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As the preference of design maker (DM) is always ambiguous, we have to face many multiple criteria decision-making (MCDM)
problems with interval numbers in our daily life. �ough there have been some methods applied to solve this sort of problem, it
is always complex to comprehend and sometimes di�cult to implement. �e calculation processes are always ine
ective when a
new alternative is added or removed. In view of the weakness like this, this paper presents a new method based on TOPSIS and
response surface method (RSM) for MCDM problems with interval numbers, RSM-TOPSIS-IN for short. �e key point of this
approach is the application of deviation degree matrix, which ensures that the DM can get a simple response surface (RS) model
to rank the alternatives. In order to demonstrate the feasibility and e
ectiveness of the proposed method, three illustrative MCMD
problems with interval numbers are analysed, including (a) selection of investment program, (b) selection of a right partner, and
(c) assessment of road transport technologies. �e contrast of ranking results shows that the RSM-TOPSIS-IN method is in good
agreement with those derived by earlier researchers, indicating it is suitable to solve MCDM problems with interval numbers.

1. Introduction

MCDM, which is short for multiple criteria decision making,
is a problem about how to 
nd the best option from all of the
feasible alternatives on the basis of two or more attributes.
In order to deal with this sort of problem, many methods
have been developed, for instance, simple additive weighting
(SAW) [1], order preference by similarity to ideal solution
(TOPSIS) method [2], analytic hierarchy process (AHP)
[3], grey relational analysis (GRA) [4], and multiobjective
optimization on the basis of ratio analysis (MOORA)method
[5]. All these approaches have been applied in solving a
variety of MCDM problems, including plant layout design
problem [6], optimization [7], material selection [8], and
forestry [9]. Among all the related methods, TOPSIS has
gained popularity in the 
eld of MCDM because of its
simplicity and practicality [10–13].

However, since human judgments including preferences
are o�en vague and cannot be estimated with an exact
numerical value, therefor these data may be expressed by a

number of ways, such as bounded data, ordinal data, interval
data, and fuzzy data [14]. Sincemost criteria of these problems
have interdependent and interactive features, they cannot
be evaluated by conventional measures method. Bellman &
Zadeh [15] are the 
rst to study on the decision-making prob-
lemunder a fuzzy environment-watershed.�ey heralded the
initiation of fuzzy MCDM and this analysis method is then
widely used to deal with decision-making problems involving
multiple criteria evaluation/selection of alternatives. In many
practical MCDM, fuzzy MCDM approaches using interval
numbers instead of exact values now have been introduced
and illustrated in many literatures. For example, a multicri-
teria group decision making for evaluation of supplier using
intuitionistic fuzzy TOPSIS is presented by Boran et al. [16].
Lee et al. [17] constructed an approach based on the fuzzy
analytic hierarchy process (FAHP) and balanced scorecard
(BSC) to evaluate an IT department. An example whose
attributes weights and ratings are expressed by interval num-
bers is successfully solved through the GRA-based TOPSIS
decision-making approach proposed by Peng andWang [18],
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and also there is a good survey done by Chen et al. [19] who
make distinctions between fuzzy ranking methods and fuzzy
multiple attribute decision-making methods.

Compared with the traditional MCDM models, the
fuzzy versions of MCDM applications are very complex to
comprehend and sometimes di�cult to implement [20]. On
one hand, while the MCDM model consisted of interval
numbers, too much mathematical calculation leads to more
computation time, making it impracticable and ine
ective
to the decision makers (DMs) without a strong capability in
mathematics. At the same time, the range of intervals may
become more and more wide along with the calculation,
which will be more di�cult for the DMs to make the 
nal
choice. On the other hand, if the decision alternatives are
changed, or an alternative is added or removed, the DMs
have to analyse the problem from the beginning again. It
is really a waste of time. So, how to 
nd some simple ways
to deal with the MCDM problems with interval numbers
becomes an important study topic for the researchers. �e
onewhich involves a unique expression to ful
ll di
ering task
requirements may be an ideal choice.

In this paper, we present a newmethod based on TOPSIS
and response surface method (RSM) for MCDM problems
with interval numbers (RSM-TOPSIS-IN). In experimental
design, the best and worst intervals of each attribute are
combined to represent all the possibilities of alternatives
approximately. With the application of deviation degree
matrix, the experimental data can be used to get a response
surface (RS) model, helping the DMs to acquire the ranking
results through the established equation simply. What is
more, if some new alternatives are considered later, we can
only use the established RS model to get the ranking results
easily, reducing both time and e
ort a lot. �ree practical
MCDM problems that consisted of interval numbers will be
solved by the RSM-TOPSIS-IN method we proposed. �e
compared results will show that it can help the DMs to get the
most appropriate alternative in complex MCDM problems,
using both less time and less calculation.

�e reminder of this paper is organized as follows.
Section 2 focuses onpresenting a brief reviewof relatedmeth-
ods, involving interval numbers, TOPSIS method, exper-
imental design, and response surface method. �en, the
detailed processes of the RSM-TOPSIS-IN method are stated
in Section 3. In Section 4, two more illustrative examples are
described to demonstrate the capabilities of the proposed
method. Finally, conclusions and future research areas are
discussed in Section 5.

2. Backgrounds

2.1. Interval Numbers. In the real world, the decision-making
problems are always very vague and uncertain, which may
be expressed by a variety of ways, such as bounded num-
ber, ordinal number, interval number, and fuzzy number.
Considering these problems are not like the conventional
issueswith exact values, they cannot be evaluated by common
methods. Bellman&Zadeh [15] are the 
rst ones who studied
the decision-making problem under a fuzzy environment-
watershed and they heralded the initiation of fuzzy MCDM.

Wherea�er, this analysis method is widely used to deal
with decision-making problems involving multiple criteria
evaluation of alternatives.

Among all the fuzzy MCDM problems, interval numbers
and fuzzy numbers are used the most to construct the
decision matrix. Interval numbers are a set of real numbers
with the property that any number that lies between two
numbers is also included in the set [21]. Fuzzy numbers are
expressed by a fuzzy subset of real numbers, representing
the expansion of the idea of the con
dence interval [22],
for the fuzzy numbers are developed based on the interval
numbers. In this paper, we only talk about the special part
of fuzzy MCDM problems, which are the problems with
interval numbers actually. �ough there have been some
articles aiming at the study on interval numbers in recent
years, 
nding a more complete and robust methodology is
still needed. It is worth mentioning that transforming the
uncertain problem to a deterministic problem seems a good
way for this sort of problems [23].

In this section, some basic de
nitions [24] used to solve
the interval numbers will be introduced brie�y, helping us
to know more about the interval numbers. Suppose � =[�−, �+] = {� | 0 ≤ �− ≤ � ≤ �+}, � = [�−, �+] = {� |0 ≤ �− ≤ � ≤ �+} are two positive interval numbers, and then
one can 
nd the following.

De	nition 1. Consider

� + � = [�− + �−, �+ + �+] . (1)

De	nition 2. Consider

� − � = [�− − �+, �+ − �−] . (2)

De	nition 3. Consider

� × � = [min (�−�−, �−�+, �+�−, �+�+) ,
max (�−�−, �−�+, �+�−, �+�+)] . (3)

De	nition 4. Consider

�� = [�−, �+] ⋅ [ 1�+ , 1�− ] . (4)

De	nition 5. Consider


 (�, �) = √22 √(�− − �−)2 + (�+ − �+)2. (5)

It is worth mentioning that the application of distance
de
nition is the key point of the proposed method in this
paper. Actually, the distance de
nition is the 
�h de
nition
given above. In di
erent articles, the main idea of distance
de
nition is the same, but the expressions are always not like
each other. Particularly, separations measured by Hamming
distance and Euclidean distance are discussed in paper [25].

In order to get the deviation degree matrix, we must
make some change to the decision plan. Suppose � is the
decision matrix of a MCDM problem with interval numbers,�1, �2, . . . , ��, included, representing � alternatives that
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need to be evaluated or � decision plans to be studied.� � = ([��1−, ��1+], [��2−, ��2+], . . . , [���−, ���+]) is the �th
alternative and ��� = [��1−, ��1+] is the �th attribute of
alternative � �. According to all alternatives in �, an ideal
alternative � = ([�1, �1], [�2, �2], . . . , [��, ��]) will be
decided. [��, ��] has the same lower and upper values, which
is the best value that the �th attribute can reach. �en,
by calculating the distance between each attribute and its
ideal interval that can be reached, the decision matrix that
consisted of interval attributes will be transformed to a
normal matrix with true values, just as shown below, where��� = (√2/2)√(���− − �−� )2 + (���+ − �+� )2 based on (5)

� =
[[[[[[[[

[�−11, �+11] [�−12, �+12] ⋅ ⋅ ⋅ [�+1�, �−1�][�−21, �+21] [�−22, �+22] ⋅ ⋅ ⋅ [�−2�, �+2�]... ... ...[�−�1, �+�1] [�−�2, �+�2] ⋅ ⋅ ⋅ [�−��, �+��]

]]]]]]]]
�→ 


= [[[[[[[

�11 �12 ⋅ ⋅ ⋅ �1��21 �22 ⋅ ⋅ ⋅ �2�... ... ...��1 ��2 ⋅ ⋅ ⋅ ���

]]]]]]]
.

(6)

2.2. TOPSIS Method. TOPSIS method, a widely used
approach for MCDM problems, is developed by Hwang
and Yoon in 1981 [26] and further developed by Yoon [27]
and Hwang et al. [28]. �e basic principle of this method
is that the best decision should be the closest to the ideal
solution and farthest from the nonideal solution [29]. It
assumes that each attribute is monotonically increasing
or decreasing, making it easy to locate the best and worst
selection visually. Normalization is usually required as the
parameters or criteria are o�en of incongruous dimensions
in multicriteria problems [30]. Euclidean distance, which is
given by the Pythagorean formula [31], is applied to measure
the alternatives. Considering the Euclidian Distance Metric
may produce many symmetric solutions, the weights, which
represent the importance of each criterion, are added to
its criterion a�er the process of normalization. �e 
nal
rank is reached by comparing the Euclidean distances of all
alternatives.

�ere exist some disadvantages in the traditional TOPSIS
method, such that (1) the Euclidean distance algorithm it uses
in principle does not consider the correlation of attributes
and (2) generally the weight coe�cients acquired by expert
investigation method or AHPmethod both have subjectivity.
It is also considered as a good choice for MCDM problems
because of the following reasons. (1) It is relatively easy
and fast. (2) It is useful for qualitative and quantitative
data. (3) �e output can be a preferential ranking using
both negative and positive criteria [32]. Because of these
advantages, TOPSIS has been widely used and developed to
deal with MCDM problems in fuzzy environment [14, 33].
In view of its simpleness and wide application, we choose

TOPSIS to solve theMCDMproblems with interval numbers
also.

Suppose that MCDM problem is composed of alterna-
tives (�1, �2, . . . , ��) and � criteria (!1, !2, . . . , !�). Matrix� = [���]�×� shows all values assigned to the alternatives con-
cerning each criterion. �e related weight of each criterion
has been denoted by" = [#1, #2, . . . , #�]with the condition∑��=1 #� = 1.

�e detailed steps of TOPSIS [34] are carried out as
follows.

Step 1. Normalize the decision matrix:

%�� = ���√∑��=1 �2�� , � = 1, . . . ,  ; � = 1, . . . , �, (7)

where %�� denotes the normalized value of �th criteria for the�th alternative � �.
Step 2. Calculate the weighted normalized decision matrix,

V�� = #�%��, � = 1, . . . ,  ; � = 1, . . . , �, (8)

where #� is the weight of the �th criteria or attribute.

Step 3. Determine the positive ideal and negative ideal
solutions:

�+ = {V+1 , . . . , V+� } ,
�− = {V−1 , . . . , V−� } , (9)

where �+ denotes the positive ideal solution and �− denotes
the negative ideal solution. If the �th criterion is a bene
cial
criterion, V�

+ = max{V��, � = 1, . . . ,  } and V�
− = min{V��, � =1, . . . ,  }. On the contrary, if the �th criterion is cost criterion,

V�
+ = min{V��, � = 1, . . . ,  } and V�

− = max{V��, � = 1, . . . ,  }.
Step 4. Calculate the distances of each alternative from the
positive ideal solution and the negative ideal solution:

*+� = √ �∑
�=1
(V�� − V+� )2, � = 1, . . . ,  ,

*−� = √ �∑
�=1
(V�� − V−� )2, � = 1, . . . ,  ,

(10)

where *+� denotes the distance between the �th alternative
and the positive ideal solution and *−� denotes the distance
between the �th alternative and the negative ideal solution.

Step 5. Calculate the relative closeness to the ideal solution:

6� = *−�*+� + *−� . (11)

2.3. Experimental Design and Response Surface Method.
Experimental design (also called design of experiment, DoE
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for short) is a statistical method used to determine the indi-
vidual and interactive e
ects of many factors simultaneously
on the system response [35]. It not only provides a full insight
of the interaction between design elements, but also helps
turning any standard design into a robust one.�ere are some
key terms in DoE. Experimental domain is the experimental

eld de
ned by the minimum and maximum limits of the
experimental variables. Factors are experimental variables
that need to be studied and changed independently with each
other. Levels are di
erent values of each factor at which the
experiments must be carried out. Response is the value of
results measured from experiments [36].

It is important to choose an appropriate DoE method
in the experimental design application. �ough full factorial
design, orthogonal array technique, Latin hypercube design,
and optimal Latin hypercube design are the four active ones,
the simplest and most common one is the factorial design
that uses two levels, � factors, that is, 2� factorial design.
It can reduce the number of experimental conditions. But
due to its inability to distinguish between linear and higher
order e
ects, the disadvantages exist at the same time. So, it is
judicious to decide the number of levels in a factorial design
experiment.

A�er the indispensable procedure mentioned above, the
RSM can be applied to solve the problem further. In addition
to analyzing the e
ects of each factor, RSM can also generate
a mathematical model. �e model collecting mathematical
and statistical techniques is based on the 
t of a polynomial
equation to the experimental data. �e concept of a response
surface involves a dependent variable 7 called the response
variable and several independent variables �1, �2, . . . , �� [37].

�e relationship between the response surface and the
experimental variables is given in the following equation:

7 = 80 + �∑
�=1
8��� + �∑

�=1

�∑
�=1
8������ + ⋅ ⋅ ⋅ + 9 � < �, (12)

where � is the number of experimental variables, 8 are the
regression coe�cients, and 9 is the statistical error, which
represents other sources of variability [38].

In this paper, we pick out the best and worst interval of
each attribute to do the 2� factorial design. A�er transform-
ing all interval numbers to real values, the data of DoE will be
combinedwith TOPSISmethod. Later, we can use the data set
they created to generate a RS model. It will help the DMs to
evaluate all the alternatives simply and quickly.

3. Illustration of the Proposed Method

3.1. Framework of the RSM-TOPSIS-IN Method. �ere are
four basic stages in the RSM-TOPSIS-IN method. In the 
rst
stage, the DMs get the decision matrix of MCDM problem.
In stage 2, the DMs have to acquire the deviation degree
matrix of experimental design. First, input attributes and
their levels are determined according to the decision matrix.
�en, the experimental design of intervals is carried out.
With the aforementioned concept presented in Section 2.1,
the deviation degreematrix of experimental design is realized

nally. �e third stage of the proposed methodology is

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Getting the decision matrix

Experimental design

Transforming the interval matrix into

a deviation degree matrix

Calculating TOPSIS scores

Constructing the RS model

Ranking the alternatives

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1: Steps of the RSM-TOPSIS-IN method.

constructing the RS model based on the TOPSIS scores,
which are calculated by the TOPSIS method introduced in
Section 2.2. In the last stage, the DMs are able to evaluate
alternatives and determine the 
nal ranking results, using the
established RS model simply. Flow diagram of the proposed
approach is illustrated in Figure 1.

In order to introduce the detailed processes of the RSM-
TOPSIS-IN method, a simple but persuasive problem about
what investment to choose is demonstrated in the following
section. Design Expert and MATLAB, two essential so�ware
programs we use, make the proposed method feasible. �e
design of experiment and the establishment of RS model
are realized under the help of Design Expert. MATLAB
undertakes all the calculations during the application.

3.2. Detailed Steps of the RSM-TOPSIS-IN Method. In this
section, we present a practical example to illustrate the
detailed processes of the RSM-TOPSIS-INmethod. It is about
how to select a proper investment program [39]. A company
is going to develop a new product and it has formulated 
ve
investment alternatives to choose. Each alternative consists of
investment (IN), pro
t of expectation (EP), pro
t of risk (RP),
and the cost of risk (RC), whose attributes are all expressed
by interval numbers instead of real values. Among the four
attributes, EP and RP are two bene
cial attributes while IN
and RC are nonbene
cial ones. Bene
cial attribute means
higher value is desirable, whereas nonbene
cial attribute
prefers lower value. Next, various steps will be carried out to
show the details of the RSM-TOPSIS-IN application.

Step 1 (get the decision matrix). According to the speci
c
decision matrix shown in Table 1, IN with minimum interval[5, 6] and maximum interval [10, 11], EP with minimum
interval [3, 5] and maximum interval [6, 7], RP with min-
imum interval [3, 4] and maximum interval [5, 7], and RC
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Table 1: Decision matrix for investment program.

Alternatives IN EP RP RC�1 [5, 7] [4, 5] [4, 6] [0.4, 0.6]�2 [10, 11] [6, 7] [5, 6] [1.5, 2.0]�3 [5, 6] [4, 5] [3, 4] [0.4, 0.7]�4 [9, 11] [5, 6] [5, 7] [1.3, 1.5]�5 [6, 8] [3, 5] [3, 4] [0.8, 1.0]
Min/max Min Max Max Min

Best [5, 6] [6, 7] [5, 7] [0.4, 0.6]
Worst [10, 11] [3, 5] [3, 4] [1.5, 2.0]
with minimum interval [0.4, 0.6] and maximum interval[1.5, 2.0] are determined as factor levels a
ecting the invest-
ment program selection. “Max” means the attribute is bene-

cial and “Min” represents that the attribute is nonbene
cial.
For 
ve di
erent alternatives, �1 has the lowest cost of risk,
the advantage of �2 is the high pro
t of expectation, the
investment of �3 is in a relatively higher interval, pro
t of
risk provided by �4 is the most attractive one, and though�5 does not have a best attribution, some of them are better
than others. So, it is really a hard work to make a decision.

Step 2 (experimental design). As shown in Table 1, it is easy
to pick out the best interval and the worst interval of each
attribute. Because the impacts of each factor are di
erent on
ranking results, we utilize the experimental design to assess
their in�uence. In this example, a two-level factorial design
was used to create a data set with all combination of the best
interval and the worst interval of each attribute. Generally,
the orthogonal arrays with two-level factors are expressed byB�(2�), where � = 2	 is the number of experiments, C is a
positive integer which is more than 1, � denotes the number
of dependent factors, and 2 means the experiment is taken as
a two-level factorial design. �e letter “B” comes from Latin,
which has been associated with Latin square designs from the
outset using orthogonal arrays for experimental design. In the
orthogonal table based on two levels, four factors are given in
Table 2.

Step 3 (transform the orthogonal table to a deviation degree
matrix). For it is not easy to handle a fuzzy MCDM problem
with interval numbers, a creative method which turns the
interval number to a real value is developed. It calculates the
distance between two intervals of the same attribute so the
orthogonal table can be transformed to a deviation degree
matrix.

First, determine an ideal alternative that consists of the
intervals with the same upper and lower bounds based on the
decisionmatrix. Because 5, 7, 7, 0.4 are the best limits that can
be reached to 
ve alternatives, ([5, 5], [7, 7], [7, 7], [0.4, 0.4])
is chosen as the ideal alternative in this issue. �en, calculate
the distance between each attribute shown in Table 2 and the
ideal alternative according to (5).�e deviation degreematrix
of experimental design is shown in Table 3.

Step 4 (calculate the TOPSIS scores). In this procedure,
the TOPSIS scores of all the alternatives in DoE should be

Table 2: Experimental design results of attribute factors.

Exp. number
Factor levels

IN EP RP RC

1 [5, 6] [6, 7] [5, 7] [0.4, 0.6]
2 [5, 6] [6, 7] [5, 7] [1.5, 2.0]
3 [5, 6] [6, 7] [3, 4] [0.4, 0.6]
4 [5, 6] [6, 7] [3, 4] [1.5, 2.0]
5 [5, 6] [3, 5] [5, 7] [0.4, 0.6]
6 [5, 6] [3, 5] [5, 7] [1.5, 2.0]
7 [5, 6] [3, 5] [3, 4] [0.4, 0.6]
8 [5, 6] [3, 5] [3, 4] [1.5, 2.0]
9 [10, 11] [6, 7] [5, 7] [0.4, 0.6]
10 [10, 11] [6, 7] [5, 7] [1.5, 2.0]
11 [10, 11] [6, 7] [3, 4] [0.4, 0.6]
12 [10, 11] [6, 7] [3, 4] [1.5, 2.0]
13 [10, 11] [3, 5] [5, 7] [0.4, 0.6]
14 [10, 11] [3, 5] [5, 7] [1.5, 2.0]
15 [10, 11] [3, 5] [3, 4] [0.4, 0.6]
16 [10, 11] [3, 5] [3, 4] [1.5, 2.0]
calculated. As introduced in Section 2.2, the TOPSIS method
is applied to get the experimental results with twoweight sets.D1 = (0.28, 0.17, 0.23, 0.32) is de
ned by article [39] and D2 =(0.15, 0.20, 0.20, 0.45) comes from article [40]. �e TOPSIS
scores of experimental design are presented in Table 3 also.

Step 5 (construct the RS model). In addition to the main
e
ects of four factors, interactions between two factors are
also included in the RS model, as shown in the following
equation:

6 = 80 + 4∑
�=1
8��� + 4∑

�=1

4∑
�=1
8������ + 9, (13)

where 6 is the relevant 6� of sixteen alternatives. 80 is the
intercept coe�cient, 8� means the 
rst-order e
ect of factor�, and 8�� shows the two-factor interaction between factors �
and � when � ̸= �, just as introduced before.

In order to check out whether the established RS model
can describe the real relationship or not, it must be analyzed
by the analysis of variance (ANOVA) procedure.�eANOVA
results can be achieved with the help of the so�ware called
Design Expert. It gives a summary of the main e
ects and
interaction e
ects of factors, which helps us to get the 
nal RS
model 
tting to the experimental data. In the ANOVA table,
values of “G value” less than 0.0500 indicate model terms are
signi
cant. If the value of “Pred 6-Squared” is in reasonable
agreement with the value of “Adj6-Squared,” it will prove that
this model can be used to navigate the design space.

As shown inTable 4, for the RSmodel withD1, IN, EP, and
RC are three signi
cant model terms. �e value of “Pred 6-
Squared” is 0.7988 and the value of “Adj6-Squared” is 0.8825,
indicating an adequate signal that this model can be used to
get the 
nal ranking results. �e same analysis is also done
for the RS model with D2. In this model, four factors are
all available and the value of “Pred 6-Squared” is in good
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Table 3: �e deviation degree matrix and TOPSIS scores of experimental design.

Exp. number
Factor levels TOPSIS scores

IN EP RP RC D1 D2
1 0.7071 0.7071 1.4142 0.1414 0 0

2 0.7071 0.7071 1.4142 1.3730 0.4912 0.6446

3 0.7071 0.7071 3.5355 0.1414 0.2445 0.2003

4 0.7071 0.7071 3.5355 1.3730 0.5401 0.6854

5 0.7071 3.1623 1.4142 0.1414 0.2166 0.2287

6 0.7071 3.1623 1.4142 1.3730 0.5277 0.7204

7 0.7071 3.1623 3.5355 0.1414 0.3083 0.2874

8 0.7071 3.1623 3.5355 1.3730 0.5781 0.7572

9 0.7071 0.7071 1.4142 0.1414 0.4170 0.2291

10 5.5227 0.7071 1.4142 1.3730 0.6881 0.7107

11 5.5227 0.7071 3.5355 0.1414 0.4665 0.2883

12 5.5227 0.7071 3.5355 1.3730 0.7808 0.7695

13 5.5227 3.1623 1.4142 0.1414 0.4543 0.3062

14 5.5227 3.1623 1.4142 1.3730 0.7525 0.7979

15 5.5227 3.1623 3.5355 0.1414 0.5021 0.3487

16 5.5227 3.1623 3.5355 1.3730 0.9818 0.9781

Table 4: �e ANOVA for two RS models.

RS model with D1 RS model with D2
Source Coe�cient G value Source Coe�cient G value
Intercept −0.10875 0.0000 Intercept −0.12387 0.0000

IN +3.22986 0.0013 IN +2.62822 0.0175

EP +2.45232 0.0886 EP +2.66299 0.0209

RP +2.54492 0.0482 RP +2.50448 0.0466

RC +3.45764 0.0004 RC +3.74815 <0.0001
IN ∗ EP −1.22932 0.9619 IN ∗ EP −1.42959 0.9653

IN ∗ RC −0.13025 0.9896 IN ∗ RC +0.41041 0.9693

EP ∗ RP −2.29479 0.9624 EP ∗ RP −3.15194 0.9344

EP ∗ RC −0.84065 0.9693 EP ∗ RC −1.06550 0.9201

RP ∗ RC −0.67275 0.9716 RP ∗ RC −1.16626 0.9252

Adj 6-Squared 0.8825 Adj 6-Squared 0.9823

Pred 6-Squared 0.7988 Pred 6-Squared 0.9469

agreement with the value of “Adj 6-Squared.” Based on the
ANOVA results, 61 and 62 are established according to D1
and D2, respectively:

61 = −0.10875 + 3.22986 ∗ IN + 2.54492 ∗ RP+ 3.45764 ∗ RC, (14)

62 = −0.12387 + 2.62822 ∗ IN + 2.66299 ∗ EP+ 2.50448 ∗ RP + 3.74815 ∗ RC. (15)

Step 6 (rank the alternatives). A�er two RSmodels have been
established, we can simply use (14) and (15) to get the ranking
scores of each alternative. �e deviation degree matrix of

decision matrix is realized by repeating the steps of 1, 3, 4,
and 5 introduced above.

�e ranking results of the RSM-TOPSIS-IN method are
then compared with the ones obtained from two methods
brought up by the same author but in di
erent articles [39,
40], respectively. �e results shown in Table 5 provide the
information that the ranking results are exactly the same as
the two other existing methods, which lead to the conclusion
that the RSM-TOPSIS-INmethod could be used to determine
the 
nal choice of investment program.

When applying the proposed method, the DMs make the
problem a common case and easy to solve, by turning the
decision matrix with interval numbers to a deviation degree
matrix with exact values. For the calculation between two
intervals costs is twice the time of the calculation between
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Table 5: �e ranking results with two weight sets.

Alternatives
Ranking results with D1 Ranking results with D2

Scores RSM-TOPSIS-IN Zhu and Chen [39] Scores RSM-TOPSIS-IN Zhu [40]�1 0.1262 1 1 0.2059 1 1�2 0.7055 5 5 0.7618 5 5�3 0.1728 2 2 0.2772 2 2�4 0.5598 4 4 0.6170 4 4�5 0.3510 3 3 0.4868 3 3

Table 6: �e performance characteristics of suppliers.

Suppliers Delivery lead time (A) Product price (B) Product quality (C) Assortment �exibility (D)*1 [0.89, 0.93] [233, 239] [16, 20] [0.94, 0.98]*2 [0.96, 1.00] [240, 246] [23, 27] [0.89, 0.93]*3 [0.90, 0.94] [197, 203] [19, 23] [0.90, 0.94]*4 [0.95, 0.99] [225, 231] [21, 25] [0.92, 0.96]*5 [0.93, 0.97] [212, 218] [18, 22] [0.95, 0.99]
Min/max Max Min Min Max

Best [0.96, 1.00] [197, 203] [16, 20] [0.95, 0.99]
Worst [0.89, 0.93] [240, 246] [23, 27] [0.89, 0.93]

Table 7: �e ANOVA for RS model.

Source Coe�cient G value Source Coe�cient G value
Intercept −0.16128 0.0000 AC 8.36J − 16 1.0000

A 3.37115 0.0011 AD 1.72J − 14 1.0000

B 3.52842 0.0005 BC 8.82J − 15 1.0000

C 2.71392 0.0259 BD 5.06J − 15 1.0000

D 2.18969 0.2018 CD 7.89J − 14 1.0000

AB 0.00000 1.0000

Adj 6-Squared 0.8795 Pred 6-Squared 0.8723

two numbers, the translation will save half of the time. When
a new alternative is added or removed, the DMs have no need
to deal with it step by step again, but they only need to get the
ranking scores by the RSmodel established before, saving half
an hour that the whole procedures usually costs. As a result,
the more alternatives are added, the more time will be saved.

4. Application and Discussion

It is not easy to make sure that a new proposed method
is more reasonable and reliable than the other existing
methods in solving di
erent MCDM problems. In order to
demonstrate the applicability and potentiality of the method
explained in our paper, it is appropriate to make the 
nal
decision by applying several MCDM approaches to compare
their ranking results for the same problem.�e following two
illustrative examples are taken to ful
ll the task.

4.1. Selection of a Right Partner. As a manufacturer, selecting
a right partner is as important as making a high quality
product. In this case study, a practical problem with four

Table 8: �e ranking results.

Alternatives
Ranking results

Scores RSM-TOPSIS-IN Zhou [41]*1 0.5826 5 5*2 0.4932 4 4*3 0.3310 2 3*4 0.3745 3 1*5 0.2962 1 2

performance attributes and 
ve alternative partners is pre-
sented [41].�emanufacturer has to choose themost suitable
supplier to assure the performance of product. Delivery
lead time, product price, product quality, and assortment
�exibility are the four factors concerned. We would like to
minimize both the delivery lead time and product price
while maximizing product quality and assortment �exibility.
�e author obtained the normalized weight of these criteria
as D = (0.36, 0.30, 0.21, 0.13) [41] and the performance
characteristics of suppliers are stated in Table 6.
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Table 9: Decision matrix for road transport technologies.

Technologies GHG (A) PM10 (B) NO
 (C) CO (D) HCs (E) Cost (F)

HEV [100, 400] [0.001, 0.035] [0.10, 0.30] [0.10, 0.5] [0.30, 1.10] [17.55, 18.75]
Av BEV [125, 300] [0.035, 0.135] [0.18, 0.70] [0.10, 0.4] [0.18, 0.60] [18.0, 19.05]
Re BEV [25, 80] [0.005, 0.018] [0.05, 0.15] [0.05, 0.1] [0.05, 0.15] [18.8, 19.4]
LPG [125, 450] [0.007, 0.035] [0.17, 0.37] [0.50, 1.2] [0.18, 0.65] [19.2, 22.2]
CNG [120, 420] [0.010, 0.025] [0.05, 0.20] [0.49, 1.0] [0.50, 1.50] [14.8, 16.6]
Petrol [125, 500] [0.010, 0.035] [0.10, 0.40] [0.49, 1.0] [0.40, 1.42] [16.8, 19.2]
Diesel [115, 430] [0.010, 0.060] [0.25, 0.62] [0.20, 0.5] [0.15, 0.62] [12.5, 13.9]
Bioethanol [80, 350] [0.023, 0.120] [0.38, 1.20] [1.00, 3.5] [0.19, 0.48] [14.3, 17.0]
Biodiesel [70, 300] [0.005, 0.070] [0.44, 1.10] [0.2, 0.75] [0.38, 1.20] [12.5, 13.8]
Min/max Min Min Min Min Min Min

Best [25, 80] [0.001, 0.035] [0.05, 0.15] [0.05, 0.1] [0.05, 0.15] [12.5, 13.8]
Worst [125, 500] [0.035, 0.135] [0.38, 1.20] [1.00, 3.5] [0.50, 1.50] [19.2, 22.2]
Table 10: Twoweight sets for assessment of road transport technolo-
gies.

Weight
Emission criteria

GHG PM10 NO
 CO HCs CostD1 0.16 0.16 0.16 0.16 0.16 0.2D2 0.04 0.04 0.04 0.04 0.04 0.8

In order to deal with this case, ([1.00, 1.00], [197, 197],[16, 16], [0.99, 0.99]) is considered as the ideal alternative.
With the proposed method, we are able to generate a RS
model expressed in the following equation to evaluate the
alternatives:

6 = −0.16128 + 3.37115 ∗ � + 3.52842 ∗ �
+ 2.71392 ∗ ! + 2.18969 ∗ 
. (16)

�e ANOVA results are shown in Table 7 speci
cally,
assuring the RS model is available. We obtain the ranking of
the alternatives as 5-4-2-3-1, which are almost the same as the
results obtained from [41]. �e detailed results are tabulated
in Table 8.

4.2. Assessment of Road Transport Technologies. It is men-
tioned that around a quarter of the European Union green-
house gas emissions are caused by transport, so the paper
aims at assessing energy technologies in road transport sector
in terms of atmospheric emissions and cost [42]. A TOPSIS
method for interval data is proposed and applied to indicate
what the most competitive and environmentally friendly
transport technology is.

�ere are nine alternative transports and six performance
attributes, including 
ve regulated pollutants and the cost.
For the problem, we would like to minimize both regulated
pollutants and the cost. �e parameters of di
erent modes of
cars are given in Table 9.

Using the proposed methodology in our paper, a six-
factor mathematical model is developed. �e detailed cal-
culation processes are omitted here. As shown in Table 10,

the road transport technologies were assessed in terms of
two weight sets. D1 is the preference under environmental
concern and D2 represents the opinions of consumers, which
are all chosen from paper [42]. According to the ANOVA
results shown in Table 11, we can get the following two RS
models, respectively,

61 = −0.060525 + 1.86822� + 1.85112� + 1.91909!+ 2.03517
 + 1.94725J + 2.21114K, (17)

62 = −0.016954 + 1.46548� + 1.44383� + 1.50011!+ 1.59839
 + 1.52191J + 3.48365K. (18)

�e comparative results presented in Table 12 show that
the ranks are almost the same, which prove the acceptability
of the RSM-TOPSIS-IN method in getting the rank of road
transport technologies.

5. Conclusion

In this paper, a hybrid method called RSM-TOPSIS-IN is
proposed to solve MCDM problems with interval data. Both
TOPSIS and RSM are applied within the framework. Its
main thought distinguished from other methods is that it
transforms the interval matrix into a deviation degreematrix,
making thematter easy to solve, almost like a normal problem
with the exact values. �ere are two main advantages of the
RSM-TOPSIS-IN compared with the other existing methods:

(1) For RSM greatly reduces the cost, time, and amount
of calculation steps, when applying the proposed
method, DMs can use the obtained RS model to
choose and analyse factors and attributes easily, no
matter whether they have good numerical capabilities
or not. So, simplicity is treated as its 
rst superiority.

(2) If a new alternative is added to or removed from the
MCDM problem, the DMs have no need to take the
procedures step by step from the beginning, but they
can only use the RS model established to get the 
nal
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Table 11: �e ANOVA results for two RS models.

RS model with D1 RS model with D2
Source Coe�cient G value Source Coe�cient G value
Intercept −0.060525 0.0000 Intercept −0.016954 0.0000

A +1.86822 <0.0001 A +1.46548 <0.0001
B +1.85112 <0.0001 B +1.44383 <0.0001
C +1.91909 <0.0001 C +1.50011 <0.0001
D +2.03517 <0.0001 D +1.59839 <0.0001
E +1.94725 <0.0001 E +1.52191 <0.0001
F +2.21114 <0.0001 F +3.48365 <0.0001
AB +1.25J − 14 1.0000 AB +1.67J − 13 1.0000

AC −1.07J − 13 1.0000 AC +2.90J − 13 1.0000

AD −1.65J − 14 1.0000 AD −1.21J − 13 1.0000

AE −8.76J − 14 1.0000 AE −1.22J − 13 1.0000

BC +2.19J − 14 1.0000 BC +1.41J − 13 1.0000

BD −8.85J − 15 1.0000 BD +5.99J − 14 1.0000

BE +6.97J − 14 1.0000 BE +1.31J − 13 1.0000

BF +6.44J − 14 1.0000 BF +5.29J − 14 1.0000

CD +4.82J − 15 1.0000 CD +2.34J − 13 1.0000

CE +3.07J − 14 1.0000 CE +5.26J − 14 1.0000

CF −6.03J − 14 1.0000 CF −5.51J − 15 1.0000

DE −2.60J − 14 1.0000 DE +6.04J − 15 1.0000

DF −1.20J − 14 1.0000 DF −5.07J − 14 1.0000

EF +1.27J − 14 1.0000 EF −2.60J − 14 1.0000

Adj 6-Squared 0.8965 Adj 6-Squared 0.9909

Pred 6-Squared 0.8398 Pred 6-Squared 0.9860

Table 12: �e ranking results with two weight sets.

Technologies
Ranking results with D1 Ranking results with D2

Scores RSM-TOPSIS-IN Streimikiene et al. [42] Scores RSM-TOPSIS-IN Streimikiene et al. [42]

HEV 0.5678 3 2 0.6270 6 5

Av BEV 0.6970 8 8 0.6352 7 8

Re BEV 0.3193 1 1 0.6473 8 7

LPG 0.6830 6 4 0.6862 9 9

CNG 0.5730 4 5 0.5745 3 3

Petrol 0.6945 7 6 0.6259 5 6

Diesel 0.4793 2 3 0.5210 1 1

Bioethanol 0.9303 9 9 0.5772 4 4

Biodiesel 0.6202 5 7 0.5225 2 2

results, reducing both time and e
ort. �is makes
e�ciency the other advantage.

�ree examples illustrated later verify the capability of
this method, indicating it is simple to comprehend and
easy to implement. Due to its convenient and practicability,
it is easy to draw a conclusion that the RSM-TOPSIS-IN
method is suitable for solvingMCDMproblems with interval
numbers. �e same hybrid idea can also be applied to other
methodologies, which may become a new direction of our
future research.
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