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A new method for error modeling in the kinematic calibration of redundantly 

actuated parallel kinematic machine 
 

Lei-Ying He1• Zhen-Dong Wang1• Qin-Chuan Li1• Xin-Xue Chai1 

 
 
 
 

 

Abstract: This paper presents a new method for error modeling 

and studies the kinematic calibration of redundantly actuated 

parallel kinematic machines (RA-PKM). First, a n-DOF 

RA-PKM is split into several n-DOF non-redundantly actuated 

sub-mechanisms by removing actuators in limbs in an ergodic 

manner without changing the DOF. The error model of the 

sub-mechanisms is established by differentiating the forward 

kinematics. Then, the complete error model of the RA-PKM is 

obtained by a weighted summation of errors for all 

sub-mechanisms. Finally, a kinematic calibration experiments are 

performed on a 3-DOF RA-PKM to verify the method of error 

modeling. The positioning and orientation error of the moving 

platform is replaced by the positioning error of the tool center 

point, which was reduced considerably from 3.427 mm to 0.177 

mm through kinematic calibration. The experimental results 

demonstrate the improvement of the kinematic accuracy after 

kinematic calibration using the proposed error modeling method.  

 

Keywords: Error modeling, Redundant actuation, 

Sub-mechanism, Kinematic calibration 

 

1 Introduction1  
 

Recently, the redundantly actuated parallel kinematic 

machines (RA-PKMs) have received much more attention 

because actuation redundancy may eliminate singularities, 

enlarge the usable workspace, and improve the stiffness in 

different configurations [1-4]. The actuation redundancy in 

parallel mechanisms can be classified into two types: (1) 

in-branch redundancy where passive joints are actuated, 

and (2) additional branch redundancy where extra actuated 

limbs are added to the minimal number of limbs needed. 

The latter was preferred by many researchers because of 

better force distribution and higher stiffness. This paper 

focuses on the latter type of RA-PKMs. 

Kinematic calibration of RA-PKMs has been proved to 

be an efficient method to improve accuracy [5], which can 

be divided into three categories, namely, constrained 

calibration, self-calibration, and external calibration. 

Constrained calibration methods keep some kinematic 

parameters of the mechanism constant in the calibration 

[6-8] and therefore has less need for additional measuring 
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devices. Self-calibration uses internal sensors to measure 

the pose of the moving platform [9, 10], which is cheap in 

cost and can be achieved online. However, neither the 

self-calibration method nor the constraint calibration 

method can identify all parameters. External calibration, 

which employs devices such as laser trackers [11], ball 

bars [12, 13], and vision systems [14-16] to acquire the 

pose of a parallel mechanism, is widely applied in 

calibration. For kinematic calibration of RA-PKMs, 

external calibration is a more suitable method as it does 

not require mechanical constraints or extra sensors on 

passive joints. Normally, the external calibration 

procedure consist of four steps [17, 18]: error modeling, 

error measurement, parameter identification, and 

parameter compensation. 

The error modeling is to establish the mapping between 

geometric errors and pose errors of a manipulator or 

machine, which is fundamental in kinematic calibration. 

There are two main ways to establish the error model of 

the mechanism. The first method integrates error models 

of each limbs considering geometry constraints. The error 

modeling of each limb can be generally established based 

on Denavit–Hartenberg (D-H) convention [19], 

product-of-exponentials (PoE) formula [20], and screw 

theory [21, 22]. The method is simple and has clear 

physical meaning. The second method uses the 

differential-to-kinematic equations, which may yield error 

models expressed in analytical form for specific PKMs. 

Hollerbach and co-workers [23, 24] successfully obtained 

the error model of a mechanism with the implicit loop 

method. However, the redundant limbs with actuatoin of a 

RA-PKM introduces more couplings and error sources, 

which cause great difficulties. Thus, the error modeling of 

a RA-PKM is still an open problem that has not been well 

addressed[25, 26].. 

The main contribution of this work is to propose a 

simple and effective error modeling method of RA-PKMs. 

The approximate errors of the RA-RAM are calculated by 

using the errors of all non-redundantly actuated 

sub-mechanism. A 3-degrees-of-freedom (3-DOF) 

RA-PKMs is taken as an example to verify the error 

modeling method proposed for kinematic calibrations. The 

rest of paper is organized as follows: In Section 2, a 

systematic process for kinematic error modeling of the 

non-redundant PKM and RA-PKMs is first introduced. 

Section 3 gives a case study for error modeling of a 

3-DOF 2UPR-2RPU RA-PKM. Kinematic calibration 
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experiments of the 2UPR-2RPU RA-PKM are described 

in Section 4. Finally, conclusions are drawn. 

 

2 Kinematic error modeling 
 

The errors of RA-PKM are derived from two parts: 

geometric errors and non-geometric errors. The Geometric 

errors include deviations in the length of the connecting 

rod and the joint axis, and zero errors in the actuated joint; 

while the non-geometric errors are generated from heat, 

backlash, et.al. Generally, the non-geometric errors are too 

complicated to model analytically, and the kinematic 

errors in geometric errors are the most important error 

source for the RA-PKM. Therefore, only the kinematic 

errors were taken into account in error modeling in this 

paper. 

 

2.1 Kinematic error modeling of non-redundantly 

actuated PKMs 

A PKM without redundantly actuated limbs (Fig. 1) has n 

(n ≤ 6) DOF and n actuated limbs. Two hinge points for 

each limb, denoted Ai and Bi (i = 1, 2, …, n), are attached 

to the fixed base and the moving platform, respectively. 

The geometric centers of the platforms are the points 

labeled OA and OB. Normally, to derive the error model of 

a mechanism, the kinematic model of the mechanism 

should be established first. The fixed frame {OA-xyz} is 

located at the fixed base, and the moving frame {OB-uvw} 

is attached to the moving platform. For n actuated limbs, n 

constraint equations can be obtained as 

 

( ), , 0  1,2,...  ,
i

q i n= =iG x y          (1) 

 

where qi and xi represent the driving parameter and 

kinematic parameters of the i-th limb, respectively, and y 

denotes the pose of the moving platform. Combining the n 

constraint equations yields the kinematic model of the 

parallel mechanism 

 

   ( )T
, ,F= =Ωy r q x ,           (2) 

 

where  0 0 0, ,x y z=r and Euler angle  , ,  =Ω  

denote the position and orientation of the moving frame 

with respect to (w.r.t) the fixed frame, respectively. 
T

1 2[   ... ]
n

q q q=q  and T T T T
1 2[   ... ]

n
=x x x x  are the 

driving and kinematic parameters of the mechanism, 

respectively. 

x

y
z
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w

v

u
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Limb 1

Limb i

P

r
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Moving platform

.   .   .   .   .
Fixed 
base  

Fig. 1. Schematic of the kinematic vector loops of a PKM. 
 

Because the driving errors are determined by the 

actuation system, usually they can be ignored to simplify 

the error model [30]. Expanding both sides of Eq.(2) to 

first-order in perturbation, the error transfer matrix can be 

obtained as 

 

              
Ω

 ,
r

 = 
 =  Ω

r J x

J x
               (3) 

 

where  0 0 0, ,x y z =   r  and  , ,   =   Ω  

represent the position error and orientation errors of the 

moving platform, and x represents the kinematic errors of 

the mechanism. The matrices Jr and JΩ are the Jacobian 

matrices of r and Ω relative to the kinematic errors x. 

Normally, to facilitate the measurement of parameters 

during calibration, a tool is mounted on the moving 

platform. The position vector of the tool center point P 

(TCP) is denoted by p and written 

 

,
c

= +p r Rl                  (4) 

 

where lc represents the position vector of the TCP w.r.t. the 

moving frame, and R denotes the rotation matrix of the 

moving frame w.r.t. the fixed frame, which is always 

expressed as 

 

 

( ) ( ) ( )
     c s s -     c s s +

     s s s -      s s -

                                 

w v u

c c s c s s

s c c c c c s

s c s c s

  

           
           

    

=

 
 =  
 − 

R R R R

   (5) 

 

Introducing the first-order terms in a perturbation on 

both sides of Eq. (4) yields the error model of the PKM 

 

           .
c c

 =  +  + p r Rl R l            (6) 
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Hence ΔR can be written as 

 

  0     -     

( )       0      - ,

        0

 
 

 

  
  =   =  =   
 −  

Ω ΩR R S R R    (7) 

 
where S(ΔΩ) is an antisymmetric matrix about the vector 
ΔΩ. Thus Eq. (6) can be simplified as 
 

        Ω

( )

     ( )

     

c c

r c c

 =  +   + 

=  −  + 

= 

p r Ω Rl R l

J x S Rl J x R l

J ε
       (8) 

 

where Δlc is the position vector error of the tool w.r.t 

moving frame, ( ) Ω   
r

= −  cJ J S Rl J R , and 
TT T    =   cε x l . The error model of the mechanism is 

finally obtained. 
 

2.2 Kinematic error modeling of RA-PKMs 

A RA-PKM (Fig. 2) has n-DOF but has m (m > n) actuated 

limbs. For the m actuated limbs, the m constraint equations 

are similar to Eq. (1); that is, 

 

        ( ) ( ), 0,   1,2,... .
i

q i m= =iG x , y         (9) 

 

.   .   .   .   .
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An

An+1An+j
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Fig. 2. Schematic of a kinematic vector loops of a RA-PKM. 
 

For a n-DOF RA-PKM with m actuated limbs, a 

non-redundantly actuated sub-mechanism is constructed 

by selecting n actuated limbs and regarding the remaining 

m-n limbs as passive limb. There are total n

m
N C=  

sub-mechanisms (Fig. 3) can be constructed. Some 

sub-mechanisms are identical if the RA-PKM is 

symmetrical. 

Limb n+1
Moving

 platform

Limb 2

Limb i

Limb n

Limb n+2

Limb n+j

Limb m

Fixed 
base

Actuated limb

Passive limb

Redundantly actuated 
mechanism

Moving
platform Limb n+1Limb 1

Limb 2
Limb i

Limb n

Limb n+2

Limb n+j

Limb n+m

Fixed
base

Moving
platformFixed

base

Limb n+1Limb 1

Limb 2

Limb i

Limb n

Limb n+2

Limb n+j

Limb m

Limb h
Limb h+1

Limb h+n

Limb h+n+1

Moving
platform Limb n+1Limb 1

Limb 2

Limb i

Limb n

Limb n+2

Limb n+j

Limb m

Limb m-n
Limb m-n+1

Fixed
base

j = 1

j = 2

j = h

j = N

Sub-mechanism  N

Sub-mechanism  h

Sub-mechanism  1

Limb 1

 
Fig. 3. Different sub-mechanisms with different actuated limbs. 

 

The constraint equations similar to the Eq. (1) can be built 

for each sub-mechanism. Assuming each sub-mechanism 

has only one pose in a specific configuration, N poses of 

the moving platform can be calculated by solving all 

normal constraint equations. Therefore, in a specific 

configuration, the N position vectors of the TCP can also 

be calculated from 

 

      ( ) ,    ( 1,2,..., ),
j j j c

j N= + =p q r R l       (10) 

 

where rj and Rj are respectively the position vector and the 

rotation matrix of the moving frame w.r.t. the fixed frame 

for the j-th sub-mechanism. 

The nominal driving parameter is calculated according 

to the pose of mechanism and kinematic model. The 

position of the TCP calculated through different direct 
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kinematic model will be different due to the existence of 

kinematic error. In order to solve this problem, the driving 

parameters of redundant limbs are adjusted accordingly to 

make the mechanism meet the constraint. As a result, it is 

assumed that there is no conflict between kinematic limbs 

and no deformation of parts in the process of calibration. 

Since the sub-mechanism is a part of RA-PKM indeed, the 

position of the TCP calculated from different 

sub-mechanism is supposed to be consistent. 

The N position vectors Pj is supposed to be  

 
           1( ) ( ) ( )

j N
= =p q p q p q             (11) 

 

And the actual position of TCP can be expressed as 
 

            
1

1

( ) ( ),

    . . 1

N

j j

j

N

j

j

s t





=

=

=

=





p q p q

             (12) 

 

The error model of the RA-PKM is then written as 
 

             
1

,
N

j j

j


=

 = p p                (13) 

 

that is, the position error of the RA-PKM can be regarded 

as a linear combination of the errors of its 

sub-mechanisms. The error model of all its 

sub-mechanisms should be developed first to establish the 

error model of the RA-PKM. For the j-th sub-mechanism, 

as in Eq. (8), the error model can be expressed as 

 
         ,    ( 1,2,..., ),

j j j
j N =  =p J ε         (14) 

 
where Jj and Δεj are the error transfer matrix and 
kinematic error of the j-th sub-mechanism, 

and
TT T  

j
  =   cε x l . 

By substituting Eq. (14) into Eq. (13), the complete 
error model of the RA-PKM is written 

 

       
1 1

 =
N N

j j j j j

j j= =

 =  =    p p J ε J ε      (15) 

 

wherein Δε includes kinematic errors Δx of the m limbs 

and the geometric error Δlc of the tool, Δlc represent the 

position vector error of the tool w.r.t moving frame. 

Therefore, before using Eq. (15), all Δεj should be 

augmented with Δε, and correspondingly, the Jacobian 

matrices Jj also need augment by inserting zero-row 

vectors. In this way, the error modeling method applicable 

to non-redundant PKM can also be used in the error 

modeling of RA-PKM. 
 

3 Example 

 

In this section, the kinematic calibration of a 3-DOF 

RA-PKM is studied to verify the proposed method of 

error modeling. 

 

3.1 Descriptions of the 3-DOF RA-PKM 

 

RPU  Limb UPR Limb

Fixed base

tool

R

P

U

Moving platform

R 

P 

U 

RPU  Limb
UPR  Limb

 
Fig. 4. Virtual prototype of the 2UPR-2RPU RA-PKM. 

 

A 2UPR-2RPU RA-PKM (Fig. 4) is composed of a fixed 

base, a moving platform, a tool, two UPR limbs, and two 

RPU limbs. The tool is connected to the center of the 

moving platform. Each limb has one universal (U) joint, 

one prismatic (P) joint, and one revolute (R) joint, the 

prismatic (P) joints with underline denote actuated joints. 

The difference in these two types of limbs is the way they 

are installed.  

In Fig. 5, the geometrical centers of the universal joints 

are the points A1, A2, B3, B4, whereas the intersection 

points of the axes of the revolute joints and the axes of the 

prismatic joints are the points A3, A4, B1, B2. The TCP of 

the mechanism is denoted as P. Points Ai (i = 1, 2, 3, 4) 

and Bi (i = 1, 2, 3, 4) form two separate squares, the 

centers of which are points OA and OB, respectively. The 

fixed frame {OA-xyz} is established at the origin OA with 

its z-axis pointing downward and perpendicular to the 

fixed base; the x and y axes are parallel to OAA3 and OAA2, 

respectively. The moving frame{OB-uvw} is assigned to 

point OB with the w-axis vertical to the moving platform; 

the u and v axes are parallel to OBB3 and OBB2, 

respectively. The axes of the revolute joints and the 

universal joints in the fixed base (Fig. 5) are parallel to 

either x or y axis, whereas the axes of the joints in the 

moving platform are parallel to either u or v axis. 
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Fig. 5. Schematic diagram of the 2UPR-2RPU RA-PKM. 

 

Generally, the length of link OAAi and OBBi (i = 1, 2, 3, 

4) are supposed to be a and b, respectively. However, the 

lengths of all links may not be equal to their ideal values 

in practice because of manufacturing and assembly errors. 

In the following sections, the actual lengths of OAAi and 

OBBi (i = 1, 2, 3, 4), the zero position errors of the four 

P-pairs, and the position vector of the TCP w.r.t. the 

moving frame are considered to be identified through a 

kinematic calibration. 
 

3.2 Kinematic Modeling 

The 2UPR-2RPU RA-PKM is constructed by adding a 

RPU extra-actuated limb on the PKM 2UPR-RPU (Fig. 6). 

Like the original mechanism, the 2UPR-2RPU RA-PKM 

has 3 DOF: translation along the z-axis, rotation relative to 

the y-axis, and rotation relative to the u-axis [31]. The 

angle of rotation relative to the y-axis (u-axis) is denoted 

by θ (ψ). Because the constraints of R-pairs on the UPR 

limb, vector OAOB is always perpendicular to vector B3B4, 

the angle of rotation relative to the y-axis is equal to the 

angle of rotation relative to the v-axis, as shown in Fig. 6. 

So that the rotation matrix R between the two coordinate 

systems can be written as 

 

     

( ) ( ) ( )0

cos sin sin sin cos

0 cos sin

sin cos sin cos cos

w v u
 

    
 

    

=

 
 = − 
 − 

R R R R

    (16) 

 

Because of the constraints provided by the RPU limbs, 

observing the machine in the direction of A2OA, the vector 

r which represents the translation of the moving platform 

(Fig. 6) is written 
 

              T
tan 0 .z z=r            (17) 

 

 

x

z

y

OA

A4 A3

B4 B3

B3'

OB

Initial
configuration 

General
configuration

 

v

w

u

r
θ

ψ

B4'

θ

z

 
Fig. 6. Kinematic relationship. 

 

Considering OAAiBiOB (i=1,2,3,4) as a closed-loop 

vector kinematic chain, the constraint equations of the 

machine can be expressed as 
 

         ,     1,2,3,4 ,
i i i

i= + − =r a q Rb        (18) 

 

where ai and qi denote the link OAAi and AiBi w.r.t. the 

fixed coordinate system, bi denotes the link OBBi w.r.t. the 

moving coordinate system. Taking into consideration the 

manufacturing and assembling errors, the actual length of 

link OAAi and OBBi is not always equal to designed values, 

the constraint equations are then written as 
 

( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

20 2
1 1 1

2 2

1 1 1

20 2
1 1 2

2 2

2 2 2

2 20 2
1 1 3 3 3

2 20 2
1 1 4 4 4

( ) tan sin sin

cos cos sin 0

( ) tan sin sin

cos cos sin 0

( ) tan cos sin 0

( ) tan cos sin 0

q q z b

a b z b

q q z b

a b z b

q q z a b z b

q q z a b z b

   

  

   

  

   

   

 + − − −

 − − − =

 + − +


− − − + =


+ − − + − − =


+ − + − + + =

(19) 
 

where δqi
0 (i = 1,2,3,4) denote the zero position errors of 

the four P-pairs, and 

 

 
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

[    ] [1  1  1  1] [    ]

[    ] [1  1  1  1] [    ]

a a a a a a a a a

b b b b b b b b b

   
   

= +

= +
  (20) 

 

where δai and δbi denote the error of the lengths of OAAi 

and OBBi (i = 1, 2, 3, 4). 

For the 2UPR-2RPU RA-PKM, the pose of the moving 

platform can be described using three quantities, namely, z, 

θ, and ψ. As mentioned above, four sub-mechanisms can 

be constructed by selecting three of four limbs as actuated 

limbs (Fig. 7). From the figure, limb 4, 1, 3, and 2 are set 

as the passive limb corresponding to the four 

sub-mechanisms labeled as SMj, (j = 1,2,3,4). There are 

two types of sub-mechanisms, specifically 2UPR-RPU 

and 2RPU-UPR. Both SM1 and SM3 are of type 
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2UPR-RPU PKM, whereas SM2 and SM4 belong to type 

of 2RPU-UPR PKM. 

The kinematic model of a sub-mechanism can be solved 

theoretically. Hereinafter, SM1 is used as an example to 

briefly describe the procedure in solving the kinematic 

model. For SM1, the first three constraint equations in 

Eq. (19) are used. Rewriting and simplifying Eq. (19) 

gives 

 

( ) ( )
( )

( )

2
2 1 1 2 1 2 1 2 1 2

2
2 2 1 1 1 2 2 2 1 1 1 2 1 2

2
3 3 3

2 cos

( ) 2 sin

sin cos / 2

b k b k b b t b b a a

a b k a b k a b a b t b b a a t

t b t k a





 

 + = + − +
 − = − − +


+ = −

   

(21) 
 

where 0 2 2 2( ) ,  ( 1,2,3)
i i i i i

k q q a b i= + − − = and 

/ cost z = . Rearranging the first two equations of 

Eq. (21) yields a cubic equation in t2, 

 

( ) ( )2 6 2 4 2 2 2 2
3 4 1 3 1 2 4 5 22 2 4 0,g t g g g t g g g g t g+ − + − − + = (22) 

 

where 1 2 1 1 2g b k b k= + ,
2 2 2 1 1 1 2g a b k a b k= − 3 1 2g b b= + ,

4 2 2 1 1g a b a b= − , 5 1 2 1 2( )g b b a a= + . From the third 

equation of Eq. (21), θ is obtained, 

 

    
2

6 6 3

6 3

2 4 4 ( )
2arctan( )

2( )

t t g g b

g b


 + +
=

+
      (23) 

 

where ( )2
6 3 32g t k a= − . Since the value z and θ have 

been calculated, ψ follows, 

 

          2
3 1 5arccos( ) / 2 .g t g g = −          (24) 

 

Hence, the position vector of TCP of SM1 is denoted as 

 

              ( )1 1 1 ,= + cp q r R l              (25) 

 

where r1 and R1 are determined by the obtained values z, θ, 
and ψ; here lc denotes the actual vector of the TCP w.r.t. 

the moving frame. It should be noted that there are 

multiple solutions when solving high order equations in 

calculation. It is necessary to select the real pose solution 

of the mechanism under a specific configuration. 
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P RU
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Sub-Mechanism   3

（2UPR-RPU）  
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Limb  4 

Limb  3 

Limb  2 Limb  1

Limb  4 

Limb  3 

Limb  2 Limb  1

Limb  4 

 
Fig. 7. Four different sub-mechanisms. 
 

Similar to SM1, the kinematic model of the remaining 

SMj, (j = 2, 3, 4) can be deduced by the same procedure, 

and their corresponding position of TCP, denoted p2, p3, 

and p4, can also can be determined. 

As introduced in the section 2.2, the actual position of 

the TCP can be written 

 

             ( ) ( )
4

1

1
.

4
j

j=

= p q p q             (26) 

 

Here all the coefficients ωj are set to 0.25 to simplify the 

calculation according to the constraint condition in Eq. 

(12).  
 

3.3 Error modeling 

Given the new proposed kinematic model, the error model 
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of the 2UPR-2RPU RA-PKM can be presented eventually. 

By expanding both sides of Eq. (26) to first-order in 

perturbation, the error model of the RA-PKM is written in 

the form of 

 

             ( )
4

1

1
.

4
j

j=

 = p p q              (27) 

 

As mentioned above, the error models of the four 

sub-mechanisms can be obtained firstly by taking a 

first-order perturbation expansion on both sides of 

Eq. (25); that is, 

 

    ( ) ,    1,2,3,4.
j c c

j =  +   +  =p r Ω Rl R l   (28) 

Considering the first-order terms on both sides of Eq. (16) 

and (17), Δr and ΔΩ are written as 
 

    

 

T2

T

tan / cos 0

0

z z z  

 

  =   +    

 =  

r

Ω
   (29) 

 

Substituting Eq. (29) into Eq. (28), the error model of the 

j-th sub-mechanism becomes 

 

     

2tan / cos 0

0 0 0

1 0 0

0 0 0

( ) 0 1 0

0 0 1

j

c c

z z

z

 






   
    =    
     

   
   −  +    
      

p

S Rl R l

     (30) 

 

The first sub-mechanism SM1 is used as an example to 

outline briefly how the solution of the error transfer matrix 

is obtained. The Eq. (19) can be rewritten as 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

2 2 22
1 1 1 1 1 1

2 2 22
2 2 2 2 2 2

2 22
3 3 3 3 3

2 22
4 4 4 4 4

t s s c c s

t s s c c s

t c s

t c s

h q z b a b z b

h q z b a b z b

h q z a b z b

h q z a b z b

     

     

  

  

 = − − − − − −

 = − + − − − +


= − − + − −


= − + − + +
 (31) 

 

Considering the first-order linear perturbations on both 

side of Eq. (19), we get 
0

1 1 1 1 1 1 1 1 1

0
2 2 1 2 1 2 2 2 2

0
3 3 1 3 1 3 3 3 3

0
4 4 1 4 1 4 4 4 4

0

0
 ,

0

0

A a B b C q D z E F

A a B b C q D z E F

A a B b C q D z E F

A a B b C q D z E F

 

 

 

 

  +  +  +  +  +  =


 +  +  +  +  +  =


 +  +  +  +  +  =
  +  +  +  +  +  =

(32) 

 

Where 

 

0
; ; ;

      ( 1,2,3,4)

; ; ;

i i i

i i i

i i i

i i i

i i i

h h h
A B C

a b q
i

h h h
D E F

z  

   = = =    =
   = = =   

   (33) 

The error model of SM1 can be obtained by solving the 

first three equations of Eq. (32), 

 

           T 0
1 1  z     = J x            (34) 

 

where J1
0 denote the mapping relation between 

 T
  z      and the kinematic error of SM1. 

T0 0 0
1 1 2 3 1 2 3 1 2 3q q q a a a b b b  =          x

, and Δqi
0 is the zero position errors of the four P-pairs; Δai 

and Δbi are the position errors of the U joint and R joint in 

the fixed base and moving platform, respectively. Note 

that the error parameter Δqi
0 stems from the assembly 

precision of the prismatic joint rather than the actuated 

system. Substituting Eq. (34) into Eq. (30), the error 

model of the j-th sub-mechanism is simplified giving 

 

              1 1 1, = p J ε                 (35) 

 

where 
TT T

1 1 ,
c

  =   ε x l  denotes the kinematic error 

parameters of SM1, and Δlc denotes the coordinate error of 
the TCP w.r.t. the moving frame, J1 denote the error 
mapping matrix. 

Similar to SM1, the error model of the remaining SMj (j 

= 2, 3, 4) using the same procedure, and their error 

transfer matrices J2, J3, and J4 can be obtained. Finally, 

from Eq. (27), the complete error model of the RA-PKM 

is written as 

 

         
4 4

1 1

1 1
 =

4 4
j j j

j j= =

 =  =   p p J ε J ε      (36) 

 
 

4 Kinematic calibration experiments 

 

To validate the error model of the 2RPU-2UPR RA-PKM, 

a kinematic calibration experiment was performed (Fig. 8). 

A laser tracker (Leica-AT901-LR, Leica Geosystems AG) 

was used to measure the 3D coordinate values of the TCP. 

The measurement uncertainty for the laser tracker is 

±15 μm + 5 μm/m within a 2.5 m × 5 m × 10 m volume. 

The repeatability of the prototype of the 2RPU-2UPR 

RA-PKM was measured less than 0.15 mm. 
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Fig. 8. Schematic diagram of the error measurement. 
 

4.1 Measurement of errors of the TCP 

The nominal and measured positions of the TCP w.r.t. 

the fixed frame (Fig. 8) were obtained from 

 

              
N

M

c

t t m

= +

= +

p r Rl

p r R l
                (37) 

 

respectively, where Rt and rt are the rotation matrix 

and the translation vector of the measurement frame 

{Om-xmymzm} w.r.t. the fixed frame, and lm is the 

measured position vector of the TCP w.r.t. the 

measurement frame. Given the kinematic parameters 

and driving parameters, the nominal position of the TCP 

pN was calculated by the kinematic model as mentioned 

above. The measured value of the TCP pM was obtained 

using the laser tracker. The measurement error at one 

configuration was defined as the difference between the 

nominal and measure values of the TCP. For example, 

for the k-th calibration point, its measurement error was 

expressed as 

 

( ), ,    1,2...
k k k c t t m k

k K= + − − =e r R l r R l ,    (38) 

 

where K is the number of calibration points. 

Supposing Rt and rt can be estimated accurately by the 

laser tracker, their errors were not taken into account 

during the kinematic calibration, and hence 

 

            .
k k k

 =  = e p J ε              (39) 

 

The whole measurement error of all calibration points 

for calibration can be obtained by stacking the 

coordinate vectors Eq. (38), that is, 

 

         
TT T T

1 2 .
K

 =  e e e e           (40) 

 

Substituting Eq. (39) into Eq. (40) yields 

 

    
TT T T

1 2 ,
K

  =    =  e e e e M ε     (41) 

 

where 
TT T T

1 2 K
 =  M J J J  is the identification 

matrix, and Jk (k = 1, 2…K) is the Jacobian matrix of 

measurement error of the TCP relative to the kinematic 

error given in Eq. (36). 
 

4.2 Parameters identification 

During error identification, the object function and the 

fitting method need to be established. The error 

identification of the PKM can normally be converted to 

a minimization problem, 

 

              arg min =ε e .              (42) 

 

The minimization is a nonlinear least square problem 

with an iterative relation. To solve this problem, various 

methods have been proposed, such as the 

Levenburg–Marquardt algorithm [32], the Kalman 

filtering approach [33], and the Ridge estimation method 

[34, 35]. Here it given as 

 

          ( ) 1T T
1 ,

t t

−

+ =  + ε ε M M M e        (43) 

 

where t represents the iteration times, M denote the 

identification matrix which is defined in Eq. (41). The 

termination condition of the iteration is that the error 

residual ||Δe|| or the change in Δε between two adjacent 

iterations is sufficiently small. 

For the selection of the measurement configurations, 

the calibration is well performed in a sensitive area of 

the entire workspace, for example, the boundary of the 

workspace. The workspace of the 2UPR-2RPU machine 

with a tool of [0 0 125]T is shown in Fig. 9. Three 

ellipses on the surface that fit the shape of the boundary 

of the workspace were constructed with the intention to 

take a certain number of calibration points distributed 

evenly on these ellipses. 

To avoid parameter identification failure caused by 

the singularity of the identification matrix, the number 

of calibration points also has certain requirements. Since 

there are in total 15 kinematic errors considered in the 

error model, here 16 calibration points on each ellipse, 

totally 48 calibration points in the workspace (Fig. 9), 

were selected. That is, the number of calibration points 

is more than twice the number of error parameters to be 

identified, thus ensuring the validity and accuracy of the 

calibration[36]. 
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Workspace

Calibration point

 
Fig. 9. Distribution of the calibration points within the 
workspace. 
 

4.3 Experiments 

A calibration experiment on the parallel manipulator 

using a laser tracker was performed (Fig 10). The 

rotation matrix Rt and translation vector rt of the 

measurement frame {Om-xmymzm} w.r.t. the fixed frame 

was measured to be 

 T

0.0008 0.9999 0.0025

0.9999 0.0008 0.0045

0.0045 0.0025 0.9999

50.402 2348.299 35.523

t

t

− 
 =  
 − 

= − −

R

r

 

 

which is obtained through the fitting of plane, and the 

unit of rt is millimeter. Table 1 lists the values of the 

nominal kinematic parameters for this mechanism. The 

initial kinematic errors are set to zero. 

 

2UPR-2RPU 

RA-PKM

Laser tracker

Measurement

system

control

system

Reflector 

 
Fig 10 Kinematic calibration experiment. 
 

Table 1 Kinematic parameters of the mechanism 

Parameters a b 
Range of qi 
(i =1,2,3,4) 

lc 

values/mm 150 60 [245,345] [0 0 125]T 

 

The calibration comprises four steps: error modeling, 

error measurement, parameter identification, and error 

compensation, and its procedure is shown in Fig. 11. 

 

 
Fig. 11. Procedure of the kinematic calibration. 
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4.4 Results and discussion 

Since the machine has three DOFs: two rotational DOFs 

and one translational DOF, three independent motion 

parameters ψ, θ and z are sufficient to describe the 
configuration of the moving platform. However, it is 

impossible to compare these three parameters in a space 

uniformly, because their dimensions are not the same. 

Alternatively, the position vector of the TCP p = [px py 

pz]T is something should be paid more attention to when 

calibrating, whose error denotes the position error and 

orientation error of moving platform. In this paper, the 

position vector p, which can be expressed by three 

motion parameters ψ, θ and z using Eq. (4), replaces 

these three parameters to analyze the accuracy of the 

machine. The position error and orientation error of 

moving platform can be denoted by the position error of 

TCP. 

Fig. 12 shows the errors of 48 calibration points 

(position errors of TCP) before and after calibration. The 

mean, maximum, and standard derivation of the position 

residual decrease from 3.427 mm to 0.177 mm, from 

4.740 mm to 0.384 mm, and from 0.547 mm to 

0.084 mm, respectively. In other words, the calibration 

significantly reduces the residuals. 

 

Calibration point No.

E
r
r
o

r
 e

k
 (

m
m

)

Mean = 3.427
Max = 4.740
Std. = 0.547Mean = 0.177

Max = 0.384
Std. = 0.084

 
Fig. 12. Position errors before and after calibration. 
 

The kinematic error parameters of the 2UPR-2RPU 

RAPAM are identified as 

 

 
 
 

 

T

T

T0

T

0.406 0.985 1.376   1.554

0.062 0.190 3.266    2.480

0.086 2.116 2.365    1.695

0.095 0.204 0.087

 = − −

 = −

 = −

 = −c

a

b

q

l

 

For an actual mechanism, Δa and Δb are the 

deviations of distances from the U-pair and R-pair to the 

center of the fixed base and moving platform, 

respectively, Δq0 is the error of the origin position of the 

P-pair, and Δlc the position deviation of the TCP w.r.t. 

the moving platform. The calibration result shows that 

Δa1 and Δa2 were smaller than Δa3 and Δa4 because the 

accuracy of the length of link A1A2 is easier to ensure 

than that of A3A4 in the assembly process. Also, Δb3 and 

Δb4 were larger than Δb1 and Δb2 because the former 

represent the position error of the U joint and the latter 

are those of the R joint. Recall that, in terms of 

manufacturing and assembly, the U-pair is more 

complex than the R-pair.  

To verify the effect of compensation with the 

identified kinematic parameters in the whole workspace, 

some test points, either inside or outside the calibration 

area, are chosen. The distribution of test points (Fig. 13) 

show that their distribution characteristics are basically 

the same as those of the calibration points. The 

difference is the distance from the point to the boundary 

of the workspace. Of course, these test points are still in 

the workspace. The driving parameter is calculated with 

the compensated kinematic model; the result is 

presented in Fig. 14.  

Calibration
 point

Test point 
(inside)

Test point
(outside)

x/mm
y/mm

z/
m

m

 
Fig. 13. Distribution of test points 
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Fig. 14. Compensation results in different areas. 
 

Table 2 Statistics of the positioning error after compensation 

Statistical 
values 

No. 
Mean 
/mm 

Std. 
/mm 

Maximum 
/mm 

Calibration 
points 

48 0.177 0.084 0.384 

Inside 
testing 
points 

48 0.366 0.126 0.764 

Outside 
testing 
points 

48 0.439 0.190 0.845 

 

In the test area outside the calibration area, the mean 

and maximum values of the deviation in position 

decreased from 3.570 mm and 4.767 mm to 0.440 mm 

and 0.845 mm, respectively. With the test area inside the 

calibration area, the mean and maximum values of the 

deviation in position decreased from 2.832 mm and 

3.606 mm to 0.366 mm and 0.764 mm, respectively. The 

conclusion drawn from Fig. 14 is that, regardless of the 

location of the test point, the deviation in position is 

significantly reduced after compensation, thereby 

demonstrating the effectiveness of this calibration in the 

whole workspace and showing that in practice the 

proposed error model is suitable for the 2UPR-2RPU 

RA-PKM. Nevertheless, the compensated result from 

the test area is seen to be not as ideal as in the 

calibration area. Also, the compensation results of the 

test points inside the calibration area are slightly better 

than those outside the calibration area. The reason is that 

the closer the test point is to the boundary of the 

workspace, the more significant the effect of sources of 

error on the deviation in position. 

Although, the error of the RA-PKM will decrease 

dramatically after kinematic calibration using the 

proposed error modeling, some challenges and 

limitations still exist. The accuracy of the error model is 

dependent heavily on the distribution of weight 

coefficients ω  in Eq. (13). Actually, the weight 

coefficients ω are affected both by the stiffness and 

geometric errors of the links. However, their clear 

relationship is difficult to establish. For simplification, 

equal weight coefficients were determined in the paper, 

which is an approximate and simple solution, but still 

effective for kinematic calibration. To further improve 

the accuracy of the error model, a more approximate 

influence of weight coefficients should be studied in the 

future work. 
 

5   Conclusions 

 

A new error modeling method for kinematic calibration 

of RA-PKMs is presented considering the kinematic 

errors. The complete geometric error model of a 

RA-PKM can be calculated as the weighted summation 

of error models of all non-redundantly actuated 

sub-mechanisms which keep the same mobility as the 

PA-PKM. The proposed method is verified to be 

effective through a kinematic calibration experiment 

using a 3-DOF 2UPR-2RPU RA-PKM. It is shown that 

the mean positioning error of the TCP of the RA-PKM is 

decreased from 3.427 mm to 0.177 mm after kinematic 

calibration, which shows the improvement of the 

accuracy of the RA-PKM. Additionally, the result of the 

experiment also indicates the effectiveness of the 

parameters compensation after kinematic calibration in 

the whole workspace. 
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