A New Method for Determining the Michaelis Constant

By FELIPE DE MIGUEL MERINO
Departamento de Quimica Organica de la Escuela Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Madrid, Spain

(Received 11 March 1974)

A new method is described for evaluating the parameters K_{m} and V in the MichaelisMenten equation, and is illustrated with experimental data from the literature.

Many methods have been published for determining K_{m} and V in the Michaelis-Menten equation (e.g. Michaelis \& Menten, 1913; Hanes, 1932; Lineweaver \& Burk, 1934; Eadie, 1942; Walker \& Schmidt, 1944; Johansen \& Lumry, 1961; Wilkinson, 1961). Commonly the two parameters are determined jointly, though this is not necessarily advantageous; for partially purified or otherwise ill-characterized enzymes V is of little significance, whereas K_{m} ought to be reproducible and meaningful. Moreover, saturation functions similar to the Michaelis-Menten equation appear in some nonkinetic contexts, such as drug-receptor studies in pharmacology, where there is a useful quantity corresponding to K_{m}, but none corresponding to V. So there would be some value in a method that treated the determination of K_{m} and V as separate problems. Such a method is described in this paper.

Theory

The Michaelis-Menten equation may be formulated as follows:

$$
\begin{equation*}
v=\frac{V s}{K_{m}+s} \tag{1}
\end{equation*}
$$

where v is the velocity at a substrate concentration s. A plot of v against s is a rectangular hyperbola through the origin with asymptotes $s=-K_{m}$ and $v=V$. The point of intersection of the asymptotes may be found by an interesting projection of Tamarit (unpublished work), in which straight lines are drawn through the points $(s, 0)$ and $(0, v)$ for each of several (s, v) pairs, as illustrated in Fig. 1. This plot has several useful characteristics: it displays the relationship between the curve and its asymptotes; it provides a rapid method for drawing a rectangular hyperbola with any chosen asymptotes; and it permits the determination of K_{m} and V from any two experimental points. This last point will be developed in the remainder of this paper.

In principle, lines may be drawn as shown in Fig. 1 for any number of experimental points, but in practice the lines do not all intersect at a unique point on account of experimental error. So a computational method is necessary for evaluating K_{m} from more than two experimental points. Eqn. (1) may be written as follows:

$$
\begin{equation*}
V=v+\frac{K_{m} v}{s} \tag{2}
\end{equation*}
$$

and differentiated with respect to s to give:

$$
\begin{equation*}
0=v^{\prime}-\frac{K_{m}\left(v-s v^{\prime}\right)}{s^{2}} \tag{3}
\end{equation*}
$$

Fig. 1. Relationship between a rectangular hyperbola and its asymptotes
For a rectangular hyperbola through the origin, given by $v=V s /\left(K_{m}+s\right)$, the asymptotes are $s=-K_{m}$ and $v=V$, and they intersect at the point $\left(-K_{m}, V\right)$ in the second quadrant. Any line through this point intersects the s and v axes at points $\left(s_{i}, 0\right)$ and $\left(0, v_{i}\right)$ that correspond to a point (s_{i}, v_{i}) on the hyperbola. This plot is based on unpublished work of Tamarit.

Table 1. Values of R for data for the invertase-catalysed hydrolysis of sucrose

The table shows values of $s_{i}(\mathrm{~m})$ and v_{i} (from time-courses of change of optical rotation) for the invertase-catalysed hydrolysis of sucrose, given by Kuhn (1923). Values of R_{i} were calculated from eqn. (5), and the means of the various columns are given. The standard deviations of the R_{i} are given in the bottom line.

$s_{\boldsymbol{t}}$	0.1370	0.0995	0.0676	0.0262	0.0136	0.0100	0.0079
$\boldsymbol{v}_{\boldsymbol{l}}$	22.0	20.5	19.0	12.5	9.0	7.0	6.0
$\boldsymbol{R}_{\boldsymbol{i}}$		3.015	2.715	0.873	0.524	0.360	0.296
	4.151		3.382	0.888	0.539	0.366	0.302
	5.502	4.977		0.790	0.518	0.349	0.291
	4.564	3.371	2.039		0.718	0.405	0.343
	5.282	3.943	2.574	1.382		0.191	0.257
	4.927	3.641	2.360	1.062	0.260		0.470
	5.128	3.798	2.488	1.138	0.443	0.595	
$\boldsymbol{R}_{\boldsymbol{t}}$	4.926	3.791	2.593	1.022	0.500	0.378	0.327
S.D.	0.50	0.67	0.45	0.22	0.15	0.13	0.08

Fig. 2. Determination of K_{m} for the invertase-catalysed hydrolysis of sucrose

Values of \boldsymbol{R}_{t} from Table 1 are plotted against s_{t}. The line passes through the origin and has a slope of $1 / K_{m}$.
where $v^{\prime}=\mathrm{d} v / \mathrm{d} s$. Rearranging, we have:

$$
\begin{equation*}
R=s / K_{m} \tag{4}
\end{equation*}
$$

where $R=v / s v^{\prime}-1 . R$ is a dimensionless number that goes from zero to infinity as s goes from zero to infinity. Moreover, a plot of R against s is a straight line through the origin, with slope $1 / K_{m}$, and so it provides a convenient way of determining K_{m}, provided that R can be evaluated for each value of s.

For any substrate concentration s_{t}, with a corresponding velocity v_{l}, any other experimental point (s_{j}, v_{j}), where $s_{j} \neq s_{l}$, provides a value R_{l} given by:

$$
\begin{equation*}
R_{t}=\frac{v_{J}\left(s_{l}-s_{j}\right)}{s_{j}\left(v_{t}-v_{j}\right)}-1 \tag{5}
\end{equation*}
$$

For a total of n experimental points, at n different substrate concentrations, $(n-1)$ such values of R_{t} may be calculated for each value of i, and the mean \bar{R}_{l} of these may be used for plotting against s_{t}. In some
cases, obviously erratic R_{t} values (e.g. negative values, which are physically impossible) may need to be eliminated before calculating the means. As mentioned above, the slope of the plot is $1 / K_{m}$, and may be used to evaluate K_{m}, and the precision of the result may be judged from the scatter of points about the line. For computation, we may use the mean slope, and calculate K_{m} from:

$$
\begin{equation*}
K_{m}=n / \Sigma\left(R_{i} / s_{l}\right) \tag{6}
\end{equation*}
$$

If a value of V is required, it may be found by substituting the value of K_{m} into eqn. (2) for any experimental point. More accurately, this may be done for all n observations, and V taken as the mean.

An Example

To illustrate the method we may evaluate K_{m} from some values of s and v given by Kuhn (1923) for the hydrolysis of sucrose catalysed by invertase. The data are given in Table 1, together with the R values calculated from them. We may note that the values of R_{t} in each column are not all equal, as they would be in an error-free experiment. Moreover, the scatter in each column, as estimated by the standard deviations, is not constant, but decreases fairly steadily with s_{t}. In other words the \bar{R}_{t} values are not of uniform variance (homoscedastic); but R_{t} / s_{t} does appear to be reasonably homoscedastic, and so the formula given in eqn. (6) is correct. It gives a value of $K_{m}=0.0262 \mathrm{M}$ for these data. The values of \bar{R}_{i} are plotted against s_{t} in Fig. 2, and give a good straight line through the origin. This indicates a high degree of precision in the results.

I am especially grateful to Dr. Bliss and Dr. Tamarit for their help and advice. I am also most grateful to the Referee, for his very considerable help in improving the presentation of the ideas expressed in this paper.

References

Eadie, G. S. (1942) J. Biol. Chem. 146, 89-93
Hanes, C. S. (1932) Biochem. J. 26, 1406-1421
Johansen, G. \& Lumry, R. (1961) C. R. Trav. Lab. Carlsberg 32, 185-214
Kuhn, R. (1923) Hoppe-Seyler's Z. Physiol. Chem. 125, 28-92

Lineweaver, H. \& Burk, D. (1934) J. Amer. Chem. Soc. 56, 658-666
Michaelis, L. \& Menten, M. L. (1913) Biochem. Z. 49, 333-369
Walker, A. C. \& Schmidt, C. L. A. (1944) Arch. Biochem. 5, 445-467
Wilkinson, G. N. (1961) Biochem. J. 80, 324-332

