefore, the peridynamic

stress tensor in a node �푖 is given as

3�푖 =
1

2

∑

/ �푗�푘 ∩ �훥�퐴A
�푖
≠∅

�훼 �푗 �푘 f �푗 �푘 m �푗 �푘 ⊗ m �푗 �푘
�훥�푥

| cos �휙 �푗 �푘 |
�훥�푉

+ 1

2

∑

/ �푗�푘 ∩ �훥�퐴B
�푖
≠∅

�훼 �푗 �푘 f �푗 �푘 m �푗 �푘 ⊗ m �푗 �푘

�훥�푦

| sin �휙 �푗 �푘 |
�훥�푉 ,

(51)

where f �푗 �푘 is the magnitude of the pairwise force density of

bond �푗 �푘 obtained with Eq. 46, m �푗 �푘 = {cos �휙 �푗 �푘, sin �휙 �푗 �푘}⊤ is

the bond direction and �훼 �푗 �푘 is a correction coefficient, given

as:

�훼 �푗 �푘 =




1
2

if �푗 = �푖 or �푘 = �푖 ,
1
2

if / �푗 �푘 ∩ �휕�퐴�푖 ≠ ∅ ,
1 if / �푗 �푘 ∩ (�훥�퐴�푖 \ �휕�퐴�푖) ≠ ∅ ,

(52)

where �휕�퐴�푖 is the boundary of the area �훥�퐴�푖 , which can be

referred either to type-A bonds (�훥�퐴A
�푖 ) or to type-B bonds

(�훥�퐴B
�푖 ). The different cases in Eq. 52 are illustrated in Fig. 14:

– in the case with �푗 = �푖 (see Fig. 14a), since only half of

the length �훥�푠 related to node �푗 is on the opposite side of

�훥�퐴�푖 with respect to node �푘, then �훼 �푗 �푘 = 1/2;

– similarly, in the case with �푘 = �푖 (see Fig. 14b), since only

half of the volume �훥�푉 of node �푘 is on the opposite side

of �훥�퐴�푖 with respect to node �푗 , then �훼 �푗 �푘 = 1/2;

– in the case that the bond intersects the boundary of �훥�퐴�푖 ,

i.e., / �푗 �푘∩�휕�퐴�푖 ≠ ∅, since �휕�퐴�푖 overlaps the boundary of the

area of another node (node �푞 in Fig. 14c), the magnitude

of the pairwise force density of bond �푗 �푘 is equally shared

between those nodes and, therefore, �훼 �푗 �푘 = 1/2;

– in the case that the bond intersects �훥�퐴�푖 not on its bound-

ary, i.e., / �푗 �푘 ∩ (�훥�퐴�푖 \ �휕�퐴�푖) ≠ ∅ (see Fig. 14d), the

magnitude of the pairwise force density of bond �푗 �푘 con-

tributes entirely to 3�푖 and, therefore, �훼 �푗 �푘 = 1;

Moreover, to improve the computational efficiency, one

might remove the factors 1/2 in Eq. 51 and consider each

bond just once (for example consider only bond �푗 �푘 and not

bond �푘 �푗).

The proposed numerical procedure to compute the peri-

dynamic stress tensor is used to highlight the surface effect in

a 2-dimensional body in Sect. 2.4. Figures 7 and 8 show that

the numerical computation of the peridynamic stress tensor

is very close to the analytical solutions, obtained in Sect. 2.2,

for nodes with a complete neighborhood.

4.4 Numerical evaluation of the force flux

Consider a finite area �훥�퐴which constitutes one of the sides of

the volume cell of a node, as shown in Fig. 15. The numerical

procedure to compute the peridynamic force flux through the

finite area �훥�퐴 is exposed in this section.

The force flux 3(x, n) of a point x in a direction n is

interpreted in Sect. 2.3 as the sum of the pairwise forces per

unit area of all the bonds intersecting the differential area d�퐴x

on the plane P in x, where P is the plane passing through x

perpendicular to n (see Figs. 4 and 5 ). Therefore, the force
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(a)

(b)

Fig. 13 Examples of type-A and type-B bonds for the computation of

the peridynamic stress tensor 3�푖 in node �푖. The bonds contribute to 3�푖
only if they intersect the corresponding area �훥�퐴�푖

flux through �훥�퐴 can be discretized from Eqs. 30 and 32 as

3(x, n) = 1

�훥�퐴

∑

/ �푗�푘 ∩ �훥�퐴≠∅
m �푗�푘 ·n>0

�훼 �푗 �푘 f �푗 �푘 m �푗 �푘 �훥�푉
2 , (53)

where x and n are respectively the centroid and the normal of

�훥�퐴, f �푗 �푘 m �푗 �푘 �훥�푉
2 is the pairwise force of any bond �푗 �푘 inter-

secting �훥�퐴 and �훼 �푗 �푘 is the correction coefficient given by

Eq. 52 (see also in Fig. 15a, b the possible cases in the com-

(a)

(b)

(c)

(d)

Fig. 14 Values of the correction coefficient �훼�푗�푘 for different types of

intersection between bond �푗�푘 and area �훥�퐴�푖 . These examples consider

only type-A bonds, but the same concepts are valid also for type-B

bonds
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(a)

(b)

Fig. 15 Values of the correction coefficient �훼�푗�푘 for different types of

intersection between bond �푗�푘 and area �훥�퐴

putation of the force flux). Note that, in order to improve the

computational efficiency, the factor 1/2 is removed because

only bonds satisfying the condition m �푗 �푘 · n > 0 are con-

sidered. Since we are mostly interested in the force flux

computed at the boundary of the body to impose Neumann

boundary conditions, this concept is further analyzed in the

next section.

4.5 Numerical implementation of the peridynamic

boundary conditions

The real nodes closest to the boundary are not exactly on the

boundary of the body (see Fig. 10). Therefore, by following

the concepts exposed in Sect. 3.2, the boundary conditions

in the discretized model should be imposed on the sides of

the volume cells which overlap the boundary. We introduce a

new cathegory of nodes, called “boundary nodes”, at which

the boundary conditions are imposed. Each boundary node

is positioned at the centroid of the side of the volume cell

∆Ab

b
nb

Fig. 16 Boundary nodes at the boundary of the body: each node �푏 is

representative of a finite area �훥�퐴�푏 and is associated to the normal n�푏

external to the body

of the nodes closest to the boundary and is representative

of the finite area �훥�퐴�푏 of that side, as shown in Fig. 16. As

the fictitious nodes, the boundary nodes do not constitute

new degrees of freedom because their displacements are

determined as a function of the displacements of the real

nodes by means of the Taylor-based extrapolation method.

Suppose that the problem requires a constraint �푢 for the

displacement �푢�푏 in �푥 direction of a boundary node �푏, condi-

tion given as �푢�푏 = �푢. The Taylor-based extrapolation method

is applied to the boundary node exactly as done for the fic-

titious nodes in Sect. 4.1. The following procedure is valid

also for �푢 = 0. The displacement �푢�푏 of the boundary node

�푏 with coordinates (�푥�푏 , �푦�푏) is determined by a Taylor series

expansion about node �푗 with coordinates (�푥 �푗 , �푦 �푗 ) as

�푢�푏 = �푢 �푗 +
�푛�푚�푎�푥∑

�푛=1

�푛∑

�푛1=0

(�푥�푏 − �푥 �푗 )�푛1 (�푦�푏 − �푦 �푗 )�푛2

�푛1! �푛2!
·
�휕�푛1+�푛2 �푢 �푗

�휕�푥�푛1 �휕�푦�푛2
, (54)

where node �푗 is the real node closest to node �푏. The �푛�푑
derivatives of �푢 �푗 can be expressed as functions of the dis-

placements of the �푛�푑 real nodes close to node �푗 . Therefore,

the Dirichlet boundary condition can be written as a function

of the displacements of some real nodes:

�푢 = �푓 (�푢 �푗 , �푢 �푗�푘 ) with �푘 = 1, . . . , �푛�푑 . (55)

For example, we consider the case shown in Fig. 17 with

a truncation order �푛�푚�푎�푥 = 2. The Taylor series expansion of

the displacement �푢�푏 about node �푗 is given as

�푢�푏 = �푢 �푗 +
�훥�푥

2
·
�휕�푢 �푗

�휕�푥
+ �훥�푥2

8
·
�휕2�푢 �푗

�휕�푥2
. (56)

In order to determine the two derivatives in �푥 direction of

Eq. 56, we find nodes �푗1 and �푗2, shown in Fig. 17, as the

nodes closest to node �푗 having �푥 coordinates different from

each other and from �푥 �푗 (see Remark 3). We write the system
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b

ub = ujj1j2

Fig. 17 Example of the Taylor-based extrapolation method used on a

boundary node �푏

of equations given by the Taylor series expansions of �푢 �푗1 and

�푢 �푗2 about node �푗 , as in Eq. 38, and solve it to obtain the

needed derivatives:




�휕�푢 �푗

�휕�푥
=

3�푢 �푗 − 4�푢 �푗1 + �푢 �푗2

2�훥�푥

�휕2�푢 �푗

�휕�푥2
=
�푢 �푗 − 2�푢 �푗1 + �푢 �푗2

�훥�푥2

(57)

By substituting Eq. 57 in Eq. 56, the constraint condition

�푢�푏 = �푢 is given as a function of the displacements of some

real nodes:

�푢 =
15

8
�푢 �푗 −

5

4
�푢 �푗1 +

3

8
�푢 �푗2 . (58)

More in general, the proposed method allows to write the

Dirichlet boundary conditions as functions of the displace-

ment vector ũ:

�푢 = �푓 (ũ) . (59)

Suppose now that an external force per unit area p is

applied to a boundary node �푏, as shown in Fig. 18. The

Neumann boundary condition is written in terms of force

flux through the area �훥�퐴�푏 associated to node �푏:

3(x�푏, n�푏) =
1

�훥�퐴�푏

∑

/ �푗�푘 ∩ �훥�퐴�푏 ≠∅
m �푗�푘 ·n�푏>0

�훼 �푗 �푘 f �푗 �푘 m �푗 �푘 �훥�푉
2
= p , (60)

where x�푏 is the position of node �푏 and n�푏 is the unit vector

perpendicular to �훥�퐴�푏 external to the body. Since the pair-

wise force density of any bond can be expressed as a function

of the displacements of the real nodes (see Sect. 4.2), also

3(x�푏, n) is a function of those displacements. Thus, Neu-

mann boundary conditions can be written as functions of the

displacement vector ũ:

p = �푓 (ũ) . (61)

b

∆Ab

nb

τ (xb,nb) = p

Fig. 18 Example of an external load p applied to a boundary node �푏

Since both Dirichlet and Neumann boundary conditions

are given by equations in which the only unknowns are the

displacements of the real nodes (see Eqs. 59 and 61 ), we

gather all the boundary conditions in a matrix form as

B ũ = c , (62)

where B is the matrix of the boundaryconditions (size: 2�푁�푏×
2�푁), ũ is the displacement vector (size: 2�푁 × 1) and c is the

vector of the known terms (size: 2�푁�푏 × 1). �푁�푏 is the number

of boundary nodes.

In order to include the boundary conditions (B ũ = c)

in the system of equations derived from the equilibrium of

the real nodes (K ũ = f̃), we conveniently use the technique

of the Lagrange multipliers [5]. The vector of the Lagrange

multipliers , (size: 2�푁�푏 × 1) is introduced in the system as

[
K B⊤

B 0

] {
ũ

,

}
=

{̃
f

c

}
. (63)

The displacement vector ũ, extracted from the vector {ũ, ,}⊤,

is the solution to the system of equilibrium equations which

satisfies the imposed boundary conditions.

5 Numerical examples

Several examples are presented to verify the reliability and

accuracy of the proposed method. Whenever possible, the

numerical peridynamic results are compared with the refer-

ence solutions derived from classical continuum mechanics.

The reference solution coincides with the peridynamic solu-

tion only in the limit of the horizon �훿 approaching 0 [26,43].

Therefore, the “difference” between these solutions includes

two components: a discrepancy due to the different (local

and non-local) formulations of the theories and the actual

error given by the discretization and the implementation of

the peridynamic model (either with or without the proposed

method). The difference (in percentage) of the displacements

between the peridynamic numerical results and the reference
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Table 1 Parameters of the plate and of its discretization

Parameter Value

Length ℓ�푥 = 0.3m

Width ℓ�푦 = 0.2m

Thickness ℎ = 0.005m

Young’s modulus �퐸 = 1GPa

Poisson’s ratio �휈 = 0.2

Grid spacing �훥�푥 = �훥�푦 = 0.01m

�푚-ratio �푚 = 3

solution is computed at each node �푖 as

& �푖 =

{
�휖�푢
�휖�푣

}

�푖

=




|�푢�푖 − �푢�푟�푒 �푓 (x�푖) |
max(|ũ�푟�푒 �푓 |)

· 100

|�푣�푖 − �푣�푟�푒 �푓 (x�푖) |
max(|ũ�푟�푒 �푓 |)

· 100




, (64)

where �푢�푖 and �푣�푖 are the displacements of node �푖, �푢�푟�푒 �푓 (x�푖) and

�푣�푟�푒 �푓 (x�푖) are the displacements obtained with the reference

solution at the position x�푖 of node �푖 and ũ�푟�푒 �푓 is the displace-

ment vector obtained with the reference solution at all the

nodes. The reference solution is defined for each example by

providing either the analytical solution (if possible), or the

results obtained with the Finite Element Method.

For simplicity sake, we consider a plate under plane stress

conditions with different boundary conditions. The param-

eters adopted for the simulations of the plate are reported

in Table 1. Firstly, we solve each example without adding

the fictitious nodes. In this case, the boundary conditions are

implemented by assigning the desired value of the constraints

or loads to the most external nodes of the plate. In particular,

Dirichlet boundary conditions are imposed by assigning to

the nodes closest to the boundary the value of the displace-

ment computed with the reference solution. Then, the same

examples are solved by adopting the proposed Taylor-based

extrapolation method and by implementing the boundary

conditions as described in Sect. 4.5.

5.1 Plate under traction

The boundary conditions of the first example are shown in

Fig. 19. The analytical solution is given by classical contin-

uum mechanics as

u(x) =
{
�푢(�푥, �푦)
�푣(�푥, �푦)

}
=




�푝

�퐸

(
�푥 + ℓ�푥

2

)

−�휈 �푝
�퐸

(
�푦 +

ℓ�푦

2

)




, (65)

where �푝 is the traction load.

x

y

p

Fig. 19 Boundary conditions for the plate under the traction �푝 = 1MPa

Table 2 Relative differences

between the peridynamic

numerical results and the

reference solution in the plate

under traction when improving

the numerical integration by

increasing �푚

�푚 �휖 �푟�푒�푙�푢 �휖 �푟�푒�푙
�푣

3 0.43 % 2.15 %

4 0.09 % 0.45 %

5 0.04 % 0.18 %

6 0.02 % 0.09 %

The plots in Fig. 20 show the difference of the displace-

ment field, computed without adopting any correction to the

peridynamic model, with respect to the reference solution.

The surface effect and the approximated way of imposing the

boundary conditions lead to large errors near the boundary

of the plate, especially near the corners. On the other hand,

there are no fluctuations in the displacement field when the

proposed Taylor-based extrapolation method with �푛�푚�푎�푥 = 1

is employed. The differences of the displacement field of the

corrected model (see Fig. 21) decrease sensibly with respect

to those obtained without corrections at the boundary. Sim-

ilar results are obtained by choosing higher orders for the

Taylor-based extrapolation.

In the case adopting the proposed method, the error can be

further reduced by increasing the accuracy of the integration

over the neighborhoods, i.e., by increasing�푚 [36]. In order to

show this, we compute the relative difference (in percentage)

at a node �푖 as

&�푟�푒�푙�푖 =

{
�휖�푟�푒�푙�푢

�휖�푟�푒�푙�푣

}

�푖

=




|�푢�푖 − �푢�푟�푒 �푓 (x�푖) |
|�푢�푟�푒 �푓 (x�푖) |

· 100

|�푣�푖 − �푣�푟�푒 �푓 (x�푖) |
|�푣�푟�푒 �푓 (x�푖) |

· 100




. (66)

In the case employing the Taylor-based extrapolation on the

fictitious nodes, the relative difference of every node inside

the body is the same. Therefore, we gather in Table 2 the

relative errors for different values of �푚. We can observe that

the relative differences decrease significantly as the value of

�푚 increase.
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Fig. 20 Displacement field differences between the peridynamic

numerical results for �푚 = 3 and the reference solution (obtained with

the analytical solution in Eq. 65) in the plate under traction obtained

without corrections at the boundary. Note that the colormaps refer to

different values in the two plots
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Fig. 21 Displacement field differences between the peridynamic

numerical results for �푚 = 3 and the reference solution (obtained with

the analytical solution in Eq. 65) in the plate under traction obtained by

means of the Taylor-based extrapolation method with �푛�푚�푎�푥 = 1. Note

that the colormaps refer to different values in the two plots

x

y

p

p

p

Fig. 22 Boundary conditions for the plate under the shear load �푝 =

1MPa

5.2 Plate under shear load

We present another example considering a plate under a

shear load �푝. Figure 22 shows the boundary conditions of

this case. Classical continuum mechanics yield the following

analytical solution:

u(x) =
{
�푢(�푥, �푦)
�푣(�푥, �푦)

}
=




2 (1 + �휈) �푝
�퐸

(
�푦 +

ℓ�푦

2

)

0



. (67)

The differences of the displacement field, computed with-

out corrections at the boundary, with respect to the reference

solution are shown in Fig. 23. We observe that the differ-

ences are lower with respect to the case of the plate under

traction in Sect. 5.1. However, as highlighted in Eq. 67, one

would expect the displacements �푣 in �푦 direction to be 0 in

the whole body. This fact is not verified in the numerical

simulation because of the surface effect (see plot of the com-

ponent �휏22 of the peridynamic stress tensor in Fig. 8). This

problem is completely solved by implementing the proposed

Taylor-based extrapolation method with �푛�푚�푎�푥 = 1, as shown

in Fig. 24. Also, the differences of the displacements �푢 in

�푥 direction decreases with respect to those obtained without

corrections at the boundary. Similar results are obtained by

choosing higher orders for the Taylor-based extrapolation.

As in the case of the plate under traction, we compute the

relative differences �휖�푟�푒�푙�푢 with Eq. 66 for different values of �푚

when implementing the proposed method in the case of the

plate under shear load. For each �푚, the relative differences

of the displacements �푢 are constant in the whole body also

in this case and they are reported in Table 3. The numerical

results show a significant reduction of the differences when

the numerical integration is improved.
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Fig. 23 Displacement field differences between the peridynamic

numerical results for �푚 = 3 and the reference solution (obtained with

the analytical solution in Eq. 67) in the plate under shear load obtained

without corrections at the boundary. Note that the colormaps refer to

different values in the two plots

Table 3 Relative differences

between the peridynamic

numerical results and the

reference solution in the plate

under shear load when

improving the numerical

integration by increasing �푚

�푚 �휖 �푟�푒�푙
�푢

3 0.73 %

4 0.15 %

5 0.06 %

6 0.03 %

5.3 Plate under sinusoidal load

In the previous examples, the linear variation of the dis-

placement field was properly captured by the Taylor-based

extrapolation with the order �푛�푚�푎�푥 = 1 (or higher). We inves-

tigate now an example in which the order of the Taylor-based

extrapolation does not match the order of variation of the

displacement field. The boundary conditions of this example

are shown in Fig. 25. The force density applied thoughout

the plate is given as

�푏(�푥, �푦) = �푏 sin

(
�휋�푥

ℓ�푥
− ℓ�푥

2

)
sin

(
�휋�푦

ℓ�푦
−
ℓ�푦

2

)
, (68)

where �푏 = 106 N/m3.

The reference solution, shown in Fig. 26, is obtained with

the Finite Element Method by means of a uniform grid with

a spacing �훥�푥�퐹�퐸�푀 = �훥�푥/2. The peridynamic nodes share the
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Fig. 24 Displacement field differences between the peridynamic

numerical results for �푚 = 3 and the reference solution (obtained with

the analytical solution in Eq. 67) in the plate under shear load obtained

by means of the Taylor-based extrapolation method with �푛�푚�푎�푥 = 1.

Note that the colormaps refer to different values in the two plots

x

y

b(x, y)

Fig. 25 Boundary conditions for the plate under the sinusoidal load

�푏 (�푥, �푦) , where the origin of the reference system is at the center of the

plate. Given the symmetry of the boundary conditions, the displace-

ments �푣 in �푦 direction on the �푥-axis are fixed to be 0

coordinates with some of the FEM nodes, so that the peridy-

namic results can be compared with the reference solution.

We expect that, by increasing �푛�푚�푎�푥 , the Taylor-based extrap-

olation would approximate better the displacements of the

fictitious layer.

Figures 27 and 28 show the differences between the

numerical results and the reference solution for the numeri-

cal models either without employing any correction for the
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Fig. 26 Displacement fields of the plate under the sinusoidal load

obtained with the finite element method. Note that the colormaps refer

to different values in the two plots

surface effect or by adopting the Taylor-based extrapola-

tion method. The differences are evidently reduced when

the peridynamic model includes the Taylor-based extrapo-

lation method. The aforementioned differences include two

contributions: one due to the different (local and non-local)

formulations of the theories and the other which is the actual

error associated to the approximated numerical solution of

the peridynamic equations. The two components of the dif-

ference cannot be separated since the analytical peridynamic

solution is not available. However, the fluctuations of the

differences near the boundaries due to the surface effect are

evident in Figs. 27a and 28 a, in which no corrections at the

boundary are adopted. On the other hand, by exploiting the

Taylor-based extrapolation method, the magnitude of the dif-

ferences decrease considerably and, also, their distribution

near the boundaries becomes smoother with the increasing

of the truncation order �푛�푚�푎�푥 , as shown in Figs. 27b–d and

28b–d. This is arguably because the numerical results are

getting closer to the analytical peridynamic solution by cor-

recting the surface effect and imposing in a proper way the

boundary conditions.

(a)

(b)

(c)

(d)

Fig. 27 Differences of the displacements in �푥 direction between the

peridynamic numerical results for �푚 = 3 and the reference solution

(obtained with the finite element method results, as shown in Fig. 26)

in the plate under the sinusoidal load obtained either without corrections

at the boundary or by adopting the Taylor-based extrapolation method

with different orders �푛�푚�푎�푥 . Note that the colormaps refer to different

values in the four plots
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(a)

(b)

(c)

(d)

Fig. 28 Differences of the displacements in �푦 direction between the

peridynamic numerical results for �푚 = 3 and the reference solution

(obtained with the finite element method results, as shown in Fig. 26)

in the plate under the sinusoidal load obtained either without corrections

at the boundary or by adopting the Taylor-based extrapolation method

with different orders �푛�푚�푎�푥 . Note that the colormaps refer to different

values in the four plots

6 Crack propagation near the boundaries

A qualitative study is hereinafter conducted to investigate the

behavior of crack growth near the boundariesof the body. We

compare the results provided by the proposed method with

the solution obtained with peridynamicswhen no corrections

for the surface effect are adopted and the boundary conditions

are imposed in a local way, i.e., constraints and load are

applied only at the nodes closest to the boundary.The surface

effect near the new boundaries generated by the crack growth

is not corrected in the present paper, but it will be dealt with

in future works.

In order to model fracture phenomena, we introduce the

scalar �휇 which yields the status of the bond (unbroken or

broken) [41]:

�휇 =

{
1 if �푠 < �푠�푐 ,

0 otherwise,
(69)

where �푠 is the stretch of the bond and �푠�푐 is the critical stretch

for plane stress conditions. These quantities are respectively

computed as [25]

�푠 =
‖/ + (‖ − ‖/ ‖

‖/ ‖ , (70)

�푠�푐 =

√
4�퐺0

9�퐸�훿
, (71)

where �퐺0 is the energy release rate. The scalar �휇 is history-

dependent since a broken bond cannot be restored. The

equilibrium equation is therefore modified as

−
∫

Hx

�휇 f (x, x′) d�푉x′ = bx , (72)

and the damage at each node can be evaluated as [41]

�휑x = 1 −

∫
Hx

�휇 d�푉x′
∫
Hx

d�푉x′
. (73)

For the quasi-static crack propagation, the sequentially

linear analysis used in [24] is employed:

– find the equilibrium with the given loads (if possible);

– if there are bonds with �푠 ≥ �푠�푐, remove the contributions

to the stiffness matrix of the 4 most stretched bonds;

– repeat the first steps until the equilibrium is not possible

or there are no bonds with �푠 ≥ �푠�푐.

Note that, when the Taylor-based extrapolation method is

used, also the fictitious bonds can be broken along with the

other bonds. If one or more fictitious bonds fail near a bound-

ary where a Neumann boundary condition is applied, then
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Fig. 29 Boundary conditions for a plate with a pre-existing crack (red

line) for the case with Dirichlet boundary conditions

not only the stiffness matrix should be modified accordingly

by removing the contributions of the broken bonds, but also

the same external tension should be applied solely through

the residual unbroken fictitious bonds.

6.1 Crack propagation due to Dirichlet boundary

conditions

The geometry and the boundary conditions of a plate with

a pre-existing crack are shown in Fig. 29. The properties

of the plate under plane stress conditions are: thickness ℎ =

0.005�푚, Young’s modulus�퐸 = 1GPa, Poisson’s ratio �휈 = 0.2

and energy release rate �퐺0 = 196J/m2. The constraint is

given as �푢 = 0.001m. A grid spacing �훥�푥 = 0.0025m is used

and �푚 = 3 is chosen.

The results obtained by means of the peridynamic model

with no corrections at the boundary and with the proposed

method are compared in Fig. 30, in which the difference of

the displacements in a node �푖 is computed as

&
�푝�푑

�푖 =

{
�휖
�푝�푑
�푢

�휖
�푝�푑
�푣

}

�푖

=




|�푢�푢�푛�푐�표�푟�푟�푖 − �푢�푐�표�푟�푟�푖 |
max(|u�푐�표�푟�푟 |) · 100

|�푣�푢�푛�푐�표�푟�푟�푖 − �푣�푐�표�푟�푟�푖 |
max(|v�푐�표�푟�푟 |) · 100




, (74)

where u�푐�표�푟�푟 and v�푐�표�푟�푟 are the displacement fields respec-

tively in �푥 and �푦 directions. The superscript�푢�푛�푐�표�푟�푟 stands for

“uncorrected” (peridynamicmodel with no corrections at the

boundaries) and �푐�표�푟�푟 for “corrected” (peridynamic model

with the Taylor-based extrapolation method with �푛�푚�푎�푥 = 1).

It can be noticed that there are non-negligible differences

near the crack tip that may lead to different crack paths.
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Fig. 30 Differences in the displacement fields (for �푚 = 3) of the pre-

cracked plate computed with and without the Taylor-based extrapolation

method for the case with Dirichlet boundary conditions. Note that the

colormaps refer to different values in the two plots

As shown by the damage of the nodes in the final con-

figuration of the model with no corrections (see Fig. 31),

the crack branches and reaches the upper edge of the plate

in two separated paths. On the other hand, when the Taylor-

based extrapolation method is adopted, the crack propagates

to the upper edge in a unique path and there is no branch-

ing phenomenon. Hence, the crack path may change near the

boundaries if the surface effect is mitigated and the boundary

conditions are imposed in a “peridynamic way”.

6.2 Crack propagation due to Neumann boundary

conditions

The geometry and the boundary conditions of a plate with

a pre-existing crack are shown in Fig. 33. The properties

of the plate under plane stress conditions are: thickness ℎ =

0.005m, Young’s modulus�퐸 = 1GPa, Poisson’s ratio �휈 = 0.2

and energy release rate �퐺0 = 196J/m2. The plate is under a

traction of �푝 = 1MPa. A grid spacing �훥�푥 = 0.0025m is used

and �푚 = 3 is chosen.
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Fig. 31 Crack propagation in the pre-cracked plate for the case with

Dirichlet boundary conditions when no correction at the boundaries are

adopted
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Fig. 32 Crack propagation in the pre-cracked plate for the case with

Dirichlet boundary conditions when the Taylor-based extrapolation

method is used
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Fig. 33 Boundary conditions for a plate with a pre-existing crack (red

line) for the case with Neumann boundary conditions
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Fig. 34 Differences in the displacement fields (for �푚 = 3) of the pre-

cracked plate computed with and without the Taylor-based extrapolation

method for the case with Neumann boundary conditions. Note that the

colormaps refer to different values in the two plots
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Fig. 35 Crack propagation in the pre-cracked plate for the case with

Neumann boundary conditions when no correction at the boundaries

are adopted
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Fig. 36 Crack propagation in the pre-cracked plate for the case with

Neumann boundary conditions when the Taylor-based extrapolation

method is used

As in Sect. 6.1, the differences between the displace-

ments obtained with and without the proposed method are

computed as in Eq. 74. The differences near the tip of the pre-

existing crack (see Fig. 34) are non-negligible and they may

lead to different crack behaviors. The crack paths, shown

in Figs. 35 and 36 respectively for the case without and

with boundary corrections, are indeed different between each

other. Therefore, the crack behavior may be modified by the

mitigation of the surface effect and the proper imposition of

the Neumann boundary conditions.

7 Conclusions

Two issues arising near the boundary of a body modelled

with ordinary state-based peridynamics are addressed:

– the surface effect, i.e., the stiffness fluctuation near the

boundary;

– the current lack of standard strategies to impose the

boundary conditions.

The surface effect has been studied numerically by

evaluating the peridynamic stress tensor with a novel dis-

cretization method (see Sect. 4.3) and the characteristic

hardening/softeningbehavior towards the boundaryhas been

highlighted (see Figs. 7 and 8 ). This issue has been addressed

by introducing a fictitious layer that completes the partial

neighborhoods of the nodes near the boundary. We proposed

a new version of the Taylor-based extrapolation method

adopting the nearest-node strategy: the displacements of the

fictitious nodes are expressed as functions of the displace-

ments of the closest real nodes by means of multiple Taylor

series expansions. In this way, the surface effect is mitigated.

The fictitious layer is also exploited to impose the bound-

ary conditions in a peridynamic way. The boundary of the

body is discretized by the so-called “boundarynodes”. As the

fictitious nodes, the boundary nodes do not constitute new

degrees of freedom because their displacements are obtained

with the Taylor-based extrapolation method. On the one hand,

Dirichlet boundary conditions are implemented by constrain-

ing the boundary node and, accordingly, the fictitious layer

mitigates the surface effect. On the other hand, Neumann

boundary conditions are applied, via the numerical compu-

tation of the force flux at the boundary, to the bonds involving

the fictitious nodes. Therefore, the boundary conditions are

imposed in a “peridynamic way”.

Several numerical examples were presented to verify the

accuracy of the proposed method. The numerical results

obtained with the Taylor-based extrapolation method show a

great improvement with respect to the peridynamic models

without corrections at the boundary. Furthermore, the order

of the Taylor-based extrapolation can be increased until the

undesired fluctuations of the numerical results become neg-

ligible for the application of interest. It is also shown that the

numerical integration of the peridynamic equilibrium equa-

tion plays a fundamental role, so that the numerical results

are improved even further by increasing the value of the

�푚-ratio.

Moreover, we carried out a qualitative study on crack

propagation near the boundaries by comparing the results

obtained by means of the proposed method with those of the

peridynamic model without boundary corrections. We pre-

sented two numerical examples in which the crack paths are

different because of the difference in the displacement fields.

This highlights the importance of mitigating the surface

effect and of imposing properly the peridynamic boundary

conditions.
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