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Abstract. A new method is presented for synthesizing the dynamic responses of a complex structure based upon the frequency

response functions of the substructures. This method is shown to be superior to traditional methods for several reasons: (i) It

can be applied to a generic class of systems. (ii) The analyst is spared the responsibilities of eliminating the coupling forces and

rearranging the equations of motion. (iii) The coupling forces and the responses of the total system can be obtained simultaneously

and efficiently.

1. Introduction

Structural systems of interests are often complex in

nature. Automotive chassis and bodies provide such

examples. Since the earlier work of Klosterman [1,2],

many authors have attempted to use frequency response
functions (FRF’s) to represent the substructures in a

total system dynamic analysis [3–5], whereby the FR-

F’s of substructures can be obtained by either experi-
mental or analytical methods. This approach is attrac-

tive since the dynamic behavior of the total system can

be predicted by synthesizing the dynamic behaviors of
simpler substructures, and the effects of changes in any

substructure on the operating behavior of the total sys-

tem can be ascertained. Another advantage of this ap-
proach is that the order of the final system of equations

to be solved is substantially smaller than the number of

physical degrees of freedom of the total system.
However, this approach as originally presented re-

quires the elimination of coupling forces and redun-

dant unknown variables by using the constraint equa-

tions which represent the coupling conditions of the
substructures. This may be difficult in general. For ex-

ample, if the substructures are connected through bush-
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ings (springs and dampers), then the coupling forces
and displacements at the coupling points will coexist

in the constraint equations [5]. Needless to say that in
some cases, the constraint equations may be even more

complicated. Moreover, if the coupling forces are of
explicit interest, one must use the constraint equations

again by back substitution to find a solution. This might

be cumbersome and inefficient.
The purpose of this paper is to provide a new method

which will circumvent these difficulties. This method
is suitable for numerical solutions with computer pro-

grams devised for applications to a generic class of
systems, without any extraordinary ingenuity from the

user, or the burden to rearrange the equations to avoid
mathematical difficulties. In addition, this method can

determine the coupling forces and the responses of the
total system simultaneously and efficiently.

2. Equations of motion

Consider a system consists of N sub-systems. We
can set up the dynamic equations of the subsystems as

xk = Hkfk (k = 1, 2, . . . , N) (1)

where xk is the response vector; fk is the force vector

which includes external forces and coupling forces; Hk
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Fig. 1. A mass-spring system and free-body diagram.

is the frequency response function (FRF) matrix. By

stacking up the subsystem equations, we obtain the

dynamic equations of the total system as

x = Hf (2)

where x is the total response vector and is of dimension

p × 1; f is the total force vector and is of dimension

q×1, it consists of r coupling forces and q− r external

forces; H is the FRF matrix which is of dimension

p × q.

Next, we can write the coupling conditions in a gen-

eral form as

Bx + Cf = 0 (3)

where matrix B is of dimension r× p, and matrix C is

of dimension r × q. As an example, consider a simple

system shown in Fig. 1 composed of masses m1 and

m2 connected by a spring with stiffness k. A force f1

is applied on m1. The coupling conditions in this case

are given by

k(x2 − x1) = f1c (4a)

f1c + f2c = 0 (4b)

where x1 and x2 are the displacements of m1 and m2,

respectively, f1c and f2c are the coupling forces at the

two ends of the connecting spring. Equations (4a) and

(4b) can be written in the form of Eq. (3), that is

[

−k k

0 0

]{

x1

x2

}

+

[

0 −1 0
0 1 1

]







f1

f2

f3







= 0 (5)

Equations (2) and (3) form a system of (p+ r) equa-

tions for the p responses and the r coupling forces. We

proceed to develop a solution method in the following

section.

3. Solution method

Theoretically, it is possible to rearrange the elements

of the force vector f and the matrix C so that the last

r entries of f are the coupling forces, and the last r

columns of C are linearly independent. Then one may

rewrite Eq. (3) as

Bx +
[

C
1
r×(q−r) C

2
r×r

]

{

fa

fc

}

= 0 (6)

where the subscripts on matrices C
1 and C

2 desig-

nate the corresponding dimensions. The coupling force

vector fc can then be expressed as

fc = −[C2
r×r]

−1[Bx + C
1
r×(q−r)fa] (7)

Hence, by substituting Eqs (7) into (2), one may

solve for the dynamic responses in x.

However, the above approach may be tedious and

inefficient. We now provide a new method based upon

the numerically robust singular value decomposition

algorithm (SVD).

The new method under consideration can be ex-

plained as follows. First, substituting Eqs (2) into (3),

we obtain

[BH + C]f = 0 (8)

Suppose Φ is an orthogonal complement of [BH +
C]H such that

[BH + C]Φ = 0 (9)

where Φ is of dimension q × (q − r) with rank q − r.

The total force vector f can therefore be expressed as

f = Φη (10)

where the vector η has q − r entries, which may be

interpreted as generalized force components. The force

vector f consists of r coupling forces and q−r external

forces. Moving the unknown coupling forces to the

right side of Eq. (10), we have
[

Φ

∣

∣

∣

∣

∣

0(q−r)×r

−Ir×r

]{

η

fc

}

=

{

fa

0

}

(11)

where Ir×r is an identity matrix with rank r. From

Eq. (11) we can solve for η and the coupling forces in

fc. Once this is accomplished, the response x can be

determined as

x = HΦη (12)

Observe that a key step in this approach is the de-

termination of the orthogonal complement matrix Φ.
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There are several ways to accomplish this. See, for ex-

ample, Walton and Steeves [6], Huston [7], Huston and

Liu [8], and Singh and Likins [9]. In this paper, we will

use the SVD method. Specifically, let D = BH + C,

then there are unitary matrices U and V of orders r×r

and q × q, respectively, such that

U
H
DV = [Σ 0] (13)

in which Σ = diag(σ1, . . . , σr) and σ1 � σ2 � . . . �

σr > 0. The diagonal non-zero elements of the de-

composition are called the singular values of the matrix

D. The singular values are unique, but U and V are

not [10,11].

Now with proper partitioning of matrix V, Eq. (13)

can be expressed as

D = U[Σ 0]

[

V
H
1

V
H
2

]

= UΣV
H
1 (14)

Because of the fact that V is unitary, we must have

V
H
1 V2 = 0. Post-multiplying Eq. (14) by V2, we

obtain

DV2 = 0 (15)

which implies that V2 is indeed an orthogonal comple-

ment of D
H.

Now, the following procedural outline may be set

forth:

Step 1. Perform SVD of BH + C.

Step 2. Form an orthogonal complement matrix Φ
(the last q − r columns of V);

Step 3. Solve Eq. (11) for the generalized forces and

constraint forces;

Step 4. Solve Eq. (12) for the responses of the total

system.

4. Example

Figure 2 shows a system composed of two identical

steel plates A and B. The points 1 and 2 of plate A are

connected to points 1 and 2 of plate B, respectively,

through spring-damper systems. In addition, one end

of plate A is fixed, and one corner point of plate B is

fixed.

Suppose the frequency response function matrices of

the two plates have been made available. The objective

is to find the acceleration responses at points 1 and 2 of

the two plates due to a unit force f1 applied vertically

at point 1 of plate A. Equation (1) in this case becomes

Fig. 2. A system composed of two identical plates connected through

two spring-damper systems.

[

aA
1

aA
2

]

=

[

HA
11 HA

11 HA
12

HA
12 HA

12 HA
22

]







f1

fA
1c

fA
2c






(16a)

and
[

aB
1

aB
2

]

=

[

HB
11 HB

12

HB
12 HB

22

][

fB
1c

fB
2c

]

(16b)

where f1 is the applied force, f A
1c and fA

2c are the cou-
pling forces applied respectively at points 1 and 2 of
plate A; fB

1c and fB
2c are the coupling forces applied re-

spectively at points 1 and 2 of plate B; H A
ij (i, j = 1, 2)

are the FRF’s of plate A; HB
ij (i, j = 1, 2) are the FRF’s

of plate B.
Now, let the response vector be

x = ⌊aA
1 aA

2 aB
1 aB

2 ⌋
T (17)

and the force vector (including the applied force and
the coupling forces) be

f = [f1 fA
1c fB

1c fA
2c fB

2c]
T (18)

Then, the frequency response function matrix H in
Eq. (2) becomes

H =











HA
11 HA

11 0 HA
12 0

HA
12 HA

12 0 HA
22 0

0 0 HB
11 0 HB

12

0 0 HB
12 0 HB

22











(19)

and the matrices B and C in Eq. (3) become

B = (20)








k1+jωc1

ω2 0 −k1+jωc1

ω2 0

0 k2+jωc2

ω2 0 −k2+jωc2

ω2

0 0 0 0
0 0 0 0
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(a) (b) 

(c) (d) 

Fig. 3. Case 1 of example problem: FRF’s of the system shown in Fig. 2. (a) Response of point 1 of plate A; (b) response of point 1 of plate B;

(c ) Response of point 2 of plate A; (d) Response of point 2 of plate B.

C =









0 −1 0 0 0
0 0 0 −1 0
0 1 1 0 0
0 0 0 1 1









(21)

The solution procedure is as follows. At each fre-

quency ω perform SVD

BH + C = UΣV
H (22)

then the matrix Φ, an orthogonal complement of (BH+

C)H, is of dimension 5 × 1 and is just the last column

of the V. Therefore, Eq. (11) has the form:

















V15 0 0 0 0

V25 −1 0 0 0

V35 0 −1 0 0

V45 0 0 −1 0

V55 0 0 0 −1











































η

fA
1c

fB
1c

fA
2c

fB
2c



























=































f1

0

0

0

0































(23)

From the above equation we can solve for the gener-

alized force η and the constraint forces [f A
1c fA

2c fB
1c

fB
2c]. The responses of the total system can be found

by solving Eq. (12).

To validate this method we considered a number of

cases with various stiffness and damping values of the

connecting spring-damper systems. To this end, we
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          (a)                            (b) 
 

 
          (c)            (d)     

Fig. 4. Case 2 of example problem: FRF’s of the system shown in Fig. 2. (a) Response of point 1 of plate A; (b) response of point 1 of plate B;

(c) Response of point 2 of plate A; (d) Response of point 2 of plate B.

used these typical values for both plates: dimensions
were 500.0 mm × 250.0 mm × 10.0 mm, Young’s
modulus was 250000 N/mm2, Poisson’s ratio was 0.3,
and mass density was 7.850 × 10−6 Kg/mm3.

Case 1: Moderate stiffness and damping values

First, consider a case in which the spring stiffness
values are k1 = 195.0 N/mm and k2 = 205.0 N/mm,
and the damping coefficients are c1 = c2 = 0.05N
− sec/mm. Figure 3 shows the FRF’s obtained by
employing the proposed method as compared to results
from full model finite element analysis. The results
agree to seven significant figures.

Case 2: Very large stiffness and damping values

Next, consider the case in which the stiffness and
damping values are larger than those in case 1 by three
orders of magnitude. That is, k1 = 195000.0 N/mm,

k2 = 205000.0 N/mm, c1 = c2 = 50.0N − sec/mm.
Figure 4 shows the comparison between the FRF’s ob-
tained by the proposed method and by full model fi-
nite element analysis. Again, the results agree to seven
significant figures. As expected, the responses of the
points 1 on the two plates are the same (see Figs 4(a)
and (b)) because the stiffness value of the connecting
spring is extremely large, thus the two points will move
together. The same is true for the points 2 of the two
plates (see Figs 4(c) and (d)).

Case 3: Very small stiffness and damping values

Finally, consider the case in which the stiffness and
damping values are smaller than those in case 1 by
three orders of magnitude. That is, k1 = 0.195 N/mm,
k1 = 0.205 N/mm, c1 = c2 = 0.005 N − sec/mm.
Figure 5 shows the comparison between the FRF’s ob-
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        (a)                    (b)        
  

                             (c)                            (d)  

Fig. 5. Case 3 of example problem: FRF’s of the system shown in Fig. 2. (a) Response of point 1 of plate A; (b) response of point 1 of plate B;

(c) Response of point 2 of plate A; (d) Response of point 2 of plate B.

tained by the proposed method and by full model finite

element analysis. Once again, the results agree to seven

significant figures.

5. Concluding remarks

The method presented in this paper is useful for the

dynamic analysis of complex mechanical systems com-

posed of several substructures. This method not only

solves the dynamic responses of the total systems, but

also determines the interactions between the substruc-

tures. It requires only the frequency response functions

at the points of interests and the coupling points, there-

fore, the order of the mathematical model to be solved
is significantly reduced with respect to the physical de-
grees of freedom of the total system. The method is
ideally suitable for the development of a general pur-
pose computer program. A key step in the method is
the determination of the orthogonal complement matrix
of (BH+C)H, which can be achieved easily by using
the numerically robust singular value decomposition
algorithm.
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