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Abstract Measuring the energy intake (kcal) of a person in

day-to-day life is difficult. The best laboratory tool achieves

95 % accuracy on average, while tools used in daily living

typically achieve 60–80 % accuracy. This paper describes a

new method for measuring intake via automated tracking of

wrist motion. Our method uses a watch-like device with a

micro-electro-mechanical gyroscope to detect and record

when an individual has taken a bite of food. Two tests of the

accuracy of our device in counting bites found that our

method has 94 % sensitivity in a controlled meal setting and

86 % sensitivity in an uncontrolled meal setting, with one

false positive per every 5 bites in both settings. Preliminary

data from daily living indicates that bites measured by the

device are positively related to caloric intake illustrating the

potential of the device to monitor energy intake. Future

research should seek to further explore the relationship

between bites taken and kilocalories consumed to validate

the device as an automated measure of energy intake.

Keywords Energy intake � Eating � Activity recognition �
MEMS sensors

Introduction

This work is motivated by the growing obesity problem. In

order to lose weight, the common strategy is to measure, track

and reduce intake. However, measuring energy intake (kcal)

in day-to-day life is tedious and prone to error. For the indi-

vidual trying to count kilocalories on their own, the methods

of using calorie labels, interpreting serving sizes, or plain

guessing commonly causes errors of 50 % or more (Roberto

et al. 2010). Put simply, the calorimeter is a laboratory tool,

producing a measure that was never intended for daily human

use in measuring energy intake (Hargrove 2007). Recent

position papers within the dietetics research community

emphasize the need for new tools (McCabe-Sellers 2010;

Thompson et al. 2010). In this paper we describe a new

method and tool for measuring intake using automated wrist

motion tracking. We describe a progression of experiments

intended to show that (1) the method works across a reason-

ably large number of subjects, (2) it works across a reasonably

large variety of foods, and (3) there is some correlation with

kilocalories on a per-meal level. While more studies need to

be undertaken to more thoroughly evaluate our method, the

work presented herein shows its promising potential.

Review of Tools for Measuring Intake

Table 1 lists methods for measuring energy intake. Doubly

labeled water (DLW), considered the gold standard for

measuring energy expenditure (Speakman 1997), is water

in which the hydrogen and oxygen elements are replaced

with uncommon isotopes for tracing purposes. The typical

procedure is for a subject to consume DLW and then

undergo daily urine analysis. It has been validated in lab-

oratory studies in which subjects lived in a whole room

calorimeter for up to a week, while all foods eaten were

controlled and energy expenditure was directly measured

through respiratory gas analysis. Under these conditions,

the accuracy of the technique for indirectly measuring

energy intake (calculated as energy expenditure ± stored
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energy change due to weight gain/loss) was shown to be

2–8 % error per day (Schoeller 1988). A meta-analysis

(Black and Cole 2000) of 25 studies using DLW in free

living conditions found an 8–15 % range for repeatability

of energy intake measurements.

Due to the expense and technical expertise required for

DLW, food records are the most commonly used laboratory

tool for measuring intake. Tool variations include 7 day food

diaries, 24-h recalls, and food frequency questionnaires

(Thompson and Subar 2008). The typical procedure is for a

subject to write down everything eaten or go through a daily

directed-interview process. Numerous studies have shown

that people have a tendency to underreport their consumption

using these methods (Champagne et al. 2002; Glanz et al.

1997; Jonnalagadda et al. 2000; Lichtman et al. 1992;

Muhlheim et al. 1998; Tooze et al. 2004). Estimates of

underreporting range from 10 to 30 % for normal

weight subjects to 20–50 % for obese adults and children

(Champagne et al. 2002). A meta-analysis (Burrows et al.

2010) of 15 studies using food records found a range of 19–41 %

error per day when evaluated against DLW. This general range

of accuracy of food records has also been observed in long

epidemiological studies when compared to DLW (Brunner

et al. 2001) and blood nutrient analysis (Day et al. 2001).

Several uses of technology to improve food record

methods have been explored, such as using the internet for

dietary recalls (Arab et al. 2010) and using a personal

digital assistant to record an eating diary (Yon et al. 2006).

However, while these methods can help lessen the burden

for the record-keeping portion of the process, it has been

shown that the measurements themselves do not improve

(Beasley et al. 2005; Yon et al. 2006).

Accelerometer based tools for measuring energy expen-

diture use waist, back and/or leg sensors to measure raw

motion throughout the day. Similar to DLW, an indirect

measure of energy intake can be calculated, typically at a daily

interval. A meta-analysis (Plasque and Westerterp 2007) of 28

articles found correlations between energy expenditure

derived from accelerometry as compared to DLW

corresponding to error rates of 36–91 % per day, so these tools

are rarely used for the purpose of measuring energy intake.

A scale embedded in a dining table can be used to

continuously weigh food (Kissileff et al. 1980); tables can

be configured to measure gram changes in different areas

(Chang et al. 2006). This method is typically only used in

fixed settings.

In the camera-based approach, pictures of foods are

taken before and after eating, and the amount consumed is

estimated by a trained observer who compares the pictures

to a database of portion-varying images of the same foods.

The accuracy of this approach has been shown to be

comparable to both weighed and direct visual estimation of

portion sizes (Williamson et al. 2003; Martin et al. 2007).

A similar accuracy has also been shown when subjects take

the pictures themselves (Martin et al. 2009), although it

was noted that this approach still places a burden on the

trained observers analyzing the images. Some researchers

have suggested using automated image processing instead

of a human post-reviewer to determine the amount of food

consumed (Saeik and Takeda 2005; Takeda et al. 2003;

Zhu et al. 2008). This has been demonstrated on a small set

of foods (Zhu et al. 2010), but the foods were carefully

separated and the background was carefully controlled.

Some studies have shown that people prefer the camera

approach to traditional pen and paper food records

(Boushey et al. 2009; Six et al. 2010).

In this paper, we propose a new method that has the

potential to automate intake monitoring. Our ‘‘bite counter’’

device is worn like a watch, and can be worn generally during

most of the waking period of a day. Before eating, the user

presses a button to turn it on; afterward, the same button turns

it off. While operating, the device uses a micro-electro-

mechanical (MEMS) gyroscope to track wrist motion,

automatically detecting when the user has taken a bite of

food. The device counts and time-stamps bites, storing a

long-term log. The user can wear the device anywhere and

use it discreetly with little effort. It is appreciated that our

method will not exceed the accuracy of the best laboratory

tools. However, we believe our method has the potential to

improve compliance and accuracy under conditions where a

person is unlikely to use other methods because of their cost,

manual effort required, or inconvenience.

Methods

Algorithm

In preliminary studies, we examined data from all three

linear and rotational axes of the wrist during eating (Dong

2009; Drennan 2010). We found a high correlation between

a simple pattern of wrist roll and the taking of a bite

Table 1 Comparison of methods for monitoring intake

Method Unit of

measure

Typical process

Doubly labeled

water

Energy

expenditure

Daily urine analysis

Food record Kilocalories Daily recall

Accelerometry Activity

patterns

Daily indirect

approximation

Scale Grams Weighed at fixed settings

Cameras Image change Post-review of each meal

Bite counter Bites Discrete live measurement

during each meal
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(we follow the common language definition, where a bite is

generally referred to as the placing of food into the mouth).

Figure 1 emphasizes the key motion. Compared to body

sensing approaches (Amft et al. 2005; Amft and Troster

2008, 2009; Junker et al. 2008), which use additional

sensors on other parts of the body, our approach requires

only one wrist-mounted sensor. Instead of trying to classify

different types of eating activities, we have discovered that

a simple pattern of wrist roll occurs during any bite. We

believe that this can be explained by looking at the nec-

essary wrist orientation to pick something up (fingers

aimed downward) versus the necessary wrist orientation to

put something into the mouth (fingers aimed sideways). For

most eating situations, regardless of the type of food or

liquid, and regardless of the utensil (or fingers) used, a roll

of the wrist must occur.

By using roll velocity to characterize the motion, we can

describe a pattern that is independent of the actual orien-

tation of the wrist. This means that the pattern holds

regardless of the position of the subject’s body (e.g. sitting

or lying down), and regardless of the specific configuration

of the wrist relative to the rest of the arm. We define a wrist

roll motion pattern for eating as having four events. First,

the velocity must surpass a positive threshold; second, the

velocity must surpass a negative threshold. The third and

fourth events are the minimum amounts of time between

the two rolls of one bite, and between consecutive bites.

These minimum times help reduce false positives during

other motions. Our algorithm for detecting a bite based on

this motion pattern can be implemented as follows:

The variable EVENT iterates through the events of the

cycle of roll motion. The thresholds T1 and T2 define the

roll velocities that must be exceeded to trigger detection of

the roll events. The threshold T3 defines the interval of

time that must elapse between the first and second events of

the roll motion, while the threshold T4 defines the interval

of time that must elapse between the end of one bite and

the beginning of another bite.

Although our method is simple, this is its strength. It

does not need to be calibrated to the individual, or trained

for specific eating patterns. The actual values we used for

thresholds are described below.

Hardware and Prototype

In our preliminary studies (Dong et al. 2009) we used an

InertiaCube3 sensor manufactured by InterSense. Figure 2

shows a picture of the relatively expensive ($2,000 US)

sensor. It combines readings from a magnetometer, gyro-

scope and accelerometer on each axis, to produce an ori-

entation heading. Radial velocity about any axis can be

calculated by taking the derivative of consecutive head-

ings. Our first laboratory experiment makes use of this

sensor; it was wired to a nearby computer for processing of

the data.

While such a sensor may be practical for laboratory use,

its cost and size raise questions as to its applicability for

general public use. In this work, we tested a much less

expensive sensor ($5 US), that is also much smaller (see

Fig. 3). The STMicroelectronics LPR530al is a MEMS

gyroscope that directly measures radial velocity. In our

second laboratory experiment we compared both sensors in

terms of their accuracy for executing our algorithm. Both

sensors were mounted to a single wrist-worn package so

that the motions observed by both sensors were identical.

Fig. 1 Wrist roll during taking a bite

Let EVENT = 0

Loop

Let Vt = measured roll vel. at time t

If Vt[T1 and EVENT = 0

EVENT = 1

Let s = t

if Vt\T2 and t-s[T3 and EVENT = 1

Bite detected

Let s = t

EVENT = 2

if EVENT = 2 and t-s[T4

EVENT = 0
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The wrist-worn package was wired to a nearby computer

for processing of the data. A video of this hardware being

used during eating can be seen at http://www.parl.clemson.

edu/*ahoover/bite-counter/BiteCounter.wmv.

For our third experiment, we built a self-contained

prototype device using the MEMS gyroscope. Figure 4

shows a picture of the device. It contains a microprocessor,

battery, gyroscope, LCD, memory, and USB port connec-

tion. Because it is self-contained it does not need to be

tethered to an external computer during operation. How-

ever, its memory is not large enough to store raw gyroscope

sensor data; it only stores the times of recording sessions

and the number of bites detected. A button on the device

turns it on and off, and is intended to be pressed before the

user begins eating and after the user finishes eating.

Data Collection

This study was approved by Clemson University’s Institu-

tional Review Board for the protection of human subjects.

All subjects signed an approved consent form prior to par-

ticipating in data collection. Two experiments were per-

formed in a laboratory setting, in order to evaluate the

accuracy of the device to detect bites. A third experiment was

performed in unrestricted settings, in order to examine the

correlation of device detected bites to kilocalories per meal.

In the laboratory experiments, each subject sat at a table

and slipped the prototype device over his or her dominant

hand, onto the wrist. A video camera was placed on a

tripod a few meters from where the subject sat, and aimed

and zoomed in order to record the eating of the meal. The

video was only used to establish ground truth for evaluat-

ing the automated detection of bites from the sensor data. A

custom piece of software was written that enabled simul-

taneous playback of the sensor data with the video. A sync

time was established by manually observing the video

along with the sensor data, and manually aligning them,

based upon a review of the initial motions of the subject.

Figure 5 shows a picture of the environment in which

subjects ate, with the video synchronized to the sensor data.

In the first experiment, a total of 51 subjects (14 male,

37 female, ages 18–38) were monitored eating 139 meals

(21 subjects ate once and 30 subjects ate four times, with

two meals excluded due to missing data). In each meal, the

subject was given three servings of toasted Kellogg’s Eggo

cinnamon toast waffles (276 g, 870 Cal) to eat. Each mini-

waffle was cut in half, creating fixed-sized pieces for a total

of 72 possible bites. The food was placed on a plate and a

fork was provided. This meal was chosen because waffles

are a common breakfast food, easy to cut into uniform size

bites, and easy to prepare in the laboratory. Two-hundred

and fifty milliliters of water were provided in a cup, but the

intake of liquid was not considered for this test, because

Fig. 2 Larger, more expensive sensor used in earlier work

Fig. 3 MEMS sensor (middle) used in this work

Fig. 4 Prototype device using MEMS gyroscope Fig. 5 Synchronized video and sensor data (used with permission)
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our goal was to determine an accuracy for our method

under relatively ideal conditions. The subject was given the

following instructions: ‘‘I would like you to eat as you

usually would. However, please eat only one piece of

waffle at a time. You can take as much time as you like to

complete the meal, and I would like you to stop when you

are full. It is not necessary to eat all of the food on the

plate. Please do not engage me in conversation while eating

the waffles. But, if you would like more waffles or more

water, you may ask me to bring them to you. Additionally,

please drink only with your non-dominant hand which is

the one that you do not have the sensor on. Similarly, if you

use the napkin, please do so with your non-dominant hand,

the same one you are using to take a drink of water.’’

In the second experiment, many of the conditions were

relaxed. Participants brought their own foods and liquids

and ate however they wanted. The experimental supervisor

engaged subjects in casual conversation in order to make

the eating experience as natural as possible. The experi-

menter sat at a desk next to the table. The sensor package

was wired to a computer on that desk. The experimenter

operated software on that computer to record the raw

sensor data while the subject ate. A total of 47 subjects

were monitored eating 49 meals (two people participated

twice). The subjects ranged in age from 18 to 31; 23 of

them were male and 24 of them were female. BMIs were

neither measured nor restricted because the goal of this

experiment was to first determine the accuracy of the

method across other variables, namely unrestricted foods.

In the third experiment, all meals were eaten outside the

laboratory in unrestricted settings. Tested environments

included homes, offices, restaurants, and social settings

(e.g. a party). Four different subjects (3 male, 1 female,

ages 24–42) wore the device for a total of 54 meals. Sub-

jects kept written food diaries noting the foods eaten and

estimated or measured the amount of each food eaten.

Kilocalories were estimated by laboratory personnel from

the diaries using food packaging labels, website informa-

tion (for restaurants), and calorie look-up tables. The goal

of this experiment was to determine if there was any cor-

relation between bite count as measured by our device and

kilocalories. Obviously many confounding factors must be

considered; this experiment was intended only to determine

whether further study of the utility of this device for

measuring kilocalories is warranted.

Evaluation

In order to evaluate the performance of our bite detector in

the laboratory, we calculated the correspondences of

computer-detected bites to manually marked bites. Fig-

ure 6 illustrates how detections were classified. For each

computer detected bite (small square in the figure), we

consider the interval of time from the previous detection to

the following detection. The first actual bite taken within

this window, that has not yet been paired with a bite

detection, is classified as a true detection (T). If there are

no actual bite detections within that window, then the bite

detection is classified as a false detection (F). After all bite

detections have been classified, any additional actual bites

that remain unpaired to bite detections are classified as

undetected bites (U). The reason we use this approach is

because we want to define an objective range of time in

which an actual bite must have occurred in order to classify

a detected bite as a true positive. The reason the window

must extend prior to the actual bite is that it is possible in

some cases for the wrist roll motion to complete just prior

to the actual placing of food into the mouth. Sensitivity

(true detection rate) of the device was calculated for each

subject as (total Ts)/(total Ts ? total Us). Because our

methods do not allow for the definition of a true negative,

we cannot calculate specificity (false detection rate). We

therefore calculate the positive predictive value as a mea-

sure of the performance of our device regarding false

positives. The positive predictive value (PPV) of the device

was calculated as (total Ts)/(total Ts ? total Fs).

Parameter Tuning

In order to select values for the thresholds in our algorithm,

we considered the following ranges for each: T1 = T2 =

{5, 10, 15, 20, 25} degrees/s, T3 = {1, 2, 3} s, and T4 =

Fig. 6 Classification of results
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{2, 4, 6, 8, 10} s. We tested every combination of values

from these sets, running our algorithm on all the data

collected with the STMicroelectronics sensor. For the 75

total combinations, the sensitivity ranged from 61 to 97 %

and the PPV ranged from 38 to 93 %. A wide range of

combinations performed well, with over half giving a

sensitivity and PPV above 70 %, showing that our method

is not overly sensitive to the values chosen. We scored each

set according to the formula 3�PPV
7
þ 4�sensitivity

7
; placing

slightly more importance on the sensitivity. The parameter

set with the highest score was T1 = T2 = 10, T3 =

2, T4 = 8.

Results

Experiment #1

Across the 139 meals, the subjects ate a range of

8–72 bites, 34 bites on average. The sensitivity of the

device was 94 % and only 6 % of the actual bites were

undetected. The positive predictive value was 80 % (about

one false positive per 5 actual bites). While the conditions

in this test were restrictive in terms of food type eaten and

utensil used, it showed that our technique works across a

large number of subjects.

Experiment #2

As we placed no restrictions on foods or utensils, subjects

brought their own foods and liquids and consumed them

however they wanted. Table 2 shows the list of foods

consumed along with how they were eaten. Nine of the

subjects used a straw while drinking, but none used a knife.

Actual bites were timestamped by reviewing the corre-

lated video, as described previously. Each bite was clas-

sified as food or liquid, and dominant or non-dominant

according to which hand was used. Table 3 shows the

manual classification of the 1,675 total bites taken across

Table 2 Meals consumed by

subjects
Sub. Meal Utensil Sub. Meal Utensil

1 Sandwich, orange slices Hand 2 Sandwich, yogurt, water Spoon

3 Sandwich, banana, water Hand 4 Pizza, carrot, water Hand

5 Mex. chicken gumbo, water Fork 6 Salad, soda Fork

7 Chicken nugget, fries, soda Hand 8 Turkey wrap, water Hand

9 Sandwich, carrot, green tea Hand 10 Beans, rice, apple, water Spoon

11 Rice pilaf, bottled water Fork 12 Sandwich, chips, juice Hand

13 Sandwich, vitamin water Hand 14 Turkey sandwich, chips, soda Hand

15 Rice, tofu, vegetable, cola Spoon 16 Pizza Hand

17 Cheeseburger, fries, soda Hand 18 Pizza, water Hand

19 Bean soup, bread, water Spoon 6 Chicken wrap, bottled water Hand

20 Chicken teriyaki sub Hand 21 Sandwich, chips, water Hand

22 Sushi Chopsticks 23 Sub, doritos chips, water Hand

2 Pizza, water Hand 24 Sandwich, o-rings, powerade Hand

25 Pizza, water Hand 26 Pasta, water Fork

27 Sandwich, yogurt, cola Spoon 28 Orange, almond Hand

29 Sandwich, water Hand 30 Bagel with cheese, water Hand

31 Sandwich, banana, water Hand 32 Chicken toaster, fries, soda Hand

33 Sub, juice Hand 34 Sandwich, juice Hand

35 Sandwich, tater tots, water Hand 36 Subway spicy Italian Hand

37 Sandwich, juice Hand 38 Chicken salad, cola Fork

39 Sandwich, water Hand 40 Sandwich, peach drink Hand

41 Sandwich, crackers, water Hand 42 Sandwich, fries, soda Hand

43 Corn Fork 44 Sandwich, banana, chips, soda Hand

45 Mushroom burrito, water Hand 46 Sandwich, banana Hand

47 Sandwich, fries, water Hand

Table 3 Breakdown of bites taken during 49 uncontrolled meals

Dominant hand Non-dominant hand

Food 1281 105

Liquid 165 124
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all 49 meals. A range of 12–72 bites was taken per meal,

with an average of 32 bites. In total, 83 % of the bites

taken were food, 17 % liquid; 86 % of the bites were taken

with the dominant hand, 14 % with the non-dominant

hand. These data show that most intake tends to happen

with the dominant hand.

For food bites, 1,281/(1,281 ? 105) = 92 % were taken

with the dominant hand. For liquid bites, 165/(165 ? 124)

= 57 % were taken with the dominant hand. This indicates

that most people tend to eat most of their food with the

dominant hand, but tend to consume about half their liquid

bites with the dominant hand. This may have repercussions

for specific monitoring efforts, e.g. for tracking liquid

intake only.

As described above, the subjects wore two sensors on

one wrist-mounted package, in order to test the effect of the

cost of the sensor. The sensitivity of our STMicroelec-

tronics device was found to be 86 %, positive predictive

value 81 %. The sensitivity of the InertiaCube sensor was

found to be 85 %, positive predictive value 81 %. Thus,

our methods are unaffected by the difference in measure-

ment noise and can work with generic quality MEMS

gyroscopes.

False positives occurred most frequently when the sub-

ject used a napkin, unwrapped food from a container or

paper (e.g. a sandwich wrapper), adjusted glasses or tou-

ched hair, organized food (e.g. stirring or moving food

without actually eating), and occasionally due to gesturing

while talking. These motions tend to mimic the charac-

teristic eating motion that we are tracking. Undetected bites

tended to occur most frequently when the subject ate sev-

eral times from a utensil or fingers without returning the

utensil or hand to the table. Since we operationally defined

a bite as the moment when food enters the mouth, this type

of behavior would result in a missed bite.

The average time a subject spent eating a meal was

11.1 min, with a range of 4.6–25.2 min. On average, sub-

jects spent 45 % of their time on activities other than

taking a bite. For example, subjects were engaged in gen-

eral conversation with the experimenter throughout eating.

If the experimenter noticed that a subject was deliberately

avoiding using the non-instrumented hand, the subject

would be reminded to eat as normally as possible,

including using either hand at any time. In order to provide

some context to the naturalness of the eating sessions, we

reviewed the videos and noted activities occurring that

involve arm motions. Table 4 summarizes our findings. For

each type of activity, we counted the number of times that

it happened between bites. The first two entries, both

involving conversation, are exclusive of each other; the

remaining entries may overlap (for example, a subject may

have spoken and used a napkin between bites). Note that

subjects were engaged in conversation for roughly 2/3 of

the time between bites (776 ? 350 out of 1,675 = 67 %).

Amidst all these natural activities, our methods accurately

and reliably detected bites across a large number of sub-

jects and meals.

Experiment #3

Figure 7 shows the plot of kilocalories per meal against

automatically counted bites. The relationship is obviously

noisy due to the natural variation in caloric density of foods

in different meals as well as the kilocalorie estimation

methods employed. Nonetheless, a moderate linear corre-

lation (R = 0.6) was found. It is important to note that the

significance of this correlation is weak without a deeper

statistical analysis of many factors that could affect it. This

experiment was only intended to begin to explore whether

or not there is a relationship between kilocalories and bite

count as measured by our device when used in free living,

but it does suggest that further studies are warranted where

the effect of a number of factors are analyzed.

Discussion

Obesity is a growing problem. In the United States, the

National Health and Nutrition Examination Survey in

2007–2008 found that 33.9 % of Americans were obese

Table 4 Other actions during eating

Action Number of

occurrences

Speaking without gesturing 776

Speaking with gesturing 350

Unwrapping food 78

Using a napkin 294

Touching glasses, hair, face 449

Other (adjust chair, check phone, etc.) 67

0 50 100
0

500

1000

1500

2000

Bite count

K
ilo

ca
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rie
s

Fig. 7 Bite count as measured by our tool, versus kilocalories, for 54

meals eaten in unrestricted conditions
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and 68.3 % of Americans were overweight (Flegal et al.

2010). The most recent assessment of global obesity

(World Health Organization 2010) revealed that 1.6 billion

adults (ages 15? years) are overweight and 400 million

adults are obese. A number of health problems have been

linked to this rise in body weight, including diabetes,

gallbladder disease, dyslipidemia (abnormal blood lipid

levels), insulin resistance, and sleep apnea risk (Antipatis

and Gill 2001). In the United States, the medical costs of

obesity were estimated to be $147 billion per year in 2008,

doubling from $78.5 billion in 1998 (Finkelstein et al.

2009).

The obesity epidemic is ‘‘undoubtedly attributable to

dietary and behavioral causes’’ (Muller et al. 2010) cou-

pled with an ‘‘obesogenic environment’’ that promotes

energy overconsumption and under-expenditure (Kirk

et al. 2010). Hence, the overweight or obese individual is

faced with the difficulty of trying to reliably measure and

reduce intake with complicated and inaccurate tools while

living in an environment that encourages intake. Studies of

individuals who have lost significant amounts of weight

and maintained that weight loss indicate that a common

behavior is self-monitoring of intake (Wing and Hill 2001;

Wing and Phelan 2005). A recent meta-review found that

in all 15 studies reviewed, there was a significant rela-

tionship between self-monitoring dietary intake and weight

loss (Burke et al. 2011). While numerous tools exist to help

an individual measure energy output and are commonly

used during exercise (e.g. odometers, speedometers, ‘‘cal-

ories burned’’ estimates, and even simple clocks), there are

no tools in common use that automatically measure energy

intake, leaving the manual burden of continuous mea-

surement entirely on the individual.

Research into the automated monitoring of intake is

difficult. Eating activities vary by person, food, utensil,

location and other factors, all of which could have an

impact on evaluating the performance of any method used

to measure intake. The use of body sensing for directly

monitoring eating has only recently begun to be explored

(Amft and Troster 2009; Sazonov and Schuckers 2010).

One group showed how sensors located on the back, lower

and upper arms could be used to differentiate motion pat-

terns among 4 different types of eating (Junker et al. 2008),

and how ear and neck mounted sensors could be used to

detect chewing sounds and swallowing motions (Amft and

Troster 2008, 2009). Another group used neck- and ear-

worn sensors to detect and classify swallowing activities

(Lopez-Meyer et al. 2010; Sazonov et al. 2008, 2009,

2010). The primary advantage of our method over these is

the inconspicuous nature of a wrist-mounted sensor in the

form of a watch.

The experiments reported in the current work are also

preliminary. Laboratory studies are necessary to provide

for ground truth measures of intake, but they artificially

restrict eating conditions. The progression of our experi-

ments was intended to show that (1) the method works

across a reasonably large number of subjects, (2) it works

across a reasonably large variety of foods, and (3) there is

some correlation with kilocalories on a per-meal level. A

number of additional studies need to be undertaken to more

thoroughly evaluate its accuracy and limitations under

various conditions as well as futher validate the relation-

ship between bites taken and kilocalories consumed before

the bite counter can be used as a proxy for energy intake.

Limitations

There are several limitations to our method that must be

discussed. First, the device requires that the user turn it on

before eating, and off when finished, and therefore for-

getfulness could be a problem. However, all other existing

methods, including the food diary and camera approach,

also require the user to remember to use the tool to take

measurements. The advantage of our approach is that the

measurement process itself is automated, requiring less

manual work than other methods. A further study is needed

to examine compliance with remembering to use our

method as compared to others.

A second limitation concerns the variation in bite count

relative to kilocalories consumed. The data presented in

‘‘Experiment #3’’ are only a pilot study meant to determine

if any correlation exists at a meal level. We would expect

this correlation to differ between individuals, between

different types of foods, between social settings, and pos-

sibly many other factors such as BMI, gender and age.

However, it is important to note that kilocalories are

commonly measured daily when it comes to weight man-

agement, weight loss is commonly evaluated weekly, and

kilocalorie goals depend to some degree on the individual.

Although our unit of measurement is a single bite, we

believe its utility for correlating to kilocalories should be

evaluated at a daily or weekly period, customized to the

individual, when we could expect some of the variation to

smooth out. Further studies are needed to examine these

correlations and the factors that affect them.

A third limitation concerns the potential effect of false

positives, which could positively bias the measure. In our

first two experiments our method detected the same amount

of false positives on average (approximately one per five

bites), even though the eating conditions changed drasti-

cally (common food, utensil, no liquid and minimum

conversation; versus unrestricted foods, any utensils, any

liquids, with heavy conversation). Further study is needed

to determine if social setting or other factors affect the

number of false positives. It can also be imagined that a

person with particular habits, such as frequent napkin use
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or adjustments of glasses, would conduct these tasks with

similar frequency across different meals; in this case the

bias could be calibrated to the individual. Again, a further

study is needed.

A fourth limitation concerns the use of the uninstru-

mented hand during eating and drinking. The subjects in

the studies reported herein consumed 92 % of food bites

with the dominant hand but only 57 % of liquid bites.

Further study of this statistic is needed, especially if our

method is to be used to measure liquid intake only. It may

be that training an individual to use the instrumented hand

could help alleviate this issue if it was necessary for a

specific study. We also noted that many times during eat-

ing, a subject would make an eating-like motion with the

dominant hand even while using the non-dominant hand to

actually place food into the mouth. An example is the

setting down of a sandwich while using the other hand to

take a drink; the setting down of the sandwich could trigger

the bite counter algorithm. Further study of this issue is

needed.

The summary of all these limitations is that there are

still many important questions about our method. It is

impossible to address all of them in a single paper. The

execution of many of the studies suggested here could

provide additional insight into eating habits as well as help

to improve or further validate our method.

Future Work

There are several aspects of our method not pursued in this

paper but that are notable possibilities for future work.

First, our method can provide real-time feedback based

upon its measurement while a person is eating. Other

methods such as the food diary and camera method can

only be used to assess consumption after the user has fin-

ished eating, typically at a much later time. One example of

the type of feedback our method could provide is a real-

time display of the numeric count of bites. The user could

glance at the count while eating, and use this information to

self-adjust eating behavior. Another example of the type

of feedback our method could provide is an audible or

vibrotactile alarm based upon the numeric count of bites.

The user could set the alarm to go off with each bite past a

custom threshold for different meals of the day, days of the

week, or when a total daily count had been reached.

Second, it is possible that our discovery of the rela-

tionship between wrist roll and eating could be used to

passively detect eating activities throughout the day. This

would eliminate the need for the user to turn the device on

and off for each meal. Two challenges would need to be

met. First, battery life would be a concern because the

gyroscope needed for tracking rotational motion can only

operate for about 10–14 h on a coin-sized (appx 120 mAh)

battery (STMicroelectronics 2011). Second, we would need

to develop a new algorithm that differentiated eating

activities from other daily activities based upon wrist

motion. In a preliminary study (Dong et al. 2011), we

piloted this idea on 4 subjects with some success. A larger

study is ongoing.

Third, our method may improve the accuracy of mea-

surement of eating intake in some circumstances. For

example, a simple multiplication of bites 9 kilocalories-

per-bite may provide a more accurate estimate of con-

sumption than when a person has to guess or rely only upon

memory. Given the relatively low user burden of our

method as compared to existing methods, this may cause

people who otherwise use no tools to use our method and

thus improve their accuracy. As another example, the use

of our method simultaneously with another method may

improve compliance and accuracy with the secondary tool.

As a third example, the continuous monitoring described in

the previous paragraph could be used to alert the user to use

a secondary tool to help measure consumption, thus

improving compliance and accuracy. All of these possi-

bilities are the topics of future work.
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