
A New Method for Dependent Parsing

Trevor Jim and Yitzhak Mandelbaum

AT&T Labs–Research

Abstract. Dependent grammars extend context-free grammars by al-
lowing semantic values to be bound to variables and used to constrain
parsing. Dependent grammars can cleanly specify common features that
cannot be handled by context-free grammars, such as length fields in
data formats and significant indentation in programming languages. Few
parser generators support dependent parsing, however. To address this
shortcoming, we have developed a new method for implementing de-
pendent parsers by extending existing parsing algorithms. Our method
proposes a point-free language of dependent grammars, which we be-
lieve closely corresponds to existing context-free parsing algorithms, and
gives a novel transformation from conventional dependent grammars to
point-free ones.

To validate our technique, we have specified the semantics of both
source and target dependent grammar languages, and proven our trans-
formation sound and complete with respect to those semantics. Further-
more, we have empirically validated the suitability of our point-free lan-
guage by adapting four parsing engines to support it: an Earley parsing
engine; a GLR parsing engine; memoizing, arrow-style parser combina-
tors; and PEG parser combinators.

1 Introduction

Context-free grammars are widely used in data format and programming lan-
guage specifications and are the foundation of many parsing tools. Unfortunately,
they are not powerful enough to fully specify the syntax of most data formats and
programming languages—these require context-sensitive features. For example,
XML has balanced tags; many data formats have unbounded length fields; C and
C++ have typedef names; Python, Haskell, and many markup languages have
significant indentation; Javascript has optional line-ending semicolons; Standard
ML has user-defined infix operators; and Ruby and command-line shells have
“here documents.”

Specifications that use grammars, therefore, augment them with prose de-
scribing the context-sensitive features of the syntax. This half-formal approach
is not ideal. Often, it results in an ambiguous or incomplete specification, which
leads to incompatible implementations. This problem is so severe that some
communities have abandoned grammars altogether, e.g., the syntax of HTML5
is specified by a state machine given in pseudo-code [7].

Moreover, a specification given as a grammar plus prose cannot serve as the
input to a parser generator or automated analysis. In the best case, the im-
plementor will be able to figure out a “lexer hack” that hides context-sensitive

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 378–397, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A New Method for Dependent Parsing 379

features away from the grammar, which can then be processed separately by a
parser generator. However, such tricks are hard to discover, and the result is not
easy to understand, analyze, or replicate—witness the fact that there are many
parser generators producing parsers written in Haskell or Python, but very few
of them generate parsers of Haskell or Python.

In previous work, we used dependent grammars to cleanly specify context-
sensitive syntax [10]. Dependent grammars extend context-free grammars by
allowing semantic values to be bound to variables and used to guide subsequent
parsing. For example, the value of a length field can be used to constrain the
length of a following sequence, or the indentation of a line can be used to control
the block structure of a Python program or Cisco IOS configuration section. We
found dependent grammars to be an excellent formalism for specifying the kinds
of context-sensitivity required in practical examples.

We also implemented dependent parsing, by extending Earley’s algorithm for
context-free parsing with semantic values, environments, and parsing constraints.
This was more difficult. In particular, the machinery of environments had to be
propagated throughout every part of the algorithm and correctness proof. This
was delicate work, considering that there is a history of erroneous algorithms
in the area (for example, Earley’s algorithm for parse forest reconstruction did
not account for all parse trees [17], and Tomita’s original GLR algorithm fails
to terminate on grammars with ε-rules and hidden left recursion [18]).

Dozens of other context-free parsing algorithms have been developed over
many years, and we would like to adapt them for dependent parsing. More-
over, we would like to take advantage of existing implementations of these al-
gorithms, because some of them have been finely tuned and represent many
man-years of work. It is worth mentioning that, often, these sophisticated pars-
ing engines do not even operate directly on grammars—instead, grammars are
compiled into lower-level representations (for example, automatons), which are
then “executed” by the parsing engine. Adding dependency to these engines by
our previous method would involve complex changes to both the front-end and
back-end, a prohibitive amount of work.

Therefore, we have developed a much simpler method of extending existing
parsing algorithms to perform dependent parsing. Its key characteristics are:

– We introduce a new grammar intermediate language that supports depen-
dent parsing without requiring environment machinery in the parsing engine.

– We compile a user-level dependent grammar into the intermediate language
by a series of source-to-source transformations which move all environment
manipulations into semantic actions of the intermediate language.

While there is a wealth of prior work on compiling away environment manip-
ulations, from combinatory algebras to more recent work like Paterson’s arrow
notation [14], our work is distinguished by being compatible with a wide variety
of existing parsing algorithms and engines (see Section 8 for further discussion).
To demonstrate this compatibility, we have built four back ends for our depen-
dent parser generator, each based on a different context-free parsing algorithm.

380 T. Jim and Y. Mandelbaum

Contributions. We show how to use standard programming language and com-
piler techniques to implement parsers for dependent grammars:

– We define the semantics of Gul, a minimal user-level language of dependent
grammars. Gul supports binding semantic values and using them in parse
constraints, as well as standard semantic actions. Gul bindings are lexically
scoped.

– We define the semantics of Gil, a point-free intermediate language of depen-
dent grammars. Gil grammars parse inputs while passing semantic values
from left to right (like an L-attributed grammar with guarded reductions),
and, in our experience, it can be supported by most existing parsing engines
with little difficulty.

– We define a novel source-to-source transformation for splitting a Gul gram-
mar into (1) a Gil grammar and (2) a coroutine for managing binding and
executing semantic actions.

– We have validated our choice of features in Gul by using it to implement
grammars taken from a wide variety of domains.

– We have validated our technique by implementing Gil with a variety of dif-
ferent parsing backends, either through extension or directly on top of native
features. These backends include a scannerless Earley parser, a GLR parser,
arrow-style parser combinators, and PEG parser combinators.

– Finally, we have proven that our translation from Gul to Gil is semantics-
preserving. The paper includes the statement of our central theorem, and
a number of significant supporting lemmas, along with brief summaries of
their proofs.

An extended version of the material in this paper can be found in a companion
technical report [9].

2 Gul, a User-Level Language

Gul is the user-level dependent grammar language that we will use throughout
the paper. Gul is a minimal language that omits many features of our parser
generator, Yakker; however, Yakker itself implements most of these features by
translation to Gul. Most of the features of Gul will be familiar to anyone who
has used a lexer or parser generator. The more unusual aspects are these:

– We support all context free grammars, even ambiguous grammars. We do
not require grammars to avoid left recursion, or be in a restricted class such
as the LALR(1) or LL(k) grammars.

– We include parsing constraints, @when(e), which act to prune possible parses.
– We support foreign parsers with the form @box(e). For example, e could be

a library function for parsing one of the hundreds of existing time and date
formats.

Gul Syntax. We define Gul’s syntax as follows:

G = (A1(x1) = R1), . . .
R = ε | c | (R | R) | (*x=eR) | (x=R R) | {e} | A(e) | @when(e) | @box(e)

A New Method for Dependent Parsing 381

A Gul grammar is a sequence of definitions for nonterminals in terms of right
sides. We use G, A, and R to range over Gul grammars, nonterminals, and right
sides, respectively. Gul right sides are based on regular expressions, including
the empty string ε, terminals c, alternation, and Kleene closure (written as
a prefix ‘*’). The Kleene closure performs a fold over a portion of the input.
The expression e provides an initial value, and right-side R plays the role of a
combining function: x is bound in R’s scope to the previous accumulating value
and R’s result provides the new value. The expression e is taken from some
general-purpose programming language, which we call the target language. The
right side (x=R1 R2) is the concatenation of R1 and R2, where x is bound to
the semantic value of R1 in the scope R2. Semantic actions are written {e}. Gul
nonterminals are defined with formal parameters ranging over semantic values,
and are applied to target-language expressions. Parsing constraints are written
@when(e), and foreign parsers are written @box(e).

Our techniques are not specific to any particular target language, but for the
sake of concreteness we will start by assuming some variant of the untyped,
call-by-value lambda calculus.

Notational Conveniences. In our examples, we will write concrete terminals
in quotes, for example, ‘b’ for the ASCII character lowercase b. We assume that
the target language has a distinguished unit value, written (), as well as booleans
and some notion of sets (used in the semantics of @box(e)). If the parameter
of a nonterminal A is not used in its right side, we omit it, and similarly we
write (R1 R2) for a concatenation which does not require binding. A Kleene-
closure which accumulates the unit value can be written (*R). We may omit
the parentheses in (*R), (*x=eR), (R1 R2), (R1 | R2), and (x=R1 R2) when
this does not cause confusion. We write @pos for a @box that evaluates to the
current input position, without consuming any input.

Gul Semantics. We now discuss the unusual aspects of Gul’s semantics (we
give the complete semantics in the technical report [9]). The semantics is defined
by rules assuming a fixed grammar, G, and a fixed input, D, and they make use
of the target language semantics via a partial evaluation function, eval(E, e),
where E is an environment mapping variables to values.

The rules define judgments of the form 〈E, i〉 R=⇒ 〈v, i′〉, meaning that right
side R evaluates to semantic value v in environment E, starting at input position
i and finishing at position i′. Evaluation can be nondeterministic: we can have
〈E, i〉 R=⇒ 〈v1, i1〉 and 〈E, i〉 R=⇒ 〈v2, i2〉 where v1 �= v2, or i1 �= i2, or both.

These three rules show that we use a standard call-by-value semantics:

eval(E, e) = v

〈E, i〉 {e}
==⇒ 〈v, i〉

〈E, i〉 R1==⇒ 〈v1, i1〉
〈E[x = v1], i1〉 R2==⇒ 〈v2, i2〉
〈E, i〉 (x=R1 R2)

=======⇒ 〈v2, i2〉

eval(E, e) = v, (A(x) = R) ∈ G

〈[x = v], i〉 R
=⇒ 〈v1, i1〉

〈E, i〉 A(e)
===⇒ 〈v1, i1〉

A semantic action {e} evaluates to the value of e without consuming input;
a concatenation (x=R1 R2) evaluates R1, binds its value to x, then evaluates
R2; and A(e) evaluates e, binds it to the formal parameter of A, then parses
according to the right side of A.

382 T. Jim and Y. Mandelbaum

The semantics of parsing constraints and foreign parsers are given as follows:

eval(E, e) = true

〈E, i〉 @when(e)
======⇒ 〈(), i〉

〈v, j〉 ∈ eval(E, e(D)(i))

〈E, i〉 @box(e)
=====⇒ 〈v, j〉

The rule for @when(e) states that no progress can be made unless the constraint
e is satisfied (there is no rule for the false case). To evaluate @box(e), we evaluate
e applied to the complete input D and the current input position i. The foreign
parser can be nondeterministic—it may return more than one result 〈v, j〉—but
we require j ≥ i. Note that the expression e can include values bound within
the grammar (e.g., by (x=R1 R2)). Furthermore, a foreign parser is free to
examine the complete input, and not just the portion between i and j. Note that
foreign parsers subsume semantic actions, parsing constraints, terminals, and
the empty string. Similarly, Kleene closure could be encoded using an additional
nonterminal. Howeve, we have chosen to include those forms natively for reasons
discussed at the end of Section 3.

We say that a grammar G accepts input D with value v if 〈·, 0〉 A1==⇒ 〈v, |D|〉,
where A1 is the implicit start symbol of G. While we restrict our definition
to parses which begin with an empty environment, in practice, we expect that
grammars will be written with respect to some distinguished environment Einit,
which may contain bindings for library functions, foreign parsers, etc. We can
simulate such an environment simply by substituting the contents of Einit into
our grammar before parsing.

We give an example Gul grammar in Section 4.2.

3 The Intermediate Language Gil

Gil is a lower-level language that corresponds closely to context-free grammars
extended to support semantic values.

Gil Syntax. We define Gil’s syntax as follows:

g = (A1 = r1), . . .

r = ε | c | (r | r) | (*r) | (r r) | {f} | A(farg, fret) | @when(fpred, fnext) | @box(fbox, fret)

Gil, like Gul, is based on regular expressions over terminals and nonterminals.
To distinguish between Gul and Gil we use g, r, and f to range over Gil gram-
mars, right sides, and target language expressions, instead of Gul’s G, R, and e.
Gil lacks the binding forms of Gul: nonterminals are defined without a formal
parameter, and there is no binding concatenation. Note that in Gil, nontermi-
nals, constraints and foreign parsers take two arguments, whose purpose we will
explain in a moment.

Gil Semantics. We give the full semantics of Gil in the technical report [9],
and note a few key points here in the main text. Gil right sides are semantic-
value transformers—they relate input values to output values—and thus, each
right side takes an implicit value parameter. Semantic actions are the base value

A New Method for Dependent Parsing 383

transformers, and our rule for concatenation shows that Gil threads values from
left to right across parses:

f(v) = v1

〈v, i〉 {f}−−→ 〈v1, i〉
〈v, i〉 r1−→ 〈v1, i1〉, 〈v1, i1〉 r2−→ 〈v2, i2〉
〈v, i〉 (r1r2)−−−−→ 〈v2, i2〉

Here are the rules for parsing constraints, nonterminals, and foreign parsers:

fpred(v)=true
(v′ =fnext(v))

〈v, i〉 @when(fpred ,fnext)−−−−−−−−−−−−→ 〈v′, i〉

farg(v)=v1, (A=r) ∈ g
〈v1, i〉 r−→ 〈v2, i2〉
fret(v)(v2)=v3

〈v, i〉 A(farg,fret)−−−−−−−−→ 〈v3, i2〉

〈v1, i1〉 ∈ fbox(v)(D)(i)
fret(v)(v1)=v2

〈v, i〉 @box(fbox,fret)−−−−−−−−−−→ 〈v2, i1〉
The first argument of a parsing constraint is used to compute a boolean de-
termining whether parsing will continue, while the second is for calculating the
transformed value. Nonterminals and boxes use their first argument to calculate
the argument of the nonterminal or box, and the second to merge the result
value with the original value. For example, if we define

zero = ‘0’ {λv.2 × v}, one = ‘1’ {λv.(2 × v) + 1},
then we can calculate the binary value of a sequence of 1s and 0s with

bits = {λv.0} *(zero(λv.v, λv.λv2 .v2) | one(λv.v, λv.λv2.v2)).

Here we use the action {λv.0} to initialize the value to 0. The function λv.v used
in the argument positions for zero and one simply propagates the current value
to those nonterminals. The function λv.λv2.v2 is used on the return, and it sets
the new current value to the value v2 returned from the nonterminal.

Finally, we can calculate a sum with this right side:

bits(λv.(), λv.λv1 .v1) ‘+’ bits(λv1.(), λv1.λv2.v1 + v2).

Here the value returned from the first parse of bits is bound to v1, and the
value from the second parse of bits is bound to v2. The function λv1.λv2.v1 + v2

performs the addition. Notice that there are two occurrences of (λv1), one for
each parse of bits; the semantics of nonterminals ensures that all occurrences of
v1 end up bound to the same value.

From these examples, we can see that the second argument of a nonterminal
acts something like a continuation. Unlike in continuation-passing style, however,
the continuation is not passed to the right side of the nonterminal; it is invoked
by the caller, and not the callee. This is necessary to achieve maximal sharing
to efficiently parse ambiguous grammars, which may require multiple parses
of a single nonterminal at the same input position and with the same input
parameter, but with different continuations.

In Gil, foreign parsers could subsume the empty string, terminals, and parsing
constraints, and Kleene closure could be encoded using an additional nontermi-
nal. We have retained these features because they are either supported natively
by existing context-free parsing engines or could be more efficiently implemented
on top of existing features than the more general @box.

384 T. Jim and Y. Mandelbaum

4 The Coroutine Transformation

In this section, we show how to compile a Gul rule with bindings, parsing con-
straints, and other semantic actions into a Gil rule in which all of the semantic
elements of the Gul rule have been gathered together into one Gil action (value
transformer). This single Gil action is used as a sort of coroutine by the parsing
engine as it processes the input according to the rest of the Gil rule.

4.1 Assumptions on the Target Language

The coroutine is a target language program that we build from the actions in the
original Gul rule. We treat these actions opaquely, in a cut-and-paste fashion;
consequently, we limit our assumptions about the target language and make our
techniques more widely applicable. Nevertheless, to build the coroutine, we will
have to assume that some language features are available. Essentially, we require
the target language to support some features of an untyped call-by-value lambda
calculus, as indicated by the following grammar of expressions:

e = x | (e e) | (λx.e) | (fun f x.e) | () | � | λ C | . . .

C = �.e | (C | C)

We are assuming that we can use target language variables and function applica-
tion, that we have first-class and recursive functions, and we have a distinguished
unit value (). We assume that we can use a countable set of labels, ranged over
by �; for concrete labels, we use underlined integers, like 3. We also make use
of a match-function construct: λ(�1.e1 | · · · | �n.en). Here, we expect that a
match-function is applied to a label �i, and the result of the application is the
corresponding case ei.1 Finally, we permit let expressions which can be desugared
in the standard way.

Note that we have not said that the target language is an untyped lambda
calculus—it is sufficient for these features to be embeddable in the target lan-
guage. In Section 5, we discuss the exact properties that we require of the target
language. When the target language is statically typed, there are additional
considerations, which we discuss in Section 6.

4.2 Coroutines by Example

To illustrate Gul-to-Gil compilation, we use an example adapted from the gram-
mar for the IMAP mail protocol:

literal = ‘{’ x=number ‘}’ p1=@pos *CHAR8 p2=@pos @when(p2 − p1 =x)

An IMAP literal is a number surrounded by braces, followed by a sequence of
characters (CHAR8s). We assume that number is a nonterminal that matches a
1 As a corollary of our correctness proof, we know that we cannot have match failures

in our construction.

A New Method for Dependent Parsing 385

sequence of ASCII digits and returns the equivalent semantic integer as its result.
Recall that @pos is an abbreviation for a foreign parser that matches the empty
string and returns the input position, so that p1=@pos binds p1 to the position
in the input just after the right brace, and p2=@pos binds p2 to a position after
some number of CHAR8s. The parse constraint @when(p2 − p1 = x) matches
the empty string if the predicate (p2 − p1 = x) returns true, and otherwise fails
to match anything.2

We transform this Gul rule into the following Gil rule:

literal = {finit} ‘{’ number(f1, f2) ‘}’ {f3} *CHAR8 {f4} @when(f5, f6)

(We will define finit and f1–6 shortly.)
Recall that every Gil rule is a value transformer, and the initial value of a rule

is its (implicit) parameter. Here, literal has no parameter, so we will use the unit
value () for its initial value. According to the Gil semantics and the right side
of the rule, we can begin parsing a literal by passing the initial value to finit,
which is itself a value transformer that we define as follows:

finit = λ−.λ 1.()
| 2.λx.λ 3.let p1 = pos();

λ 4.let p2 = pos();
λ 5.(p2 − p1 = x)
| 6.()

As we will see, finit is the coroutine that carries out all of the semantic actions
of the original Gul rule.

The Gil parsing engine starts parsing the rule by applying finit to the current
value, and expects to get a new value in return. finit takes the current value and
ignores it (λ−), since it is unit. finit returns a new value (beginning with λ 1)
that incorporates all of the semantic actions of the original Gul rule. The parser
will pass this value through a series of the other transformers f1–5 of the rule to
execute the semantic actions as required.

It is helpful to annotate finit to highlight the values that will be passed to
each transformer by the parser:

λ−. λ 1. () number

| 2.λx. λ 3.let p1 = pos();

λ 4.let p2 = pos();

λ 5.(p2 − p1 = x)
| 6. () literal-return

5,6

4

3

1,2

2 IMAP literals can be implemented more efficiently in Gul, but this simple version
serves better for our exposition. Also, this example can be generalized to support
repetition of arbitrary-length nonterminals by including a counter variable on the
Kleene-closure and comparing it to x in the constraint.

386 T. Jim and Y. Mandelbaum

Here, we have boxed each expression that will compute a return value for a
transformer. The label of a box indicates which transformer or transformers will
receive the value. For example, finit returns a value that will be passed to f1 and
f2, so we box the return value and label it with 1, 2.

Parsing continues by reading a left brace character, reaching number(f1, f2)
in the right side. We apply f1 to the current value (the 1,2-box) to calculate the
parameter to number. We define f1 simply as λv.v(1), so we end up applying
the value to 1, hence the (λ 1) case of the 1,2-box is evaluated. This returns (),
since number takes no parameters; we have boxed this and labeled it to indicate
that it will be the initial value passed to number.

The parsing engine uses f2 to handle the binding of x to the result of number.
We define f2 = λv.v(2), so we end up applying the 1,2-box to 2, and hence the
(| 2) case is evaluated. The parsing engine applies this to the result of number.
The number is bound to x and the 3-box becomes the new current value.

Next, the parsing engine applies f3 to the current value. We define f3 =
λv.v(3), so the current input position is bound to p1, and the 4-box becomes the
new value.

f4–6 are defined in the same way as f1–3, so the parsing engine ends up using
the 4-box to bind p2, and the 5,6-box to calculate the predicate (p2 − p1 = x).
If this evaluates to true, the engine uses the 5,6 box to calculate the final value,
(), of the successful parse; otherwise, this run of the parse fails.

4.3 Coroutines Formalized

We now formalize the translation of Gul into Gil. We begin with a property
that conservatively approximates when nonterminals and right sides make use
of Gul’s context-sensitive features. We term this property relevance.

Definition 1 (Relevance). The relevance of the nonterminals and right sides
of a grammar are defined as the least relations satisfying the following properties:

– A right side is relevant if it includes a target-language expression or a rele-
vant nonterminal.

– A nonterminal is relevant if its right-side is relevant.

Notice that bindings do not impact relevance, because what matters for parsing
is whether the binding is used.

Irrelevant and relevant right-sides are handled differently by our translation.
Therefore, to reduce the number of cases that need be considered during the
translation, we specify a normal form for grammars that places syntax-directed
constraints on the relevance of subterms. Normalized grammars use an extended
syntax that includes the forms (R1 R2), (*R) and A, which are only abbrevia-
tions in Gul.

Definition 2 (Normalization). A right side R is normalized if every subterm
R′ of R satisfies the following properties:

N1 If R′ is (x=R1 R2) then both R1 and R2 are relevant.
N2 If R′ is (R1 R2) then at least R1 is not relevant.

A New Method for Dependent Parsing 387

N3 If R′ is (R1 | R2) then R1 and R2 share the same relevance.
N4 If R′ is (*R1) then R1 is not relevant.
N5 If R′ is (*x=eR1) then R1 is relevant.
N6 If R′ is A then the right-side defining A in G is not relevant.
N7 If R′ is A(e) then the right-side defining A in G is relevant.

A grammar G is normalized if every rule satisfies the following properties:

N8 If (A(x) = R) ∈ G then R is relevant.
N9 If (A = R) ∈ G then R is not relevant.

Any right side R can be transformed into a normalized right side accepting the
same language, and similarly for any grammar. We illustrate such transforma-
tions in [9].

Once a grammar has been normalized, we can translate its rules into Gil as
follows. If R is not relevant, then R only uses syntax common to both Gul and
Gil—that is, R is a Gil right side. In that case, the Gul rule A = R is translated
to the Gil rule A = R. If R is relevant, then a Gul rule A(x) = R is turned
into a Gil rule by a sequence of transformations, as indicated in the following
definition. Below, we describe each of the transformations in turn.

Definition 3 (Gul-to-Gil Transformation). We say that a normalized Gul
grammar G transforms to a Gil grammar g, written G ⇒ g, iff

– If (A = R) ∈ G then (A = R) ∈ g.
– If (A(x) = R) ∈ G then (A = {λx.λ(C[[E [[R�]]]][·])} D[[R�]]) ∈ g, where R� =

L[[R]].

Labeling L[[·]]. Our first step is to add labels to Gul right sides. These labels
serve to synchronize the construction of coroutines with the insertion of dispatch
functions. The insertion of labels considerably simplifies the specification of those
two phases, which otherwise could not be specified independently.

We only need to add labels to relevant subterms of a right side. The labeling
transformation is given in Figure 1. We use underlined integers for labels, and use
� to range over integers used as labels. Each label identifies a control-flow point
in the right side: in �R, � is the control-flow point just before evaluating R, and in
R�, � is the control-flow point just after evaluating R. In the case for sequences,
we do not label subterm R1, because we are guaranteed, by normalization, that
it is irrelevant.

Erasing E [[·]]. The coroutine for a Gul right side is constructed exclusively from
relevant subterms of the right side. We can simplify the definition of coroutine
production if we first erase all subterms that are not relevant. A suitable trans-
formation is given in Figure 2. It has the important property that the resulting
right side exactly preserves the control-flow of the labels of the original right
side. The interesting case is for sequences, which, by normalization, are the only
place irrelevant terms may appear within relevant terms. Notice that the result
of erasing looks like a labeled, nondeterministic program.

388 T. Jim and Y. Mandelbaum

L[[R]] = R′ (R is normalized)

If R is not relevant, then L[[R]] = R.

Otherwise, L[[R]] is defined by the following
cases. In each case, � and �′ denote fresh
labels.

L[[{e}]] = �{e}

L[[A(e)]] = �A(e)�′

L[[@box(e)]] = �@box(e)�′

L[[@when(e)]] = �@when(e)�′

L[[(R1 | R2)]] = (L[[R1]] | L[[R2]])

L[[(R1 R2)]] = (R1 L[[R2]])

L[[(x=R1 R2)]] = �(x=L[[R1]] L[[R2]])

L[[(*x=eR)]] = �(*x=eL[[R]])�′

Fig. 1. Labeling right sides

E [[R]] = R′ (R is relevant and nor-

malized)

E [[�{e}]] = �{e}

E [[�A(e)�′]] = �A(e)�′

E [[�@box(e)�′]] = �@box(e)�′

E [[(R1 | R2)]] = (E [[R1]] | E [[R2]])

E [[(R1 R2)]] = E [[R2]]

E [[�(x=R1 R2)]] = �(x=E [[R1]] E [[R2]])

E [[�(*x=eR)�′]] = �(*x=eE [[R]])�′

Fig. 2. Erasing irrelevant subterms

Coroutine Production C[[·]]. Given a labeled Gul right side R, we construct the
match-cases of its coroutine using the function C[[·]], defined in Figure 3. The
function makes use of contexts defined by the grammar

K = [·] | x ([·]),
and we write K[e] to “fill the hole” of K, resulting in a target expression. Our
contexts are much simpler than typical contexts used in programming languages:
they have only two forms, and they cannot bind variables. C[[·]] is written in the
style of a continuation-passing transform, and we use contexts K as the continu-
ation argument of the transform. By using contexts, rather than target language
expressions, as arguments to the transform, we obtain a one-pass algorithm
whose result does not have administrative redexes [3].

The first case of Figure 3 handles semantic actions. Unlike in Gul, the results
of semantic actions are not passed to the parsing engine, but are instead passed
directly to the context K. This directness has some helpful implications for typed
target languages, which we discuss in Section 6. The case for constraints splits
its arguments into two match-cases, one for each label. The first evaluates the
predicate and the second (invoked when the predicate is true) evaluates the input
continuation. In Gul, constraints always have unit as their semantic value, so we
pass the continuation the unit value. The case for nonterminals is quite similar
to that of constraints, but reifies the continuation as a function expecting the
return value of the nonterminal. The case for box does the same.

A New Method for Dependent Parsing 389

C[[R]]K = C

C[[�{e}]]K = �.K[e].

C[[�@when(e)�′]]K =
(
�.e | �′.K[()]

)
.

C[[�A(e)�′]]K =
(
�.e | �′.λx.K[x]

)

where x is a fresh variable.

C[[�@box(e)�′]]K =
(
�.e | �′.λx.K[x]

)

where x is a fresh variable.

C[[(R1 | R2)]]K =
(C[[R1]]K | C[[R2]]K

)
.

C[[�(x=R1 R2)]]K =
�.let g x = λ

(C[[R2]]K
)
;

λ
(C[[R1]](g[·]))

C[[�(*x=eR)�′]]K =
�.let rec g x = λ

(
�′.K[x] | C[[R]](g[·]));

g(e)

Fig. 3. Coroutine production. In the last
two cases, g denotes a fresh variable.

D[[R]] = r (R is normalized)

If R is not relevant, then D[[R]] = R.

Otherwise, D[[R]] is defined as follows,
where d(�) = λv.v(�):

D[[�{e}]] = {d(�)}

D[[�@when(e)�′]] = @when(d(�),d(�′))

D[[�@box(e)�′]] = @box(d(�), d(�′))

D[[�A(e)�′]] = A(d(�),d(�′))

D[[(R1 | R2)]] = (D[[R1]] | D[[R2]])

D[[(R1 R2)]] = (R1 D[[R2]])

D[[�(x=R1 R2)]] = {d(�)} D[[R1]] D[[R2]]

D[[�(*x=eR)�′]] = {d(�)} *(D[[R]]) {d(�′)}

Fig. 4. The dispatching transformation

In the case of choice, we simply combine the match-cases of each branch into
a single set of match cases. In the case for binding, we reify the continuation
for R1 as a (bound) function before transforming R1. This detail prevents the
inadvertent capture of free variables in R2 by bindings in R1. Since we are
treating the semantic actions in Gul grammars opaquely (Section 4.1), we do
not have the luxury of alpha-varying right-sides. We do, however, assume the
ability to generate variables which are fresh with respect to target-language
expressions.

Finally, the case for fold performs a reification just as in the binding case. The
coroutine uses a recursive function, and combines the case for exiting the fold
with the cases of the fold body. We provide an initial value to x by applying the
function to expression e, and bind x to the body’s most recent semantic value
in each iteration of the function.

Dispatching D[[·]]. We transform the labeled Gul right side to a Gil right side
by replacing each label occurrence � with a dispatch function (λv.v(�)), which
“informs” the coroutine of the current position in the control-flow graph. The
transformation is given in Figure 4. As with labeling, we ignore R1 in the case
for sequences.

390 T. Jim and Y. Mandelbaum

5 Correctness

The goal of our coroutine transformation is to simplify both the task of imple-
menting a dependent parsing system and the task of proving said system correct.
This section discusses correctness: specifically, that the result of our transforma-
tion parses the same language and results in the same value as the original Gul
grammar, under appropriate conditions. We provide a summary of our correct-
ness results here, and leave an extended discussion to our companion technical
report [9].

An essential goal of our construction has been to avoid dealing with the details
of the target language, as we discussed earlier. Our metatheory retains this focus,
by stating and proving our theorem with respect to an abstract target language.
Instead of a concrete language, we have derived a set of properties that we require
of the evaluation function of the language in order to prove our soundness and
completeness result. These properties are given in [9], and are unexceptional.

In the theorem and lemmas that follow, we use some well-formedness con-
ditions for grammars, expressions, contexts and right-sides. These conditions
essentially ensure that variables and nonterminal names are properly bound.
Only well-formedness of contexts requires, in addition, totality from the context:
if its hole is filled with a closed value, it must evaluate to a value. The formal
definitions of well-formedness can be found in [9].

It is worth noting that we require call-by-value evaluation for the function
constructs used by coroutines. This constraint is needed for soundness because
we have defined Gul with a call-by-value semantics; a call-by-name semantics for
coroutines would result in some Gil parses succeeding where Gul parses fail. We
believe it would be straightforward to adapt Gul, Gil, and our transformation
to a call-by-name semantics.

Theorem 1, below, states the main result of this section.

Theorem 1. If G is normalized, WF(G), and G ⇒ g, then

1. If (A = R) ∈ G and (A = r) ∈ g, then for all inputs,
(a) if 〈·, 0〉 R=⇒ 〈v, i〉 then 〈(), 0〉 r−→ 〈(), i〉, and
(b) if 〈(), 0〉 r−→ 〈(), i〉 then 〈·, 0〉 R=⇒ 〈(), i〉.

2. If (A(x) = R) ∈ G and (A = r) ∈ g, and v closed, then for all inputs,
(a) if 〈[x=v], 0〉 R=⇒ 〈v′, i〉 then 〈v, 0〉 r−→ 〈v′, i〉, and
(b) if 〈v, 0〉 r−→ 〈v′, i〉 then 〈[x=v], 0〉 R=⇒ 〈v′, i〉.

In order to prove Theorem 1, we will state and prove stronger results for both
relevant and irrelevant terms. We need the stronger statements because the
theorem describes properties of whole rules, while we need to know properties
of individual right-sides. Yet, this change is not as easy as it might sound. The
coroutine transformation is not local to right sides, but global to an entire rule.
Therefore, we must relate the coroutine that would be generated for a particular
right-side in isolation to the coroutine of the rule of which the right side is part.

A first attempt might be to relate the coroutines with equivalence. However,
equivalence alone is too strict for relating our local and global coroutines because

A New Method for Dependent Parsing 391

the case for alternatives and fold both locally require a smaller coroutine—
one with fewer match cases—than that provided by the surrounding context.
Therefore, we extend equivalence to an ordering relation on expressions, similar
to subtyping. We call this relation sufficiency, written E 	 e ⇒ e′, and read “e
is sufficient for e′.”

Informally, an expression e is sufficient for an expression e′ if e can be used
in place of e′. In the study of subtyping, this is often called the principal of safe
substitution [16]. We capture this notion formally in the following lemma, which
we use throughout our proof of Lemma 3, below.

Lemma 1. Let e = λ(�1.e1 | . . . | �n.en). If WF(E, e) and E 	 e′ ⇒ e then
E 	 e′ �i ≡ e �i, for i = 1 to n.

We now state the two essential lemmas used in proving the soundness and com-
pleteness of our transformation of Gul grammars. Note that both of these lemmas
assume an implicit Gul grammar G, which is normalized and well-formed, and a
corresponding, implicit, Gil grammar g, for which G ⇒ g holds. The first lemma
addresses irrelevant right sides, on which the translation has little effect.

Lemma 2 (Translation correctness for irrelevant terms). If R is irrele-
vant and normalized, then

a) If 〈E, i〉 R=⇒ 〈v′, i′〉 then ∀v, 〈v, i〉 R−→ 〈v, i′〉.
b) If 〈v, i〉 R−→ 〈v′, i′〉 then v = v′ and ∀E, 〈E, i〉 R=⇒ 〈(), i′〉.
The second lemma addresses relevant right sides. Notice how we relate the cur-
rent Gil value v1 with the right-side’s coroutine via the sufficiency relation. Notice
further, though, that our result involves equivalence. This apparent strengthen-
ing is due to Lemma 1 above.

Most of the proof of this lemma involves reasoning about the evaluation be-
havior of the generated coroutines.

Lemma 3 (Translation correctness for relevant terms). If R is relevant
and normalized, WF(E, R), WF(E, K), v1 is closed, R� = L[[R]], and E 	 v1 ⇒
λ(C[[E [[R�]]]]K) then

a) If 〈E, i〉 R=⇒ 〈v, i′〉 then ∃v2. 〈v1, i〉 D[[R�]]−−−−→ 〈v2, i
′〉 and E 	 K[v] ≡ v2.

b) If 〈v1, i〉 D[[R�]]−−−−→ 〈v2, i
′〉 then ∃v. 〈E, i〉 R=⇒ 〈v, i′〉 and E 	 K[v] ≡ v2.

6 Typed Target Languages

Up until now we have assumed that our target language is untyped. However, we
have implemented our parser generator, Yakker, in a statically typed language
(OCaml), and this requires a few modifications to our coroutine transformation.

The principal difficulty is that many parsing engines need to manipulate
collections of semantic values, for example, on a semantic-value stack. ML’s
homogeneous data structures therefore require us to give our semantic values

392 T. Jim and Y. Mandelbaum

(coroutines) a uniform type. Since our coroutines return a number of types
(booleans for parsing constraints, foreign parsers, etc.), we must wrap them
in a union datatype.

This sort of type casting is standard in ML parsers. The coroutine transfor-
mation significantly simplifies matters, however, because the types of Gul-bound
variables do not appear in the coroutine union type: all bindings are implemented
by closures, which hide the types of free variables. This is a key reason that we
prefer coroutines over our original implementation of dependent parsing that
used explicit environments.

We use a separate union type for call arguments and return values, which we
call the value type. In Yakker, we currently require user annotations to specify
argument and return types, and we construct the value type and insert the
necessary injections and projections automatically. (The type annotations are
not strictly necessary, e.g., the dypgen parser generator is able to eliminate
them by type inference.) The coroutine type is then given as follows:

type value
type coroutine =
| Bool of boolean
| Value of value
| Return of coroutine → coroutine
| Box of int → input → (coroutine ∗ int) list
| Continue of int → coroutine

Next, we must add the necessary injections and projections to and from the
coroutine type. We add injections in the translation from Gul to the coroutine,
and we add projections in the translation from Gul to Gil. The addition of
injections is largely straightforward, and we only note that every nonterminal
must end with a Value injection, which can be accomplished by setting the
context used to construct the initial coroutine to Value[·].

Projections are similarly straightforward. First, change dispatch functions to
project from the Continue branch and then compose every dispatch with a pro-
jection appropriate to the location of the dispatch. So, for example, a dispatch
located in a @box would be followed by a projection from the Box branch.
Second, the initial coroutine must begin by projecting its argument from the
Value branch, as must all fret functions. For example, here is the typed rule for
nonterminals:

C[[�A(e)�′]]K =
(
�.Value(e) | �′.λValue(x).K[x]

)
where x is fresh.

Notice that the first match-case performs an injection, whereas the second case
uses pattern matching to perform a projection.

7 Evaluation

We have investigated several practical aspects of our method.

A New Method for Dependent Parsing 393

Implementing Gil. To evaluate the difficulty of extending a context-free pars-
ing algorithm to support the additional features of Gil, we implemented Gil on
four different back ends:

Scannerless Earley. Our main implementation is a transducer-based, scanner-
less Earley parsing engine. Earley parsing is a general context-free parsing
method that relies on nondeterministic, breadth-first exploration of possible
parses. The standard Earley algorithm implements parse recognition without
semantic values; we had to add semantic values to the algorithm, but this
was a straightforward modification. The overall structure of the algorithm
remained unchanged.

PEG. We have a Parsing Expression Grammar [5] interpretation of Gil. It sup-
ports all the features of Gil, but interprets choice as deterministic and pri-
oritized (first match). The coroutine translation is fully compatible with the
PEG back end, despite the different choice semantics, and required no mod-
ifications to be retargeted.

GLR. dypgen [13] is a GLR parser generator written in OCaml. dypgen has
native support for “flowing” a value through a parse and supports most
of the features of Gil3, so no modifications to dypgen were necessary to
support coroutines. However, implementing the semantics of Gil on dypgen
did require a fairly deep and precise understanding of dypgen’s semantics.

Memoizing Parser Combinators. Our final back end is a set of parser com-
binators based on Johnson’s memoizing, top-down parser combinators for all
context-free grammars [11]. Our combinators are fairly faithful to Johnson’s
originals, fixing one significant performance problem and adjusting for the
differences between Scheme and OCaml. The added support for Gil’s context-
sensitive features had a trivial impact on the difficulty of implementing the
combinators. As with the other back ends, the use of coroutines with parser
combinators required no modifications to the coroutine generator.

Although every parsing algorithm is different, our experience with these four
back ends convinces us that extending existing context-free parsing algorithms
to support the additional features of Gil is usually straightforward, and certainly
simpler than extending them with environments, as in our earlier work.

We found that to support Gil, the parsing engine needs three essential ele-
ments: (1) it must thread semantic values along with parses; (2) it must include
a mechanism for abandoning a parse; and (3) it must support nonterminals pa-
rameterized by semantic values. Note that (1) is usually already a feature of
any practical parsing tool. For (2), note that we are starting from parsing en-
gines which can already parse all context-free languages, including ambiguous
languages; such parsers necessarily include machinery for attempting multiple
parses and abandoning failed parses. Parameters for nonterminals (3) are very

3 Note that dypgen also has support for Gul-style dependency, implemented, in part,
with explicit environment manipulations. Nevertheless, our ability to target dyp-
gen based only on the Gil-relevant features demonstrates the applicability of our
coroutine translation to a GLR engine.

394 T. Jim and Y. Mandelbaum

naturally supported by top-down parsers. In bottom-up parsers they are less
common, but we did not find them difficult to implement with dypgen’s existing
features, for example.

Implementing the coroutine transformation. We use the coroutine trans-
formation in the front end of our Yakker parser generator. While our experience
is subjective, we found the translation from paper to software to be straightfor-
ward. The core of our actual implementation is nearly identical to the pipeline
presented in this paper. The major difference is that our front end supports
many features that we have not mentioned, and, consequently, we implemented
the coroutine transformation without normalization and erasing, at the cost of
additional cases to consider in the other stages of the transformation. Based
on our experience, we feel that the formal presentation in this paper contains
sufficient information for a practical implementation.

Use cases. Finally, we have written a variety of examples in Yakker’s Gul-
style language. These examples demonstrate the practical utility of the features
supported by Gul, lending weight to the argument for dependent parsing. In
addition, our ability to generate working parsers from our grammars demon-
strates that our technique works in practice, not just in theory. The examples
are described in [9], and include languages like OCaml, JavaScript, Python,
and Aurochs PEGs, and data formats including IMAP messages, IETF RFC
grammars, Mail.app mailboxes, and the many formats expressible in the PADS
languages.

8 Related Work

In earlier work, we presented a formalism that incorporated support for de-
pendent parsing, scannerless parsing, full context-free grammars and foreign
parsers [10]. That work focused on the correctness of the translation from gram-
mars to transducers and their execution using an Earley-style algorithm. This
work represents a significant advance beyond our previous work. It proposes a
fundamentally different, and more general, approach to the handling of depen-
dency, both in theory and in practice. Our separation of binding concerns into
a coroutine means that correctness proofs of other techniques can be free of all
the binding and environment concerns which played such a prominent role in
our previous work. The same benefits carry over to the implementation, as we
discussed in Section 7. In addition, our user-level language Gul differs from the
grammar language of our previous work in a number of useful ways. It adds
lexical scoping of variables, return values for nonterminals, binding to nested
right-sides, and a functional interpretation of binding. Also, boxes now have ac-
cess to the entire input. Moreover, our theory makes explicit the requirements we
place on the target language, rather than supposing an untyped lambda calculus.

There are many alternative grammar formalisms for supporting some degree
of context sensitivity. We have compared many of the closely related formalisms
with our dependent grammars in earlier work [10]. However, we add here a brief

A New Method for Dependent Parsing 395

comparison with definite clause grammars (DCGs) [15], a popular formalism
for specifying grammars as logic programs. While the power of a particular
formulation of DCGs depends on that of the underlying logic language, there
are certainly examples with as much power as Gul. Moreover, the support for
unification in logic languages provides a more flexible interpretation of variable
bindings. However, DCGs rely critically on the features and semantics of the logic
language in which they are embedded. In contrast, we are striving to provide
an approach to implementing dependent parsing that is compatible with many
different parsing algorithms, and applicable across many different programming
languages.

Of the existing approaches to handling dependent parsing, the most straight-
forward is to compile grammars into recursive-descent parsers where binding
and expressions in the grammar are copied directly into the target language of
the parser. This approach is taken, for example, by the compiler of the PADS
data description language [4]. In the case of embedded grammar languages, like
monadic parser combinators, the binding support of the target language is even
used directly [8,12].

However, this higher-order approach results in much of the grammar being
trapped under lambdas, thereby prohibiting useful analyses and transformations
which can be critical for performance or even termination (for example, the
recent left-corner transform for typed grammars [1]) [12,19]. Paterson proposed
the arrow notation as an alternative approach that allows such analyses and
transformations for arrow combinators [14]. In essence, the translation of the
arrow notation to (point-free) arrow combinators “pushes down” binders to the
computations that use them, while “lifting” the other elements (in our case,
grammar constructs) out from beneath the binders. All bound variables are
collected in a tuple which is threaded through the computation.

Our coroutine transformation can be viewed as an alternative translation to
point-free style that is better suited to our goal of supporting a wide variety of
target languages and reusing existing parsing engines. In particular, we want to
support table-based parsers (such as LR, GLR, and Earley parsers) and ML-
style typed languages. These parsers require a uniform type for semantic values.
Therefore, if we used environment tuples as semantic values, we would have
to wrap them in a union type, e.g., to place them on a semantic value stack.
Specifying such a union type would require either that the parser generator
discover the types of all bound variables or that the user write them down, both
of which we want to avoid; the former, so as not to further constrain the choice
of target language, and the latter, so as not to burden the user. In our method,
the bound values are stored in closures and hence their type is hidden from the
type of our semantic values (the coroutines).

Coroutines and parsing have a long history together. For example, Conway
originally introduced coroutines as a way to structure a one-pass compiler, in-
cluding lexer and parser [2], and Warren used them in evaluating the attributes
of an attribute grammar [20]. Our work differs from most uses of coroutines in an
essential technical detail. In the standard approach, there is dynamically only

396 T. Jim and Y. Mandelbaum

one instance of any given coroutine, and, at each invocation, it resumes from
the last point at which it yielded. Furthermore, the coroutine itself is responsi-
ble for maintaining its state (including its last code location). In contrast, our
coroutines are pure (assuming pure embedded actions), which has two major im-
plications: the parsing engine is responsible for maintaining the current version
of any coroutine, and it is free to duplicate a coroutine as necessary for exploring
different parsing branches.

Technically, our coroutines are closer to trampolined computations than to
classic coroutines. Our method of implementing our coroutines is very close to
the trampolined style of Ganz, et al., in which a computation is written such
that its control flow can be managed externally by a so-called trampoline [6].
Our approach is different in two ways. First, because of our concern for sharing
nonterminal parses, we needed to extend their method with a novel treatment
of call and return. Second, our trampoline—the parsing engine—has a closer
relationship with the coroutine. Instead of simply “bouncing” the coroutine at
each step, it guides the control flow with the integer argument to the coroutine’s
closure. Moreover, our coroutines communicate information back to the parsing
engine, whether for foreign parsers or for parsing constraints.

References

1. Baars, A., Swierstra, S.D., Viera, M.: Typed transformations of typed grammars:
The left corner transform. In: Proceedings of the Ninth Workshop on Language
Descriptions, Tools, and Applications, LDTA 2009, pp. 8–33 (March 2009)

2. Conway, M.E.: Design of a separable transition-diagram compiler. Commun.
ACM 6(7), 396–408 (1963)

3. Danvy, O., Filinski, A.: Representing Control: A study of the CPS transformation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992)

4. Fisher, K., Gruber, R.: PADS: A domain specific language for processing ad hoc
data. In: PLDI 2005: Programming Language Design and Implementation, pp.
295–304. ACM Press, New York (2005)

5. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL 2004: ACM Symposium on Principles of Programming Languages, pp.
111–122. ACM Press, New York (2004)

6. Ganz, S.E., Friedman, D.P., Wand, M.: Trampolined style. In: ICFP 1999: Pro-
ceedings of the Fourth ACM SIGPLAN International Conference on Functional
Programming, pp. 18–27. ACM, New York (1999)

7. HTML5 (including next generation additions still in development) Draft Standard
October 6 (2010), http://www.whatwg.org/specs/web-apps/current-work/

8. Hutton, G., Meijer, E.: Monadic parsing in Haskell. Journal of Functional Pro-
gramming 8(4), 437–444 (1998)

9. Jim, T., Mandelbaum, Y.: A new method for dependent parsing. Technical Report
TD:100334, AT&T Labs—Research (2011)

10. Jim, T., Mandelbaum, Y., Walker, D.: Semantics and algorithms for data-
dependent grammars. In: POPL 2010: Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
417–430. ACM, New York (2010)

http://www.whatwg.org/specs/web-apps/current-work/

A New Method for Dependent Parsing 397

11. Johnson, M.: Memoization in top-down parsing. Computational Linguistics 21(3),
405–417 (1995)

12. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht (2001)

13. Onzon, E.: Dypgen: self-extensible parsers and lexers for OCaml,
http://dypgen.free.fr/

14. Paterson, R.: A new notation for arrows. In: ICFP 2001: Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming, pp. 229–
240. ACM, New York (2001)

15. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis.
Artificial Intelligence 13, 231–278 (1980)

16. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
17. Scott, E.: SPPF-style parsing from Earley recognisers. In: Proceedings of the Sev-

enth Workshop on Language Descriptions, Tools, and Applications (LDTA 2007).
Electronic Notes in Theoretical Computer Science, vol. 203, pp. 53–67. Elsevier,
Amsterdam (2008)

18. Scott, E., Johnstone, A.: Right nulled GLR parsers. ACM Transactions on Pro-
gramming Languages and Systems 28(4), 577–618 (2006)

19. Swierstra, S.D., Azero Alcocer, P.R.: Fast, error correcting parser combinatiors: A
short tutorial. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS,
vol. 1725, pp. 112–131. Springer, Heidelberg (1999)

20. Warren, S.K.: The coroutine model of attribute grammar evaluation. PhD thesis,
Rice University, Houston, TX, USA (1976)

http://dypgen.free.fr/

	A New Method for Dependent Parsing
	Introduction
	Gul, a User-Level Language
	The Intermediate Language Gil
	The Coroutine Transformation
	Assumptions on the Target Language
	Coroutines by Example
	Coroutines Formalized

	Correctness
	Typed Target Languages
	Evaluation
	Related Work
	References

