
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 

 

1

Manuscript received June 5, 2007 
Manuscript revised July 25, 2007 

A  New Method for Image Contrast Enhancement Based on 

Automatic Specification of Local Histograms  

Iyad Jafar                          Hao Ying 

  
Wayne State University,  Detroit, MI, USA 

 

 

Summary 
The histogram equalization (HE) method is widely used for 

image contrast enhancement. While it can enhance the overall 

contrast, the inherent dependence of its transformation 

function on the global content of the image limits its ability to 

enhance local details at the same time. Furthermore, using the 

method to reform the image histogram into a uniform one 

usually results in a significant change in the image brightness 

and saturation artifacts, specifically in low contrast images. 

One extension for HE is the local histogram equalization 

(LHE) method that processes the image on block-by-block 

basis and uses the transformation function of HE for that block 

to modify its center pixel. Although the LHE method can 

enhance image details, it often causes unacceptable and 

unnatural image modification due to noise amplification, 

especially in smooth regions. In this paper, we propose a new 

local enhancement method referred as Automatic Local 

Histogram Specification (ALHS). The ALHS method is applied 

locally such that for each pixel in the image a 

neighborhood/block of specific size is defined with that pixel 

being at the center of the block. Next, the ALHS method 

modifies the graylevel value of this central pixel by specifying 

an output histogram and applying the histogram matching 

algorithm. The core idea of the ALHS method is specifying the 

best output histogram for the block associated with each pixel. 

To specify the output histogram, a minimization problem for a 

functional with a constraint that preserves the mean brightness 

of that block is solved. The specified histogram in the ALHS 

method provides the maximum graylevel stretching and 

preserves the mean brightness of the block. This is reflected on 

the processed image by the enhancement of its contrast, 

preservation of its outlook, and minimum introduction of noise 

and overenhancement artifacts. The ALHS method is fully 

automatic and provides an analytic solution for the output 

histogram as a function of the mean brightness of the block. 

Our experimental evaluation on a set of benchmark images 

involved the use of two quantitative measures and visual 

assessment. The evaluation results show that the ALHS method 

outperforms both the HE and LHE methods. 
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1. Introduction 

The purpose of image contrast enhancement methods is 

to increase image visibility and details. Numerous 

enhancement methods have been proposed in the 

literature. This primarily includes: histogram processing 

methods [1]–[11], graylevel compression and stretching 

using exponentials and polynomials [1,2,12], spatial 

statistical filtering [13,14,15], and frequency domain 

processing techniques [16,17]. The enhancement 

efficiency, computational requirements, noise 

amplification, user intervention, and application 

suitability are the common factors to be considered when 

choosing from these different methods for specific image 

processing application. The histogram equalization (HE) 

method is probably one of the most known contrast 

enhancement methods for graylevel images due to its 

simplicity and effectiveness [1]-[4]. In principle, the 

histogram equalization method increases the contrast of 

the image by transforming its histogram into a uniform 

one that spans the full graylevel range. This is based on 

the assumption that for maximum transfer of information, 

the perceived distribution (histogram) of graylevels in an 

image should be uniform. It can be easily shown that the 

for discrete 8-bit grayscale images, the HE method 

achieves this by using the transformation function  

 [0, 255]

r

i

w=0

s = T(r)  = 255 h (w) dw = 255 CDF (r) , r × × ∈∑     (1)  

which is simply the cumulative distribution function 

CDF(r) of the normalized original image histogram hi(r) 

[1,2].  

Despite the simplicity and the implied definition of 

the transformation function in the histogram equalization 

method, there are some problems associated with it.  

First, the histogram equalization method results in a 

significant change of the mean brightness of the image. 

This is because the histogram equalization method 

reforms the original image histogram into a uniform 

distribution which has a mean at the middle of the 

graylevel range regardless of the original mean 

brightness value. Consequently, this may distort the 

original image outlook, especially for low contrast 

images. Second, the HE method may result in 

overenhancement and saturation artifacts due to the 

stretching of the graylevels over the full graylevel range. 

Third, the HE transformation function is capable of 

improving the global contrast of the image and may or 
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may not increase the local contrast since it is based on 

the global content of the image. The problem of mean 

brightness change in the histogram equalization method 

has been addressed in [6]-[10]. Generally, these methods 

operate by dividing the graylevel range into two or more 

sections using some threshold values, and then they 

equalize each section independently using the histogram 

equalization method. Although they are proven to 

preserve the mean brightness to some extent, they are 

applied globally and they are still based on the original 

histogram equalization method, which means they may 

produce overenhancement and saturation artifacts within 

each graylevel section. To extend the method of 

histogram equalization for local enhancement, adaptive 

or local histogram equalization (LHE) was proposed 

[4,11,18]. In the LHE method, each pixel in the image is 

modified by initially defining a rectangular block of 

specific size in its neighborhood, such that the pixel is at 

the center of the block. Afterwards, the HE 

transformation function of that block is used to change 

the center pixel. This operation is repeated for all the 

pixels in the image by moving the center of the block. 

This extension of histogram equalization allows each 

pixel to adapt to its neighborhood, so that high contrast 

can be obtained for all locations in the image. However, 

the LHE method usually results in an unnatural 

modification in the processed image due to excessive 

noise amplification, especially in smooth regions. Also, 

the LHE method produces edge artifacts at sharp 

boundary points where the local transformation changes 

abruptly due to rapid change of the local histogram [19]. 

This is because the LHE method is only the local 

extension of the HE method, thus it inherits its 

overenhancement and saturation problems that mainly 

result from the absence of a limit on the amount of 

stretching of the graylevel values.  

The histogram matching (HM) is another method for 

contrast enhancement. In this approach, the contrast of 

the original image is modified by specifying the 

histogram of the desired image. Actually, the histogram 

equalization method can be viewed as a special case of 

histogram matching with the desired histogram being the 

uniform distribution. After the specification of the 

desired histogram, the original histogram is transformed 

to the desired one using the approach detailed in [1,2]. In 

this approach, each input graylevel r is mapped to the 

output graylevel s such that the difference between the 

corresponding values of the input and output cumulative 

distribution functions is minimized. In other words, for 

each  r we are looking to find a s such that    

[0, L]
s = arg min  T(r)  -  G(s)  s  ∈       (2)  

where T(r) and G(s) are the cumulative distribution 

functions of the input and desired histograms, 

respectively, and L is the maximum available graylevel. 

Histogram matching is a powerful technique but with 

one major inherent issue; how to define the desired 

histogram? This is usually application dependent and 

requires user involvement which renders the HM method 

inefficient for automatic contrast enhancement. 

In this paper we propose a new method; Automatic 

Local Histogram Specification (ALHS), that 

automatically provides the optimal contrast enhancement 

with minimal distortion in the image appearance. 

Basically, the ALHE method is applied locally just like 

the LHE method. However, to modify the pixel at the 

center of the block, a desired output histogram for that 

block is specified then the histogram matching algorithm 

(HM) [1,2] is used to find the new value of the pixel. 

The core idea in the ALHS method is the specification of 

the desired histogram for each block. The ALHS method 

automatically defines this histogram such that it is the 

closest to the uniform distribution as in the HE method, 

and at the same time has a mean brightness with 

minimum deviation from the mean brightness of the 

original block. These requirements are formulated into a 

mathematical optimization problem whose solution 

specifies the desired histogram in an analytic expression 

that is a function of the block original mean brightness. 

The rationale behind this approach is that preserving the 

mean brightness of the block when modifying central 

pixels enhances the image contrast, preserves its global 

outlook, and minimizes the introduction of noise and 

overenhancement artifacts The ALHS method was 

compared to the HE and LHE methods by processing a 

set of benchmark images and using visual assessment 

and two quantitative measures. The evaluation results 

proved the ALHS method to be better than the HE and 

LHE methods.  

The rest of this paper is organized as follows. In 

Section 2, we study the formulation of the objective 

function in the ALHS method and its solution. Section 3 

presents some experimental results and section 4 

concludes the paper. 

2. The ALHS Method 

The enhancement of image quality is tricky in the sense 

that it should require minimum user involvement and 

improve the image details without modifying its outlook 

and introducing artifacts. According to the discussion in 

the introduction section, this is not achievable using the 

HE or HM methods separately. However, it sounds 

intuitive to use the principles from both methods to 

design a proper enhancement method. This is the basic 

idea for our method, the Automatic Local Histogram 

Specification (ALHS), where we first exploit the idea of 

the histogram equalization method to automatically 

specify the desired block histogram hd(s) that would 
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preserve the block original mean at each pixel in the 

image, and then we apply the histogram matching to 

perform the required graylevel transformation. In the 

following two subsections we will discuss the details of 

the ALHS method.  

2.1 Specifying the Desired Block Histogram hd(s) 

The specified histogram for the image blocks should 

have comparable enhancement capabilities as the HE and 

LHE methods and at the same time preserves the visual 

quality of the original image.  Accordingly, we propose 

that the desired block histogram should be as close as 

possible to the uniform distribution but with mean value 

that is equal to block original mean. We claim that this 

approach will result in a histogram that is able to limit 

the amount of graylevel stretching, thus it will able to 

reduce the overenhancement artifacts and noise 

amplification while enhancing the image contrast and 

details. Mathematically, let’s assume that the input and 

output graylevels, r and s, respectively, can be 

represented as continuous random variables that have 

been normalized, i.e. 0 ≤ r ,s ≤ 1. Then, the desired block 

histogram should have the following properties: (i) the 

mean or the expected value of the desired block 

histogram µd is equal the original block mean brightness 

µo, that is   
1

d d o 
0

 μ s h (s) ds = μ= ∫                       (3) 

(ii) The total difference between the desired block 

histogram hd(s) and the uniform distribution  

[0,1] uh  (s)  = 1  ,  s  ∀ ∈            (4)  

is minimum. In other words, the expression   
1

 2
d  u

0
 (h (s)  h  (s))  ds−∫                        (5)  

should be minimized. (iii) The desired block histogram 

should satisfy the two basic properties of the probability 

density functions, which are  

[0,1]dh (s)  0 ,  s  ≥ ∀ ∈            (6) 

1

d
0

h (s) ds =  1 ∫                          (7) 

Accordingly, we formulate the following objective 

function  
1

2
d d  u

0

1 1

1 d  2 d o
0 0

J(h (s)) = (h (s) - h (s))  ds  +

 λ h (s) ds - 1 + λ s h (s) ds - μ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫

∫ ∫
       (8)  

with λ1 and λ2 being the Lagrange multipliers associated 

with the constraints in (7) and (3), respectively. The 

optimal desired block histogram hd(s) is the one that 

minimizes the functional J(hd(s)) defined in (8). This can 

be solved directly using the calculus of variations; 

however, the global point-wise inequality constraint in 

(6) makes the direct use of the Euler-Lagrange multiplier 

theorem inapplicable. Instead, we have to use the 

principle of the slack functions [21], which starts by 

finding the optimal solution of the objective function 

without considering the inequality constraint, and then it 

checks if this solution satisfies that constraint. If this is 

the case, then no further actions are required and the 

solution represents the desired block histogram that we 

are looking for. On the other hand, if the inequality 

constraint is not satisfied by the given solution, a special 

procedure is followed to define a composite extremum 

curve consisting of pieces of arcs along which the usual 

Euler-Lagrange equation holds and pieces of arcs along 

which the inequality constraint holds. Based on this, let’s 

first ignore the inequality constraint and use the calculus 

of variations and the Euler-Lagrange equation  

h 'hd d

d
J  - ( J ) 0

dr
=                             (9) 

to minimize the functional in (8). The term 
h
d

J  is the 

partial derivative of J with respect to hd. Similarly, 'h
d

J  

is the partial derivative of J with respect to the first 

derivative of hd. Accordingly, we obtain the general 

solution for hd(s) to be  

[0,1]d 1 2h ( s ) = 1 - 0.5( s ) , s  − ∈λ λ             (10) 

Next, applying the constraints in (3) and (7) to (10), we 

can find the values for λ1 and λ2 and define the desired 

block histogram as  

[0,1]d oh ( s ) = 1 + 6( 0.5)(2s-1) , s  − ∈μ        (11) 

Next, we have to check if this expression is positive, i.e. 

satisfies the inequality in (6), over the full graylevel 

range [0,1] and for all possible values of original block 

mean brightness µo. This can be done easily by some 

mathematical manipulation where we solve for the 

values of µo that would make (10) less than zero. 

Unfortunately, this manipulation reveals that the 

specified histogram in (10) violates the inequality in (6) 

when the original block mean µo is in the range of (0,1/3) 

or (2/3,1). Let’s refer to these two cases as Case 1 and 

Case 3, respectively. On the other hand, when µo falls in 

the interval [1/3,2/3] (call it Case 2), the solution for the 

desired histogram is always positive in the range [0,1], 

thus the inequality is not violated. Figure 1 demonstrates 

how part of the desired block histogram is negative for 

Case 1 and Case 3, but it is not for Case 2.  

Consequently, we have to find the solution for Case 1 

and Case 3 as a composite curve that would clip the 

negative portion of the desired histogram to zero. Based 

on Figure 1, the composite desired histogram in Case 1 

will be defined as defined as  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 

 

4 

d
1

 h (s)  , 0 s
y (s) =  

 0       , s  

≤ ≤⎧
⎨ ≥⎩

δ
δ

                  (12) 

Similarly, the desired histogram in Case 2 is given by 

2
d

 0       , 0 s
y (s) =  

 h (s)  , s  

≤ ≤⎧
⎨ ≥⎩

θ
θ

                   (13)  

with δ and θ being the cutoff point between the two 

portions of the composite curves. The values of these 

two constants will be found based on the constraints in 

(3) and (7) once the solution is found. Now, according to 

the Lagrange multiplier theorem, at least the following 

condition  

d d i i d d

i

J(h (s), h (s)) = K ( h (s), h (s))δ λ δ∑        (14)  

has to be satisfied for an extremum to exist, with δJ and 

δKi are the variations for the functional J and the ith 

constraint Ki, respectively. So, we can now solve for the 

desired block histogram in Case 1 and Case 3 separately 

by plugging the definitions of the composite histograms 

for Case 1 and Case 3 in (14) and using the definition of 

the variation  

d d d d
0

d
F(h (s), h (s)) = F(h (s), h (s)) 

d =ε
δ ε

ε
    (15)  

for any functional F. Accordingly, the general shape of 

the desired block histogram in both cases will be  

2 )d 1h (s) = 1 + 0.5( s+λ λ                     (16)  

over the interval [0,δ] and [θ,1] in Case 1 and Case 3, 

respectively. Next, if apply the constraints in (3) and (7) 

over the specified interval in each case, we get the 

expression for the desired block histogram in for Case 1 

and Case 3 as listed in Table 1 (the reader is encouraged 

to check [21] for more details). As a result, given any 

normalized value for the block mean brightness falling in 

the range (0,1), we can now automatically provide a 

mathematical expression for the desired block histogram 

in the ALHS method. For the case when the block 

contains only one graylevel (this includes the cases when 

the mean brightness is 0 or 1), it is obvious that the pixel 

value at the center of the block should not be changed in 

order to preserve the original mean value. This implies 

the desired block histogram hd(s) would be the original 

block histogram ho(s) as shown in Case 4 of Table 1.   

The desired block histogram in the ALHS method is 

a straight line segment that either covers the entire 

domain, s ∈[0,1], as in case 2, or part of it as in cases 1 

and 3. If the mean block brightness is equal to 0.5, the 

desired block histogram reduces to a uniform distribution 

as in the histogram equalization method. The parameter δ 
in Case 1 and θ in Case 3 determine the cut-off point 

after (or before for Case 3) which the desired histogram 

hd(s) is clipped to zero. This situation happens because 

the mean of the input block is too low (Case 1) or too 

high (Case 3) to spread the original histogram of the 

block over the entire graylevel. This clipping property of 

ALHS and the dependence of the desired histogram on 

the original mean value enable the ALHS method to 

preserve the block mean brightness and reduce the 

amount of stretching. This is reflected on the output 

image by minimum change in its appearance and reduced 

noise amplification and overenhancement artifacts.  

 

Figure 1. The shape of the desired block histogram for different values 

of µo. 

2.2. Digitization and Histogram Matching  

The derivation of the desired block histogram in the 

previous section was under the assumption that the 

output domain s is a continuous random variable. 

However, this is not true for digital images. Thus, it is 

necessary to digitize the specified histogram before we 

proceed to the histogram matching step. This can be 

achieved using one of the methods described in [22]. In 

our implementation, we used the Equal Width Interval 

approach to digitize the s domain into 256 discrete levels 

(number of levels in 8-bit grayscale images).  

Once the discrete version of the desired histogram 

for the block is available, the histogram matching 

algorithm is carried out to define the transformation 

function that is to be used to modify the value of the 

pixel at the block center. However, the algorithm 

discussed in [1,2] requires that the cumulative 

distribution function of the desired histogram to be 

strictly monotonically increasing to avoid one-to-

multiple graylevel mappings. Apparently, the histograms 

specified in Case 1 and Case 3 violate this requirement. 

Accordingly, we have modified the original histogram 

matching algorithm intuitively such that for any input 

graylevel r* that could be mapped to more than one 

graylevel, it is mapped using one of the four rules listed 

in Table II, where s* represents the output graylevel. We  
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Table 1. The mathematical expressions of the desired histogram for  

the three different cases in the in ALHS method based on the original block mean uo. 
 

Case No. Condition Desired Block Histogram 

1 

 
uo   ∈  (0, 1/3) 

2

d

 -  -2δ ( s - δ ) , s  δ
h (s) = 

  0   ,  otherwise

⎧⎪ ≤
⎨
⎪⎩

 

where o= 3 δ μ  

2 uo  ∈  [1/3, 2/3] 

 

[0,1]

d o

 

h (s)= 1 + 6 ( μ - 0.5 ) ( 2s - 1 ) 

           ,  s  ∈
 

 

3 uo  ∈  (2/3, 1) 
d  -2

  0    , s  θ 
h  (s) = 

  2 ( θ - 1 )  ( s - θ ) , otherwise

≤⎧⎪
⎨
⎪⎩

 

where o= 3  - 2 θ μ  

4 

uo = {0,1} or the 

block contains a 

single graylevel 
d oh (s) = h (r),  r = s  ∀  

Table 2. Rules added to the histogram matching algorithm to solve  

the problem of one-to-multiple mappings. 

Case No.
Rule

No. 
Rule 

1 I If r* ≤  δ then s* = δ
 II If r*  > δ then s*  = r*

3 III If r*≤  θ  then s* = r*

 IV If r* > θ then s*  = θ 

 

chose these rules such that overstretching and compression 

of graylevels is avoided. The only concern here is how 

these modifications will affect the performance of the 

ALHS method in preserving the appearance of the image?  

Actually, the pixel count of such levels compromise a 

small percentage in low contrast images, especially when 

operating at the pixel level, so even if they are mapped to 

the cutoff point (rules I and IV) or kept unchanged (rule II 

and III), their effect will be minimal and may not be 

detected by the human eye. 

3. Experimental Evaluation  

In this section we present some simulation results for the 

proposed ALHS method and compare it to the HE and 

LHE methods in terms of the level of contrast 

enhancement and the preservation of the original image 

appearance. The comparison between the three methods is 

done through the use of two quantitative measures 

supplemented with visual inspection. The first measure is 

the Absolute Mean Brightness Error, which is defined as  

 

 

p oAMBE = | μ  - μ  |                       (17) 

and it simply measures the deviation of the processed 

image mean µp from the input image mean. The AMBE 

provides a sense of how the image global appearance has 

changed, with preference to lower values [9]. The second 

measure that we used is the discrete entropy H,  
255

2

s=0

H = h(s)log h(s) , h(s)  0∀ ≠∑              (18) 

where h(s) is the global normalized histogram of the 

processed image. Entropy has been used to measure the 

content of the image [23], with higher values indicating 

images that are richer in details. In addition to these two 

measures, we have also compared the three methods in 

terms of processing time requirements.  

Our evaluation involved the processing of a large set 

of images obtained from [24] using a 1.3 GHz Pentium ® 

4 processor with 1 GB memory. Three representative 

examples for the images: Airport, Village, and Pirate are 
shown in Figures 2-4.  The size of these images is 512 x 

512 pixels and the block size used in the implementation 

of the LHE and ALHS methods was 100 x 100 pixels. 
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Visual assessment of the processed images showed that 

the ALHS method has the ability of enhancing both the 

global and local details in the image better than the HE 

method with negligible saturation and overenhancement 

problems. When compared to the LHE method, the new 

method performed in a comparable fashion in terms of 

enhancing the details, but with the advantage of lower 

noise amplification. Also, it is clear from the results that 

the ALHS method resulted in a minimum change in the 

image outlook. Let’s take for example the processing 

results for the Airport image. The HE method resulted in 

saturation and overenhancement in the planes and the top 

of the buildings and thus reduced the smaller details in 

these regions. In the LHS method, the local details are 

better than the HE method in these regions, however, the 

processed image looks unnatural due to noise 

amplification in the background. These problems were less 

pronounced in the ALHS method where we can see the 

enhanced details on the top of the buildings with reduced 

noise amplification in the background. Also, the ALHS 

method did not modify the global outlook of the image 

like the HE and LHE methods.   

The visual assessment is supported by the computed 

AMBE and entropy values listed in Tables 3 and 4. Side 

by side comparison of the AMBE values for the three 

methods revealed that the ALHS method always 

outperformed both the HE method and the LHE method 

by having the lowest AMBE values. This is easily justified 

by the fact that ALHS modifies the block central pixel 

with the transformation function that would preserve the 

block mean if it is applied to the entire block, and 

effectively this helps preserving the general outlook of the 

image. The ALHS method is theoretically supposed to 

produce zero AMBE values when used in the continuous 

domain. This was not the case in our discrete domain 

study here which involves quantization errors. For the 

entropy values, the ALHS method increased the image 

content better than HE. Actually, the entropy values for 

the HE method are always less than the original value, 

because as we said earlier the HE method is global and 

thus results in reduction in the details. Comparing the 

ALHS method to the LHE method we see that the ALHS 

method has slightly lower values. This is because the 

ALHS method constrains the enhancement to avoid 

overstretching and noise amplification for the sake of 

preserving the image appearance. However, combining the 

visual assessment for the ALHS method with its AMBE 

and entropy values definitely makes it better than the LHE 

method that has higher entropy but degraded image 

outlook. In summary, we can say that the ALHS method 

outperforms the HE and LHE methods in enhancing the 

quality of grayscale images. Specifically, it is better than 

the HE method in terms of enhancing the local details and 

preserving the image outlook with negligible saturation 

and overenhancement artifacts. Also, it is capable of 

enhancing local details in a similar manner to the LHE 

method but with lower levels of noise amplification.  

In terms of processing time, the HE, LHE, and ALHS 

methods required on average 50 ms, 119 s, and 203 s, 

respectively to process the 512x512 images. It is apparent 

that the HE method has the least processing time. This is 

because it is applied in a global fashion, in contrast to the 

other two methods that are applied locally. The difference 

in processing time between the ALHS and LHE methods 

is due to the additional steps required in the ALHS method 

for histogram matching and discretization. Nonetheless, 

this should not be an issue in non real-time image 

processing applications that demand images with high 

quality.  

Table 3. AMBE values for the processed images. 
 

 Airport Village Pirate

ALHS-Processed Image 0.73 0.51 2.04 

HE-Processed Image 55.58 14.23 16.88

LHE-Processed Image 55.64 16.79 18.65

Table 4. Discrete entropy values for the original and processed images. 
 

 Airport Village Pirate

Original Image 4.73 5.18 7.24 

ALHS-Processed Image 5.34 5.51 7.96 

HE-Processed Image 4.62 5.05 7.14 

LHE-Processed Image 5.53 5.53 7.98 

4. Conclusion 

We have developed a new method called Automatic 

Local Histogram Specification (ALHS) for local contrast 

enhancement of graylevel images. The method 

automatically specifies the desired histogram that provides 

the optimal enhancement and preserves the mean 

brightness of the block around each pixel in the image. 

The ALHS method is proven through simulation to 

provide enhancement results that balance well between 

details enhancement and the preservation of the original 

image appearance - an objective that is difficult to achieve 

using the histogram equalization or local histogram 

equalization methods. 
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