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Summary. Regular censusing of wild animal populations produces data for estimating their
annual survival. However, there can be missing covariate data; for instance time varying co-
variates that are measured on individual animals often contain missing values. By considering
the transitions that occur from each occasion to the next, we derive a novel expression for the
likelihood for mark–recapture–recovery data, which is equivalent to the traditional likelihood in
the case where no covariate data are missing, and which provides a natural way of dealing
with covariate data that are missing, for whatever reason. Unlike complete-case analysis, this
approach does not exclude incompletely observed life histories, uses all available data and
produces consistent estimators. In a simulation study it performs better overall than alternative
methods when there are missing covariate data.
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1. Introduction

In this paper we provide a new way to deal with missing covariate data when modelling the
survival of wild animals. The assessment of how covariates that are measured on individuals
may affect survival is essential, and the most important such covariates are usually time vary-
ing. Typically, time varying individual covariates contain missing values, and there is therefore
a need for a methodology to deal with this.

1.1. Data
We analyse mark–recapture–recovery (MRR) data, in which animals are initially marked, and
then on subsequent occasions (usually annual) are either recaptured or resighted (alive) or recov-
ered (dead). For each individual, the life history is a string of values, one for each occasion, with
1 indicating the initial capture or a subsequent recapture, 0 indicating that the animal was not
encountered on that occasion and 2 indicating a dead recovery. The data comprise the set of life
histories, together with the values of any relevant covariates; see, for example, Williams et al.
(2002). We take a Jolly–Seber rather than a Cormack–Jolly–Seber approach to the modelling
(see, for example, Manly et al. (2005)), so the initial capture of an animal is not modelled: the
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likelihood is conditional on the initial capture. This focuses attention on the estimation of annual
mortality, rather than population size, and enables mortality rates to be related to covariates.
Covariates are of two types: extrinsic covariates which apply to all the animals, e.g. weather
and population density, and intrinsic covariates, which depend on characteristics of individual
animals. Intrinsic covariates may be time invariant, such as sex, or time varying, such as weight
or reproductive status; for general discussion see Pollock (2002).

1.2. Missing covariate values in mark–recapture–recovery data
There are currently several possible ways of handling covariates with missing values in MRR
data.

(a) A ‘complete-case’ analysis simply omits all animals which have any missing covariate
data. However, such an analysis can result in a substantial loss of information and can
also result in severe bias (Abraham and Russell, 2004).

(b) Bonner and Schwarz (2006) used a diffusion model to impute missing covariate values of
weight. The accuracy of this approach depends on the goodness of the imputation model.

(c) A last observation carried forward analysis replaces unknown covariate values with their
last available value (see, for example, Catchpole, Fan, Morgan, Clutton-Brock and Coul-
son (2004)). This imputation method has clear potential for bias if there is a trend in the
covariate, as may occur with weight for example; see also Prentice (1982) and Gadbury
et al. (2003).

(d) The guide to the widely used computer package MARK (White and Burnham, 1999)
recommends unconditional mean imputation (Little and Rubin (2002), page 61), in which
missing individual covariate values are replaced by the mean of the variable for the sample
that is measured. This imputation method shrinks individual differences, which is undesir-
able. Disadvantages of this and the previous imputation methods are given in Molenberghs
and Verbeke (2005), pages 492–494.

(e) Catchpole, Morgan and Coulson (2004) used a binomial analysis, including only those
individuals that are seen on a particular occasion, and based on the conditional probabil-
ities of being seen alive or dead on that occasion. This method requires separate estimates
of the recapture and recovery probabilities on each occasion and, in common with classical
use of imputation methods, makes no allowance for the errors in estimating these.

In this paper we propose and evaluate a new conditional method, again using only those
individuals that are seen on a particular annual occasion, but now based on the probabilities of
the possible outcomes (seen alive, found dead or not seen) on the following occasion. The new
approach does not exclude incompletely observed life histories and uses all available data. We
show that this easily implemented method produces consistent estimators and, by means of a
simulation study, that it performs better overall than alternative methods.

2. Model and likelihood

Suppose that we have information on n animals from k MRR occasions, at times t1, t2, . . . , tk.
Let ci, i=1, . . . , n, denote the occasion on which animal i is initially captured and marked, and
li, ci � li � k, the occasion on which it is last known to be alive, either through being seen alive
on that occasion but never seen subsequently, live or dead, or through being found dead on
the following occasion. We assume that, if an animal dies in .tr, tr+1/, then it is either found in
this time interval or is never found—it cannot be found dead later. This is a common and valid
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assumption in most studies of birds and mammals, but it may not be a good model for shellfish,
for example (Catchpole et al., 2001).

The definitions which follow are all for the ith animal. For r = ci, . . . , k −1, let

φi,r =Pr.alive at tr+1|alive at tr/,

pi,r =Pr.recaptured at tr+1|alive at tr+1/,

λi,r =Pr{found dead during .tr, tr+1/|died during .tr, tr+1/}:

Different models result from making different assumptions regarding the structure of these
parameters. The usual focus is on survival, regarding the other model parameters as nuisance
parameters. Often survival is related to covariates through a suitable link function, and the
logistic function is usually used. We do not in this paper consider model selection but present a
general framework within which standard procedures of inference can take place.

The traditional form for the likelihood, conditional on the initial capture event, is (Catchpole
et al., 1998; Catchpole, Fan, Morgan, Clutton-Brock and Coulson, 2004; King and Brooks,
2003)

L=
n∏

i=1
{.1−φi,li /λi,li}diχ1−di

i,li

li−1∏
r=ci

{φi,rp
wi,r
i,r .1−pi,r/

1−wi,r}: .1/

Here di indicates the known death of animal i (1 if found dead; 0 otherwise), wi,r is the indicator
variable for being seen alive at tr+1, and χi,r, which is a function of the other parameters, is the
probability that animal i is never seen, alive or dead, from tr+1 onwards, having been alive at tr;
see also Skalski et al. (1993) and Hoffman and Skalski (1995).

3. A three-state process

3.1. A new expression for the likelihood
Here we present a new expression for the likelihood for MRR data, which is based on a three-
state process. It is this expression that is central to the new methodology of the paper and which
provides a new approach for dealing with missing covariate data.

To derive the new form for the likelihood, we extend the definition of χi,r to

χi,r,s =Pr.not found, alive or dead, from tr+1 to ts inclusively|alive at tr/,

for s= r +1, . . . , k, with χi,r,r =1, so that χi,r =χi,r,k. Then we have the recurrence relation

χi,r,s = .1−φi,r/.1−λi,r/+φi,r.1−pi,r/χi,r+1,s, ci � r<s�k, .2/

which enables χi,r,s to be calculated.
Let us now denote by hi,r the life history data entry at tr for animal i, i.e.

hi,r =
{0, if the animal was not seen at tr, and not previously found dead,

1, if the animal was seen alive at tr,
2, if the animal is known to be dead at tr.

This notation combines the life process and the observation process. Approaches to missing data
in which these processes are kept separate are also possible (see, for example, Dupuis (1995)).

We then define

πi,r.a, b/=Pr.hi,r+1 =b|hi,r =a, hi,r−1, . . . , hi,1/, .3/

which, for brevity, suppresses the dependence on the history before tr. It is simple to derive the
following expressions for πi,r.a, b/. In each of the cases where a=0, l denotes the last occasion,
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before occasion r, on which the animal was seen alive. We have, for ci � r �k −1,

πi,r.0, 0/=χi,l,r+1=χi,l,r, .4a/

πi,r.0, 1/=
r−1∏
s=l

φi,s.1−pi,s/φi,rpi,r=χi,l,r, .4b/

πi,r.0, 2/=
r−1∏
s=l

φi,s.1−pi,s/.1−φi,r/λi,r=χi,l,r, .4c/

πi,r.1, 0/=χi,r,r+1, .5a/

πi,r.1, 1/=φi,rpi,r, .5b/

πi,r.1, 2/= .1−φi,r/λi,r, .5c/

and πi,r.2, 2/= 1. Note that the observations form a renewal process, renewing each time that
state 1 occurs, and that the conditioning in equation (3) only need go back as far as the last live
sighting.

These probabilities enable the likelihood to be constructed directly from the life history data
on each of the n animals, in the form

L=
n∏

i=1

k−1∏
r=ci

2∏
a=0

2∏
b=0

π
xi,r.a,b/
i,r .a, b/ .6/

where xi,r.a, b/ is an indicator, which is equal to 1 if hi,r =a and hi,r+1 =b, and 0 otherwise.
As explained below, terms can be missing from this product if there are missing covariates.

When all terms are present, the two likelihood expressions (1) and (6) are equivalent, as we
demonstrate in Appendix A. But, when some values are missing, expression (6) has a distinct
advantage, as shown in Section 3.3, where we present two ways of dealing with missing individual
covariates, neither of which involves imputation.

3.2. Missing covariate data
If covariates are introduced by means of logistic regression of the survival probabilities φi,r
on the covariates, then the survival probabilities are missing when there are missing individual
covariate values. For example, survival from tr to tr+1 might be modelled in terms of an animal’s
weight at tr, which is known only if the animal was captured then. However, it is not always true
that the covariates are measured when the animal is observed—for example, an animal might
be captured but not weighed on a particular occasion. Nor is it always true that covariate values
are missing when the animal is not observed—an extrinsic covariate, such as a rainfall, will be
recorded whether or not an animal is seen.

If missing covariate data are not imputed, then one way of dealing with individuals with
missing covariate values is to omit those individuals from the likelihood and to perform a com-
plete-case analysis. The alternative approach of this paper is to omit transition probabilities
from the likelihood if and only if these transitions cannot be calculated.

When modelling animal survival, the focus is different from the standard approach (Rubin,
1976; Little and Rubin, 2002) for missing values in longitudinal data. There, for each unit
(person) there is a longitudinal vector of intended observations, Y = .Yobs, Ymis/, which is par-
titioned into observed and missing values, together with a missingness indicator vector M. The
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likelihood is the probability distribution f.yobs, m/. The selection model (Rubin, 1976) or selec-
tion factorization (Diggle et al., 2007) is f.y, m/ = f.y/ f.m|y/: The missing value mechanism
is informative if the probability distribution f.m|y/ depends on ymis as well as on yobs; the
mechanism is data missing at random if f.m|y/ depends only on yobs (Little and Rubin (2002),
page 12).

Joint modelling of M and Y was initiated by Wu and Carroll (1988), and in this context a vari-
ety of ways of analysing f.m|y/ have been proposed; for instance, Diggle and Kenward (1994)
used logistic regression, Henderson et al. (2000) employed linked random effects and used an
EM algorithm, whereas Guo and Carlin (2004) used Markov chain Monte Carlo methods. Saha
and Jones (2005) investigated the asymptotic bias in mixed effects linear models for longitudinal
data when there are non-ignorable patterns of missingness which are not properly modelled. For
reviews and extensions of this work see for instance Abraham and Russell (2004), Hogan et al.
(2004) and Diggle et al. (2007). In terms of the Little and Rubin framework, we have informative
missing values, as we show in the next section, and have modelled the missingness process, in a
similar way to Diggle and Kenward (1994), who modelled dropout.

Our work differs from these references in two ways. Firstly, ecological modelling of MRR
data uses a three-state vector h, which is defined in Section 3.1, in place of the indicator miss-
ingness vector m. Secondly, the ecological focus is usually on modelling h|Yobs rather than on
modelling Yobs. Indeed, for simplicity, in this paper we regard yobs as being known, without
error, so that the likelihood is simply f.h|yobs/. This obviates the need for any assumptions on
the missingness process, such as data missing at random.

We now illustrate how the complete-case and three-state likelihoods differ when there are
missing covariate values.

3.3. Comparing complete-case and three-state likelihoods
Consider an example with k = 6 MRR occasions, and with φi,r depending on an intrinsic co-
variate Vi,r, which is measured if and only if animal i was captured at tr. Suppose that this
animal has the life history .hi,1, . . . , hi,6/= .1, 0, 1, 1, 0, 0/. Dropping the subscript i for clarity,
the contribution of this animal to likelihood (1) is

φ1.1−p1/φ2p2φ3p3χ4, .7/

whereas the contribution to the three-state likelihood (6) is

π1.1, 0/ π2.0, 1/ π3.1, 1/ π4.1, 0/ π5.0, 0/: .8/

Because the animal is not seen on occasions 2 and 5, V2 and V5 (and hence φ2, φ5 and χ4) are
unknown, and so the likelihood contribution (7) is unknown. In a complete-case analysis this
animal would be deleted from the likelihood. Similarly, in expression (8), π2.0, 1/ and π5.0, 0/

are unknown. But, because expression (8) is based on conditional (transition) probabilities, we
can simply omit these transitions from the likelihood, to leave

π1.1, 0/ π3.1, 1/ π4.1, 0/:

Thus, when there are missing covariate values, the three-state method that is based on equation
(6) uses more of the available information than the complete-case method that is based on the
traditional likelihood (1).

Also, in this example, the probability that the animal is missed at t3 is .1 − φ2/.1 − λ2/ +
φ2.1−p2/. Since φ2 depends on V2, which is missing, the missingness depends on unobserved
data. Thus the missingness process is data not missing at random.
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3.4. A trinomial distribution
Suppose that we include in the three-state likelihood only those transitions from an occasion
on which the animal was seen alive. Then the likelihood (6) reduces to the partial likelihood

L=
n∏

i=1

k−1∏
r=ci

2∏
b=0

π
xi,r.1,b/
i,r .1, b/: .9/

This is a simple product trinomial distribution, with probabilities given by equations (5). If
animal i being seen or captured at tr is a necessary and sufficient condition for all the covariates
that are relevant to φi,r, pi,r and λi,r to be known, then this is exactly equivalent to the three-state
likelihood. An example of this is given in the previous section. Cases where the more general
three-state likelihood is required include where an extrinsic covariate is missing on a particular
occasion, or when an intrinsic covariate has values that are missing owing to observer error.

Note that if we have only dropout, rather than intermittent missing values, then equation (9)
corresponds to equation 11.3.7 in Diggle et al. (1994).

3.5. Consistency
Estimators from the three-state and trinomial likelihoods are consistent, since they are maxi-
mum likelihood estimators for proper (conditional) distributions. For example, in the trinomial
case, the likelihood can be written as

n∏
i=1

k−1∏
r=ci

hi,r=1

πi,r.1, hi,r+1/: .10/

Although we have conditional probabilities, the proof follows standard lines, as in Cox and
Hinkley (1974), page 287. Details are given in Appendix B. In the three-state likelihood, the
conditioning event changes from hi,r =1 to the covariate value for animal i being known at tr,
but consistency follows in the same way. Note that the above argument does not extend to the
complete-case analysis as in that case the corresponding probabilities do not result in a proper
distribution.

In the general case, where the covariate Yobs is also modelled, the consistency of the trinomial
estimators can be shown similarly to Diggle et al. (1994), section 11.3, who dealt only with
dropout rather than intermittent missing values. There they gave the full likelihood f.y, m/,
modelling the probability of dropout. We can do the same, until the first 0 (missing value) in the
life history. But, since the missingness process ‘renews’ when the next 1 (live recapture) occurs,
we can regard this as the beginning of a new record, and then proceed as before.

4. Alternative approaches

4.1. Partial-case analysis
Instead of using the standard likelihood (1), but considering only complete case histories, as in
a complete-case analysis, we could consider partial cases by simply omitting all missing terms
from likelihood (1). In the example that is given in Section 3.3, leaving out all missing values
from the likelihood (7) would leave us with the likelihood contribution φ1.1−p1/p2φ3p3.

4.2. A binomial distribution
Illius et al. (1995), Moorcroft et al. (1996) and Milner et al. (1999) analysed MRR data by using
a binomial approach, taking each annual occasion in turn and looking only at those animals
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which are found, either live or dead, on that occasion, and then assuming that the probabilities of
being alive or dead are in the ratioφ : .1−φ/. Catchpole, Morgan and Coulson (2004) pointed out
that this approach is incorrect whenever the recapture and recovery probabilities p and λ are not
equal, since the conditional probabilities are in the ratio φp : .1−φ/λ. They then used the result-
ing binomial likelihood to model φ, assuming that p and λ, which are in general time varying, are
known on each occasion, possibly by having been estimated from a separate MRR analysis using
the traditional likelihood (1) without covariate regressions. By excluding on each occasion those
animals with missing time varying individual covariates for that occasion, this approach deals
naturally with missing individual covariates, in a similar way to the three-state likelihood (6).

4.3. A four-state process
An alternative conditional approach to likelihood (6) is based on the observation that, in the
life history .1, 0, 1, 1, 0, 0/, the 0 on occasion 2 is qualitatively different from those on occasions
5 and 6. Although on each of these occasions the animal is not seen, on occasion 2 it is known
to be alive, since it is seen alive on a subsequent occasion. The same conclusion would follow if
the animal had later been found dead, since recoveries are assumed to be immediate, as noted
in Section 3. It is natural to want to use this information. We can rewrite the sample life history
above as .1, 3, 1, 1, 0, 0/ by defining new states

hÅ
i,r =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if animal i is not seen, alive or dead, at ts, for all r � s�k, and has not been
found dead before tr,

1, if animal i is seen alive at tr,
2, if animal i is known to be dead at tr,
3, if animal i is not seen, alive or dead, at tr, but is seen alive at ts, for some

r<s�k.

If we define probabilities ρi,r.a, b/ in a similar way to πi,r.a, b/ in Section 3.1, then the likelihood
can be written in terms of this four-state process as

L=
n∏

i=1

k−1∏
r=ci

3∏
a=0

3∏
b=0

ρ
xi,r.a,b/
i,r .a, b/ .11/

where the indicator variables xi,r.a, b/ are suitably redefined in terms of the new states. However,
the states hÅ

i,r are defined in terms of future occurrences, and the probabilities ρi,r.a, b/ involve
conditioning on these future occurrences. It is easily shown that ρi,r.0, 0/=ρi,r.2, 2/=1, and

ρi,r.1, 0/=χi,r, .12a/

ρi,r.1, 1/=φi,rpi,r, .12b/

ρi,r.1, 2/= .1−φi,r/λi,r, .12c/

ρi,r.1, 3/=φi,r.1−pi,r/.1−χi,r+1/, .12d/

ρi,r.3, 0/=0, .13a/

ρi,r.3, 1/=φi,rpi,r=.1−χi,r/, .13b/

ρi,r.3, 2/= .1−φi,r/λi,r=.1−χi,r/, .13c/

ρi,r.3, 3/=φi,r.1−pi,r/.1−χi,r+1/=.1−χi,r/: .13d/

The four-state process is an alternative way to model time varying individual covariates with
missing values. When there are no missing terms in expression (11), the four-state likelihood is
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identical to the traditional likelihood, as we show in Appendix A. The four-state process is super-
ficially attractive as it appears to use more information than the three-state process. However,
it has disadvantages compared with the three-state process, as the following section illustrates.

4.4. Missing values in the four-state process
Consider again the example of Section 3.3, with the life history now written as .1, 3, 1, 1, 0, 0/.
The animal is seen, and so the covariates that are required to model subsequent annual survival
probability are known, at times t1, t3 and t4. So we might expect to be able to calculate the tran-
sition probabilities at each of these times, as we can with the three-state process. However, in the
four-state process the transition probabilities from t1 → t2 and t2 → t3 both involve χi,2, which
depends on φi,2, and so are unknown. Also the t4 → t5 transition probability, χi,4, depends, via
the recurrence relation (2), on φi,5, and so it also is unknown. The net result is that the only
known transition probability is ρi,3.1, 1/.

In general, when a covariate determining survival probability is known only when an animal is
found alive, then, compared with the case in which the covariate is always known, the four-state
process loses

(a) all the transitions from states 0 and 3,
(b) all the 1→3 transitions and
(c) all the 1→0 transitions except those starting at tk−1.

The three-state and trinomial likelihoods, in contrast, lose only the transitions corresponding to
(a). This difference between the three-state and four-state models results from the dependence
of the states of the four-state process on future occurrences. This is reflected in, for example, the
expressions χi,r in equation (12a) as compared with χi,r,r+1 in equation (5a). This results in the
four-state maximum likelihood estimator being biased when there are missing covariate values.

5. Simulation study

We now compare the performances of each of the methods that were discussed above, for sim-
ulated data under three scenarios: firstly, where there are no missing covariate data; secondly,
where a covariate value is missing if and only if an animal is not captured; and, finally, where
the covariate values are missing at random.

We simulate a study with k = 11 MRR occasions and 100 animals marked as newborns on
each occasion except the last. We consider the model {φ1, φa.V/; pt ;λt}, which has two age
categories for survival, with survival probabilities of animals in their first year of life (φ1) being
different from annual survival probabilities (φa) for older animals, and this ‘adult’ survival prob-
ability being regressed linearly, on the logistic scale, on an individual, time varying covariate V.
The recapture probabilities pt and recovery probabilities λt are both fully time dependent, with
(potentially) different values on each occasion.

We performed 100 simulations, in each of which we generated data from the model, using the
parameter values φ1 = 0:5, logit.φa/= 1:386 +V , pt = 0:8 and λt = 0:4, t = 1, . . . , 10 (although
there are 11 MRR occasions, only initial marking occurs on the first occasion). We have used
constant values for pt and λt for ease of interpretation of the results. The covariate V is simu-
lated from a standard normal distribution, independently for each animal on each occasion. The
same values of the covariate were used in all simulations, except that in each simulation only
‘known’ covariate values were used. We then fitted the model by using each of the expressions
(1), (6), (9) and (11) for the likelihood, as well as the binomial method of Catchpole, Morgan
and Coulson (2004).
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Table 1. Results from 100 simulations of the model {φ1,φa.V /I ptIλt}, with no miss-
ing covariate values, using (a) either the three-state likelihood (6), or the four-state
likelihood (11), or the complete-case likelihood (1) or the partial-case method of Sec-
tion 4.1, which are all equivalent under this scenario (denoted ‘standard’ below),
(b) the trinomial likelihood (9) and (c) the binomial method of Catchpole, Morgan and
Coulson (2004)†

Parameter True Results for the following methods:
value

(a) Standard (b) Trinomial (c) Binomial

Mean Standard Mean Standard Mean Standard
error error error

φ1 0.500 0.498 0.017 0.496 0.030 0.502 0.023
φaC 1.386 1.378 0.086 1.379 0.190 1.406 0.139
φaV 1.000 1.012 0.097 1.016 0.127 1.011 0.121
p 0.800 0.802 0.042 0.803 0.062 0.802 0.051
λ 0.400 0.400 0.056 0.401 0.068 0.405 0.073

†Shown are the true values of the parameters, the means and standard errors of the
first-year survival φ1, and the intercept φaC and slope φaV of the adult survival. For the
recapture probabilities pt and recovery probabilities λt we show the overall mean and
the overall standard deviation. The adult survival parameters are shown on a logistic
scale: other parameters are shown in the natural (probability) scale.

5.1. No missing values
The first case is when there are no missing covariate values. The three-state and four-state likeli-
hoods (6) and (11), and the complete-case and partial-case approaches to the likelihood (1), are
all equivalent in this case, since no covariate data are missing. Such a case would normally occur
when there are only extrinsic (or no) covariates. However, for comparison with later results, we
retain the intrinsic covariate V and assume that V is known, whether or not the animal is
seen.

Table 1 shows the true values of the parameters and the means and standard errors of the 100
estimates. For pt and λt Table 1 shows only the overall mean and standard deviation. Means
and standard deviations for the φa intercept and slope are calculated on the logistic scale; for
the other parameters we use the natural (probability) scale. It is clear from Table 1 that all
methods produce approximately unbiased estimates, but that the estimates from the three-state,
four-state, complete-case and partial-case methods are more precise than those from the trino-
mial likelihood (9). This is because the trinomial method uses only the transitions from state 1,
whereas the other methods use all the data. The binomial method of Catchpole, Morgan and
Coulson (2004) is intermediate in precision. Note that this is the first time that the binomial
method has been evaluated in a simulation study, when the standard errors reflect the entire
process of using estimates of pt and λt obtained from fitting an MRR model by maximum
likelihood. In practice, when the binomial method is used on real data, the standard errors of
the φ-parameters will be underestimated, as no account is taken of the variation due to the
estimation of pt and λt .

5.2. Missing when not seen
Our second simulation uses the same model, but now we assume that the covariate V is known
for a particular animal for the transition tj → tj+1 only if the animal is seen alive at tj: otherwise
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Table 2. Results from 100 simulations of the model {φ1,φa.V /I ptIλt}, with the covariate V missing when-
ever an animal is not seen, using (a) the three-state likelihood (6) and the trinomial likelihood (9), which are
equivalent under this scenario, (b) the complete-case method, (c) the partial-case method of Section 4.1,
(d) the four-state likelihood (11) and (e) the binomial method of Section 4.2†

Parameter True Results for the following methods:
value

(a) Three state (b) Complete (c) Partial (d) Four (e) Binomial
(trinomial) case case state

Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard
error error error error error

φ1 0.500 0.498 0.029 0.477 0.023 0.699 0.019 0.660 0.018 0.502 0.023
φaC 1.386 1.396 0.168 1.422 0.176 2.240 0.135 2.068 0.140 1.393 0.157
φaV 1.000 1.010 0.136 1.031 0.167 1.009 0.140 1.006 0.143 1.006 0.129
p 0.800 0.804 0.062 0.982 0.058 0.813 0.062 0.969 0.093 0.802 0.051
λ 0.400 0.401 0.068 0.940 0.182 0.962 0.117 0.957 0.132 0.405 0.073

†Results are shown in the same way as in Table 1.

the covariate, and hence φa, is missing. Here the three-state and trinomial likelihoods are equiv-
alent, since the trinomial method considers only transitions from state 1, and in the three-state
process all transitions except those from state 1 are missing. The four-state process leaves out
more data, as described in Section 4.4, and the complete-case likelihood leaves out more still,
since it leaves an animal in the likelihood only if that animal is never missed on any recapture
occasion before the last.

Table 2 shows the results of 100 simulations, in a similar way to Table 1. Table 2 shows that the
three-state method works well, remaining unbiased, but with decreased precision compared with
Table 1 when there were no missing covariate data. The binomial method performs well, with
almost identical results to those in Table 1. But the complete-case, partial-case and four-state
methods all produce badly biased estimates.

The complete-case, partial-case and four-state methods all delete the ‘trailing 0s’ parts of the
data, i.e. those parts of case histories that end 0. . . 0, except for the case of a single 0 at tk. As
a result, they all estimate λ1 = . . . =λk−2 = 1. The complete-case and four-state methods also
do not handle intermediate 0s in the record, and as a result estimate p1 = . . . = pk−2 = 1. The
partial-case method does include the pj-terms for intermediate 0s, since they do not depend on
a covariate, and so its estimates of the pj are much less biased.

The reason that the binomial method works so well in this case may be that it is a two-stage
process: first the model {φ1,t , φa,t ; pt ;λt} is fitted, to estimate pt and λt , and then the binomial
method is used to estimate the survival parameters. The first step in this process uses all the
data: there are no covariates and so no missing values (and, as a result, the estimates of pt and
λt are identical to those which are obtained in the first simulation). The second step uses the
reduced data set, where the covariate is known, but in this step there are many fewer parameters
to estimate.

5.3. Missing at random
There are many different scenarios which produce different results from each of the methods for
dealing with missing covariate values. For example values can be missing at random, owing to
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Table 3. Results from 100 simulations of the model {φ1,φa.V /I ptIλt}, with the covari-
ateV missing at random, using (a) the three-state likelihood (6), (b) the trinomial likelihood
(9) and (c) the binomial likelihood of Section 4.2†

Parameter True Results for the following methods:
value

(a) Three state (b) Trinomial (c) Binomial

Mean Standard Mean Standard Mean Standard
error error error

φ1 0.500 0.501 0.019 0.504 0.030 0.501 0.023
φaC 1.386 1.391 0.098 1.392 0.197 1.410 0.146
φaV 1.000 1.006 0.102 0.980 0.148 1.013 0.125
p 0.800 0.799 0.042 0.799 0.068 0.802 0.051
λ 0.400 0.402 0.063 0.402 0.079 0.405 0.073

†Results are shown in the same way as in Table 1.

lost records, or missing on one or more occasions through equipment malfunction, for example.
In the third simulation we assume that 10% of the covariate values are missing at random but are
otherwise known, whether or not an animal is observed. We retain the same individual covar-
iate here, for comparison with the previous simulations rather than for biological realism. We
consider here only those methods that produced reasonably unbiased estimates in the previous
simulation.

Table 3 shows the results of 100 simulations, in the same way as Tables 1 and 2. The three-state,
trinomial and binomial methods again produce approximately unbiased parameter estimates,
with the three-state method having the best precision. The reason that the trinomial and three-
state methods differ is that the three-state method includes transitions from state 0, when the
covariate value is not missing, whereas the trinomial method uses only transitions from state 1.

6. Discussion

The essential difference between the complete-case and three-state likelihoods is that in the latter
we construct the likelihood one step at a time, using transition probabilities. This contrasts with
the normal procedure, in which the entire history of an animal is used to construct a multinomial
likelihood. The three-state and four-state likelihoods differ in that, in the four-state method, we
use hindsight from the end of the study to fill in information on 0s occurring during the study.
The three-state method, in contrast, uses only the information that is available at the time that
each observation is made.

However, this transition probability approach is specifically designed for cases where the
parameters φt , pt and λt depend on covariates that are measured at t. This covers many prac-
tically important cases in animal studies, e.g. where survival is modelled in terms of last year’s
weight. But there are cases that it does not cover, such as when the recapture probability depends
on current breeding status. In such situations, where any of the parameters depend on covariates
that are measured at t + 1, a different approach is needed. Our method depends on forming a
conditional distribution, and in this distribution there are no missing data, when all covariates
are known at t. This would no longer be the case if parameters depended on covariates that are
measured at t +1.
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The binomial approach of Catchpole, Morgan and Coulson (2004) is attractive, as it is easily
programmed as a generalized linear model. However, it has several disadvantages. It requires a
separate MRR analysis to estimate the time varying values of p and λ, it makes no allowance in
its estimated standard errors for the errors in estimating p and λ, and it is limiting in that it is not
practicable to allow covariates that influence φ also to influence p and λ. In our simulations, the
good performance of the binomial method may be due to the few (three) parameters that are
involved in survival modelling in our simulations, compared with far more (20) in the recapture
and recovery probabilities. In cases where there are many parameters in the survival modelling,
we would expect the performance of the binomial method to decline relatively to that of the
other methods.

It is impressive that in our simulations the three-state approach outperforms the binomial
method overall, without having to import separate estimates of pt and λt . The three-state
likelihood is identical to the complete-case likelihood when there are no missing covariate
values, and it performs better than the complete-case likelihood when there are missing val-
ues. It is a simple plug-in replacement for the traditional likelihood, it covers models with
and without covariates and is easily coded so that it deals automatically with missing co-
variate data. For instance, it could easily be incorporated in standard computer packages
such as MARK (White and Burnham, 1999) and M-SURGE (Choquet et al., 2004), where
it would provide an automatic way of dealing with missing values of individual covariates.
Neither package can currently deal with time varying individual covariates with missing val-
ues. Our method is also easy to program in stand-alone code, and MATLAB code is available
from

http://www.blackwellpublishing.com/rss

The new formulation of the likelihood applies directly to the formation of the posterior distri-
bution if Bayesian analysis is used.

In our simulations, the parameter values and numbers of animals that are used are realistic
for large mammal studies. However, the results are readily interpretable, and we expect that our
conclusions will hold quite generally. Although we have found in the complete-case analyses
that the bias in pt and λt has not led to any large bias in the survival probabilities, we note that
in our simulations φa was regressed only on an individual covariate. If it had been regressed on
a time varying environmental covariate instead (or as well), we speculate that this would have
led to biased estimators of survival.

Our simulations have used independent and identically distributed values for the covariate.
Very similar results occurred in simulations using correlated values, where the covariate was
simulated

(a) from an auto-regressive moving average model in time (within each animal), with the
same fixed mean for each animal, and

(b) with independent and identically distributed values within each animal, but with the
animal means being different (generated at random).

Also, all simulations have used values of p and λ which, although time varying, do not depend
on an individual covariate. Simulations in which they depended on the same covariate as φ gave
similar results to those shown.

In this paper we have analysed MRR data incorporating both recapture and recovery infor-
mation. The approach can also be used if only recovery or recapture information is available,
although we have not yet evaluated its efficacy in these cases. Of course we cannot expect good
performance if there are individual time varying covariates and the only data come from dead
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recoveries. Similarly, we have made no distinction between resighting and recapture; such a
distinction is clearly possible, and our method can be extended to cover this case. If there are
more than three states, as, for instance, with multisite MRR models, then we could construct
different conditional models, all of which would be acceptable, and, subject to not being param-
eter redundant, all of which would result in consistent estimators. Some would be more efficient
than others.

Diggle et al. (1994), page 210, ‘know of no well-developed methodology for dealing with
informative, intermittent missing values in longitudinal data’. This paper represents a step in
that direction.

We are engaged in further research on the three-state process, through its practical application,
Bayesian implementation and comparison with imputation methods. Future work will explore
applications to multistate MRR models, possible human applications and cases in which the
covariate is measured with error.
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Appendix A: Proof of the equivalence of the three-state, four-state and traditional
likelihoods when there are no missing covariate data

Since each of the three-state, four-state and traditional likelihoods is written as a product over the ani-
mals, we need only to prove their equivalence for a single, arbitrary life history, say for the ith animal. We
consider a subsequence of the life history data for an animal beginning on an occasion (possibly the initial
tagging occasion) on which the animal was seen alive. There are three possible cases:

(a) the next time that the animal is seen, it is alive,
(b) the next time that the animal is seen, it is dead or
(c) the animal is never seen again.

The proof is based on the fact that each of the likelihoods renews when the animal is seen alive, i.e. when
the data entry is 1. By ‘renews’, we mean that the likelihood in each of these cases has no dependence on any
previous entries in the life history. If we prove that the likelihoods are equal for each of these subsequences,
then, since the three cases exhaust the possibilities, this is sufficient to complete the proof.

A.1. Case (a)
Suppose that animal i is seen on occasion l, where this may be the initial tagging occasion, and that the
animal is subsequently seen alive, after z (z � 0) occasions on which it was not seen, i.e. we consider a
subsequence of the life history of the form .. . . , 1, 0, . . . , 0, 1, . . ./, where there are z 0s between the two 1s.

First note that, if z= 0, then, from equations (5b) and (12b), the three-state and four-state likelihoods
for this subsequence are simply πi, l.1, 1/ = ρi, l.1, 1/ =φi, lpi, l, and this is just the traditional form of the
likelihood for this subsequence. If z> 0, the three-state likelihood is

πi, l.1, 0/
l+z−1∏
s=l+1

πi,s.0, 0/ πi, l+z.0, 1/,

where, in the case z = 1, the central product as taken as 1. From equations (4) and (5), the likelihood
becomes
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χi, l, l+1

l+z−1∏
s=l+1

χi, l,s+1

χi, l,s

l+z−1∏
s=l+1

φi,s.1−pi,s/
φi, l+zpi, l+z

χi, l, l+z

=
l+z−1∏
s=l+1

φi,s.1−pi,s/φi, l+zpi, l+z,

which is just the traditional form of the likelihood for this subsequence.
In a similar manner, from equations (12) and (13), the four-state likelihood is

ρi, l.1, 3/
l+z−1∏
s=l+1

ρi,s.3, 3/ρi, l+z.3, 1/=φi, l.1−pi, l/.1−χi, l+1/
l+z−1∏
s=l+1

φi,s.1−pi,s/
1−χi,s+1

1−χi,s

φi, l+zpi, l+z

1−χi, l+z

=
l+z−1∏
s=l+1

φi,s.1−pi,s/φi, l+zpi, l+z,

as above. Case (b) is similar; the details are omitted.

A.2. Case (c)
Finally we consider the case in which the animal is never seen again, live or dead, after having been seen
alive on occasion l, so that the subsequence of the life history is .. . . , 1, 0, . . . , 0/, where the 1 is followed
by z 0s, z�0, finishing on occasion k.

If z = 0 there is nothing to prove, as there is no contribution to the likelihood. If z > 0, then, using
equations (4) and (5) as usual, the three-state likelihood is

πi, l.1, 0/
k−1∏

s=l+1
πi,s.0, 0/=χi, l, l+1

k−1∏
s=l+1

χi, l,s+1

χi, l,s
=χi, l,k =χi, l,

which is just the traditional form of the likelihood for this subsequence.
Similarly, from equations (12) and (13), the four-state likelihood is

ρi, l.1, 0/
k−1∏

s=l+1
ρi,s.0, 0/=χi, l ×1:

Appendix B: Proof of consistency

The trinomial likelihood (10) can be written

L.θ/=
n∏

i=1

k−1∏
r=ci

hi, r=1

πi,r.1, hi,r+1|θ/, .14/

where θ is the vector of all unknown parameters. Let θ̂ be the maximizer of likelihood (14). It is easy to
see that

1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

log{πi,r.1, hi,r+1|θ/} P→ 1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E[log{πi,r.1, hi,r+1|θ/}|hi,r =1]: .15/

Let θ0 be the true θ. For any θ �=θ0,

1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E[log{πi,r.1, hi,r+1|θ/}|hi,r =1]− 1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E[log{πi,r.1, hi,r+1|θ0/}|hi,r =1]

= 1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E

[
log

{
πi,r.1, hi,r+1|θ/

πi,r.1, hi,r+1|θ0/

}∣∣∣∣hi,r =1
]

<
1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

log
[
E

{
πi,r.1, hi,r+1|θ/

πi,r.1, hi,r+1|θ0/

∣∣∣∣hi,r =1
}]

=0,
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because

E

{
πi,r.1, hi,r+1|θ/

πi,r.1, hi,r+1|θ0/

∣∣∣∣hi,r =1
}

=1:

So, we have

1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E[log{πi,r.1, hi,r+1|θ/}|hi,r =1] <
1
n

n∑
i=1

k−1∑
r=ci

hi, r=1

E[log{πi,r.1, hi,r+1|θ0/}|hi,r =1]:

This, together with equation (15), leads to

lim
n→∞

(
Pr

[
n∑

i=1

k−1∑
r=ci

hi, r=1

log{πi,r.1, hi,r+1|θ0/}>
n∑

i=1

k−1∑
r=ci

hi, r=1

log{πi,r.1, hi,r+1|θ/}
])

=1:

So θ̂ is consistent.
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