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A NEW METHOD FOR MEASURING THE SPLITTING OF
INVARIANT MANIFOLDS

By DaviD SAUZIN

ABSTRACT. — We study the so-called Generalized Arnol'd Model (a weakly hyperbolic near-integrable
Hamiltonian system), witld + 1 degrees of freedomi(> 2), in the case where the perturbative term does
not affect a fixed invariant-dimensional torus. This torus is thus independent of the two perturbation
parameters which are denote¢e > 0) and .

We describe its stable and unstable manifolds by solutions of the Hamilton—Jacobi equation for which
we obtain a large enough domain of analyticity. The splitting of the manifolds is measured by the partial
derivatives of the differencA S of the solutions, for which we obtain upper bounds which are exponentially
small with respect ta.

A crucial tool of the method is eharacteristic vector fieldwhich is defined on a part of the configuration
space, which acts by zero on the functidnS and which has constant coefficients in well-chosen
coordinates.

It is in the case wheréu| is bounded by some positive power ofthat the most precise results are
obtained. In a particular case with three degrees of freedom, the method leads also to lower bounds for the
splitting. 0 2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous étudions le systéme hamiltoniefi-&1 degrés de libert&i(> 2), proche de I'intégrable
et faiblement hyperbolique, appetéodele d’Arnol’'d généralisélans le cas ou le terme perturbatif n'affecte
pas un tore invariant de dimensidnCe tore est donc indépendant des deux paramétres de perturbation qui
sont notég (e > 0) et .

Ses variétés stable et instable sont décrites par deux solutions de I'équation de Hamilton—-Jacobi,
pour lesquelles nous obtenons un domaine d'analyticité assez étendu. L'écart des variétés est mesuré
par les dérivées partielles de la différents& des solutions, et nous obtenons des bornes supérieures
exponentiellement petites.

L'outil essentiel de la méthode est ahamp de vecteurs caractéristigdéfini sur une partie de I'espace
de configuration, qui annule la fonctiodS et dont les coefficients sont constants dans un systéme de
coordonnées bien choisi.

C’est dans le cas oju| est majoré par une puissance positivezdpie les résultats les plus précis sont
obtenus. Dans un cas particulier avec trois degrés de liberté, la méthode fournit méme des bornes inférieures
pour I'écart des variétésl 2001 Editions scientifiques et médicales Elsevier SAS

1. Presentation of the problem
1.1. Introduction

The present paper is devoted to the exposition of a new method for studying the phenomenon
of “exponentially small splitting”. It is concerned with the stable and unstable manifolds of
a partially hyperbolic invariant torus (a “whiskered torus”) of a near-integrable Hamiltonian

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE- 0012-9593/01/02/ 2001 Editions scientifiques et
médicales Elsevier SAS. All rights reserved



160 D. SAUZIN

system. We restrict our attention to systems for which the invariant torus is given right from
the beginning: it is not affected by changes of the perturbation parameters, thus we can refrain
from resorting to KAM theory to find an invariant torus; in our opinion this helps to isolate the
mechanism which produces exponential smallness.

We shall illustrate the method on the case of the following Hamiltonian function:

1 1
(L1) Hei(q,pp.0) =w- I+ 5al® + 2p” + e(cosq — 1) + peF(q.0)
with d + 1 degrees of freedoml(> 2), the conjugate variables being:
(p, 1) eERxR? and (g,9) €T x T withT=R/27Z,

and the various parameters being: a vectarR?, a real diagonal matrix = diag(a, . . ., aq)
(the notationa.I? meansZaij), two small real parametees> 0 and , and a functionF’
real-analytic orl' x T¢.

Let d(pdg + Idp) be the usual symplectic two-form. The corresponding Hamiltonian sys-
tem is integrable foru = 0, since it decouples then as the product of a simple pendu-
lum and d independent rotators. We shall refer to that situation as to the “unperturbed”
one.

Let us use the notation

Tn={¢€C/27Z; |Sm¢| <h} forh>0.

We shall require two assumptions éh

(A1) forall o € T4, F(0,p) =0 andd, F(0,¢) = 0;

(A2) there existg > 0 such that?" extends analytically t¢C/27Z) x Tio.

The first hypothesis amounts to saying thavanishes at ordetr on {¢g = 0}. As a result, the
d-dimensional torus

7 ={(0,¢,0,0), €T}

is invariant by the Hamiltonian vector field

(1.2) q=p, pj =wj +ojl;,
' p=¢esing — pedy F, Ij = —pedy, F,

independently of the parameterandy. The restriction of its flow t&” is quasiperiodic withw

as frequency-vector. We shall see tffais partially hyperbolic! it admits(d + 1)-dimensional
stable and unstable manifolds, denotedl/wﬂ andW_ ,, the first one being the union of all

the orbits which are positively asymptotic #0, and the second one the union of all the orbits
which are negatively asymptotic 6. These manifolds depend analytically prand coincide

for 4 = 0. In general there is no reason why they should coincide for nonzebuit it turns

out that they are exponentially close one to the other with respectatx tends to zero. This

is the exponentially small phenomenon that we want to study. In the sequel we shall omit the
indicese, 1 when referring to the manifoldg/™ andWW~. Their intersection consists of orbits,
which are called homoclinic (or biasymptotic) orbits; we shall see that this intersection is not
empty.

1The reader is referred to [3], [14] and [28,29] for results on partially hyperbolic tori.
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MEASURING THE SPLITTING OF INVARIANT MANIFOLDS 161

In the particular case of an even perturbation, i.e. when

V(g 0) €T x T F(—q,—¢)=F(q,9),

one checks easily that the symmetey p,p, I) — (27 — ¢, —p, p, I) sends any orbit onto an
orbit and reverses the time-parametrization on it, thus this symmetry exchegesyd V.
In that situation, one obtains a homoclinic orbit by considering the intersectipvi'ofvith the
(d+1)-plane{g =, =0}.

Note also that the assumptions (A1) and (A2) are met if for instdhiseof the form

F(q, )= (1 —cosq)m(¢p),

where the functiomn is analytic onT¢

ho*
1.2. Historical remarks 2

The Hamiltonian function (1.1) is a natural generalization of the example considered by
V.I. Arnol'd in his famous note [1]. This system was introduced in [1sgdalso [18]) with the
purpose of studying the speed of Arnol'd diffusion. It is sometimes referred to as the “generali-
zed Arnol'd model”. This model was designed to embody the main features of a near-integrable
Hamiltonian in the vicinity of a simple resonance; indeed, ifs non-resonant, the integrable
Hamiltonian which is obtained whernvanishes displays a simple resonancgal) = (0,0). In
fact, only the case where the perturbation has the special f{gmyp) = (1 — cosq)m(¢) was
considered in [17], but the emphasis was already put on the importance of including arbitrarily
high harmonics in the perturbation and the Poincaré—Melnikov approximation of the splitting
was discussed (see below).

In [11], among other things a “rotator-pendulum model” is studied, with an even trigonometric
polynomial of(g, ) for the perturbatiod’, but without the assumption (A1). The existence of an
invariant hyperbolic torus is proved and “quasiflat” upper bounds are obtained for the splitting
of its whiskers by direct perturbative methods. The proof is rather involved and we must say
that unfortunately we were not able to follow it in all details. In [12], still for a polynomial
perturbation but with a number of harmonics tending to infinity decreases, it is claimed that
the same methods lead to results of the kind we are interested in.

The case whera = 0 is considered in [27] and then in [4]; it may be called is@chronousr
linear case. In that case we can forget about the variahlasd consider the Hamiltonian vector
field associated to (1.1) as a quasi-periodic perturbation of a simple pendulum. More precisely,
if o =0, one can associate to the Hamiltonian vector field (1/2pdaced vector field

Gg=p,
(1.3) p=esing — ued, F(q, ),
P =wj

(the original vector field was invariant under the translatidgse,p,I) — (¢,¢,p,I +
constant), and (1.3) is indeed its reduction under that group of transformations), or a non-
autonomous quasi-periodic second-order differential equation

j=csing — pedyF(q,wit, ..., wqt).

2\We confine ourselves to the cask> 2, but of course a number of references should be quoted for the
two-degree-of-freedom case.
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162 D. SAUZIN

Every solution of (1.2) projects onto a solution of (1.3). Note that the invariant tori which we
are interested in project ontaormally hyperbolic invariant tori for (1.3). However, even if
assumptions (A1) and (A2) are satisfied, not all the homoclinic orbits of the reduced vector
field are the projection of some homaoclinic orbit of the original system. But it is legitimate in
that case to concentrate on the reduced system and to consider (1.2) as an auxiliary system, a
mere way of putting (1.3) into Hamiltonian form.

In [27] a general averaging theorem is proved and applied, among other things, to a specific

example which can be written in the form (1.1) with=2, o =0, w = (1, ”2\/5), p=c 1,
and 9,F' even trigonometric polynomial ip which does not depend on The splitting of
the invariant manifolds is studied (for the reduced system) and shown to be exponentially
small. After a change of variables (one step of averaging), a Poincaré—Melnikov approximation
is derived and bounded from aboemd from below numerical evidence is then produced
which indicates that the size of the whole splitting is correctly predicted by that first-order
approximation.

The model which is studied in [4] correspondsde= 2, a =0, w = (1,%), p = eP
(p > 3/2), and F' (¢, ) = m(p) cos g where the functionn is analytic in a “strip"T,, x T,
but cannot be analytically continued to a larger strip because of some hypothesis on its high
harmonics. The torugq = 0,p = 0, € T?} is invariant for the corresponding system (1.2),
and the splitting of its invariant manifolds is shown to be correctly predicted by the Poincaré—
Melnikov approximation whose asymptotics is precisely computed3ection 4 below).

In [25] strong results are stated for the anisochronous case, with an even perturbation, but
unfortunately an error has been discovered in that article (a correction is expected).

The present article is strongly related to a joint work with P. Lochak and J.-P. Marco [21], to
which the reader is referred for further bibliographical notes.

1.3. Themethod

Itis not so easy to compare the existing methods and results, in particular because each author
has his own way of parametrising the invariant manifolds and then of measuring the distance
between them. As for us, we shall use particular solutions of the Hamilton—Jacobi equation in
order to describe these manifolds, as in the article [26] which was itself inspired by [22].

1.3.1. Let us consider the Hamiltonian system associated to (1.1), under the assumptions (A1)
and (A2) of p. 160. Foru = 0, the stable and unstable manifolds of the invariant torus
T ={(0,¢,0,0), ¢ < T} coincide and are given by the separatrix of the pendulum; we find it
convenient to write them as

r— q,9,D, qE — 4T, 4T, e , p= e SIH—’ — 7
W= {(w I)|q€]—2m,2n[, p € T 21/2'31 0}

W\—;:o: {(q,go,p,[)|q€]0,47r[, peT?, p:251/25in%, I:O},

distinguishing them quite arbitrarily only by their domain of definition. We should give different
names to the to§0} x T¢ x {0} x {0} and{27} x T¢ x {0} x {0} as well, but we shall not do

it; from now on we shall consider that the phase spad@ isT¢ x R x R?, which we identify

with the cotangent bundle of tlenfiguration spac® x T where the variable§y, ) live (the
cotangent bundle being endowed with its canonical exact symplectic structure). Thus, above a
point of the configuration space, covectors are identified with vectoRs ofR?. Each of the
unperturbed invariant manifolds is an exact Lagrangian graph, i.e. the graph of the differential of
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MEASURING THE SPLITTING OF INVARIANT MANIFOLDS 163

a function defined on a part & x T¢:
W\:E:O = gr(dSO) = {(q7 ®, aq‘510(q7 L;0)7 8¢S0(q> 90)}

with So(q,¢) = So(q) = 4e'/2(cos £ — 1) considered as a function either ba 2, 27| x T¢

or on]0, 47 x T¢. We shall represent the perturbed invariant manifolds too as graphs over this
space (at least parts of them which do not lie too far from the t@ruse. local or “semi-local”
stable and unstable manifolds):

W™ =gr(dS™), WT =Gr(dst),
whereS~ andS™ are functions on some parts of the configuration space, which depéag.gn

and which will be uniquely determined (up to an additive constant) as the solutions of the
Hamilton—Jacobi equation

(1.4) He i (q,9,0,5(q,¢),0,5(q,¢)) =0

such thagr(dS*) contains the torug. (The right-hand side of (1.4) must vanish sircéself
has zero energy.)

—2m 9 4

ProPOSITION 1.1. — For any gy €0, 27, there exists a positive constamg such that the
Hamilton—Jacobi equatio(lL.4)admits a unique solutiof~ = S~ (g, ¢; €, ) real-analytic with
respect to all its arguments for

q€]—q.,q0l ¢€T% e>0, |ul<po,

and such thatSlji:0 coincides withSy; and S~ — S vanishes at ordeR on {¢ = 0}; and a

unique solutionS*(q, ; &, 1) real-analytic with respect to all its arguments for
qG]QW—CIO>27T+CI0[7 LPET{ 5>0> |/J"</J'0>

and such thaSljt:O coincides withS, and St — Sy vanishes at orde? on {¢q = 27 }.

COROLLARY 1.1.-— The invariant torus/ admits stable and unstable manifolds which are
locally the graphs of the differentials of the previous functiéhisand S~ (differentials with
respect to the variablegandy):

W =Gr(ds®).

Let us define the function
AS =S8t -8, forge]2m—qo,qol (g0 >7), p €T >0, |u| < po.
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164 D. SAUZIN

The differential ofAS is related to the distance betweky~ andW: above a point) = (g, ¢),
the vector betweeri@,dS~(Q)) and (Q,dS*(Q)) can be identified withi(AS)(Q). The
critical points of AS are thus projections of homoclinic intersectiohs.

In fact, the Hessian matrix ak.S at a critical point can be taken as a measure of the splitting
of the manifolds at the corresponding homoclinic point. For that reason it is interesting to
estimate the first and second-order partial derivatives of the funéti®@still with respect to the
variablesy andy). The functionAS itself is a difference of Lagrangian actions, which contains
an arbitrary additive constant (constant with respegtamd but function ofe and ).

We stated the corollary apart just in order to emphasize the fact that, since the invariant
manifolds are represented by functions on the configuration space, our problem is reduced to
the study of the functiod\ S.

The proposition and its corollary will be a consequence of ProposBidrand Theoren8.1
below(we shall even obtain information on the complex extension of the domain of analyticity
of S~ and S*: for instanceS~ will be proved to be analytic for complex o, , i1, with €
belonging to some sector amd| small enough). Perhaps we should say that we expected the
invariant manifolds to be graphs because of their being close (for $pjafo W‘f_o which
is a graph, and to be Lagrangian because of their being asymptdfiontbich is an isotropic
submanifold of the phase spaseéRemark 5.1).

Note that in the isochronous case=£ 0), it is not true that all the partial derivatives AfS
necessarily vanish at a point corresponding to a homoclinic orbit ofethecedsystem (1.3):
the only condition is thad, AS should vanish at such a point, since oflly5* is needed for the
description of the stable or unstable manifold of the reduced system (but, due to the conservation
of the energy, there is a priori a relation between the other partial derivativA$ @it such a
point — see the next paragraph).

1.3.2. The geometrical tool of our method is a vector field of the configuration space which acts
by zero on the functiol\ S. We call it thecharacteristic vector field of the pai{iS—, S™).

PROPOSITION 1.2. — Fix any gy €|m, 27 and consider the function$~ and S* of
Proposition1.1 The vector field

o D 1 Lo @
D—28q(S +5 )8q+(w+2a8¢(8 +8 )) %

is defined and analytic fog € |27 — qo, qo[, ¢ € T4, € > 0, |u| < po, and the functiomS =
St — S~ satisfies

D-AS=0.

3We may call'w~ = Gr(dS—) semi-localunstable manifold in opposition to the local unstable manifgi
and to the global unstable manifold. The local manifold is defined by the use of some small enough neighbwurhood
of 7 (we can assume in particular thgtis contained ifT* (] — qo, go[x T%)); it consists of all the points i whose
trajectories are negatively asymptoticTo The global manifold is the union of the trajectories of the point¥\qf,_,

i.e.{¢%, (M); M eW,_, t€R}if we denote bypt, the time¢ map of the Hamiltonian flow, whereas

loc?

W = {¢ (M); M e W,

loc?

t € R such thal, (M) € T*(] — qo,g0[ x T9)}.

Analogously we may cal+ semi-local stable manifold. For that reason the homoclinic points obtained as intersections
of W~ andW™ may be called “primary” homoclinic points.
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MEASURING THE SPLITTING OF INVARIANT MANIFOLDS 165

Proof. —We present this property in Section 2.1 in a slightly more general context, but
it follows from the Hamilton—Jacobi equation by a straightforward computation — take the
difference between equation (1.4) f§i and equation (1.4) faf —:

1 1
0=w- 0,5 + 5@(8¢S+)2 + 5(8q5+)2 +e(cosq— 1) + peF,

1 1
0=w-0,5" + 5@(8@57)2 + 5(8(15*)2 +e(cosq— 1) + peF. O

Note that foru = 0 this vector field reduces to the characteristic vector field of the unperturbed

invariant manifold:
~dSy 0 0
b= g g Y 9y

The invariance of the functioAS under the flow of the vector fielf) is a simple manifestation
of the conservation of energy and of the exact symplectic features of the problem that we have
tried to take into account as much as possible. This fact has important consequences for us, since
our goal is to studyAS and we discover now that this function is determined by its restriction
to any global section of the configuration space which is transvers@l #@nd such a section
is a torus of dimensiod. (All this seems very related to the approach of [5], where a “splitting
potential” is introduced which is also a function ®f, but we have not yet completely elucidated
the connection between that recent method and ours.) However, we do not want to fix once for
all a particular section, since there is no privileged choice — except maybe in the case of an even
perturbation, wher® is conjugate to its opposite by the symmeligyy) — (27 — ¢, ¢) and the
section{q = 7} may look more natural sinder, 0) is a critical point ofAS.

Proposition 1.2 (together with a detail from Theorem 3.1 about the dependesce arf ¢
andy) allows us to obtain very easily the following geometrical result, which is a particular case
of a theorem by L.H. Eliasson ([9], [5]):

COROLLARY 1.2. — There exists a positive constarff such that, foe > 0 and|u| < g, the
Hamiltonian system associated #f ,, admits at least! + 1 distinct homoclinic orbits.

Proof. —Let us choosey €], 27| and g so that Proposition 1.1 applies and let us pick any
¢+« €]27 — qo, qo[. We shall use the notatio®t = {(¢., ), ¢ € T?¢}: this set is a global section
of the configuration space and is isomorphic to the taitis

The characteristic vector fiel® depends analytically op and is transversal to the sectiGn
for 1 = 0; thus it is still transversal to that section farsmall enough, as long as the function
39,(ST 4+ S7) does not vanish o®. One can ensure that to be the case|fdr< pf with a
positive numbei, which does not depend an since Theorem 3.1 provides bounds for the
partial derivatives of ~'/2(S* — S) = O(u) which do not depend on

Now, fore > 0 and|u| < ug, if we denote byy the restriction taS of the functionAS, we
observe that any critical point of is necessarily a critical point ak.S (because of the equation
D - AS =0, viewed as a relationship between the partial derivativeA 8. And x, being a
real-analytic function on a torus of dimensidnadmits at least + 1 critical points according
to a theorem by Ljusternik and Schnirelman [2]. According to Corollary 1.1, those critical points
yield homoclinic orbits. O

The Ljusternik—Schnirelman theorem was already used in [9] to prove the existence of
homoclinic orbits, but in a more general context and in a slightly different maseealso [5]).

1.3.3. The analytical tool of our method is already present in [4] and consists in a lemma
(Lemma 2.1) from which we deduce that, in order to obtain an exponentially small upper
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bound forAS and its derivatives, it is sufficient to study the analytic continuation of the flow
of D. More precisely, it is sufficient tetraightenthe vector fieldD, i.e. to conjugate it to its
unperturbed formD|,,_, which has constant coefficients in a proper set of coordinates, namely
the coordinateéu, ¢) which are defined according to formula (1.7) below.

The straightening ofD will be achieved in Proposition 3.3. As a result there exist
coordinates(v,6) of the configuration space, which depend @nu) and differ from the
coordinategu, ¢) only by O(u), such thatAS can be written in these coordinates as a function
x(v,0; ¢, 1) which is periodic in the anglefy and satisfie$d, + e~ /2w - 9p)x = 0. Lemma 2.1
then implies that its Fourier coefficients satisfy, fox p < 5 and0 < h < hg, the inequalities

Xk (vi e, )| < comste'?| | exp(—pe 2|k - w| — hk])

for k € Z4 < {0}, v € R, e > 0, i1 € [—po, pto]. The constant(e, i) is nothing but the mean
value ofy, which does not depend an

In these inequalities, the traditional “small divisoig” w| do not appear as divisors but as
coefficients of——1/2 in the argument of an exponential, hence a difficulty which we call the
problem of “small exponents” and which we explain in Section 2.2. In order to overcome it, we
shall impose a Diophantine condition en

1.3.4. An advantage of this method is the fact that it deals as much as possible with functions on
the configuration space which has dimensiof 1. For instance the straightening of the vector
field D consists in finding a kind of flow-box coordinates in that space; we need not study the
Hamiltonian flow in the(2d 4 2)-dimensional phase space outside the invariant manifolds.

We have restricted ourselves to the case whiexe2 (at least two fast frequencies) although
the present method would apply as well in the case wtietd . In fact, if there is only one fast
frequency, the problem is simpler because there are no “small exponents”, and for some technical
reasons it is easier to solve the Hamilton—Jacobi equation, but the results would require a slightly
different presentation in that case (and it would be worthwhile to compare them with the results
obtained in [6], [7], or [13] — this will be the subject of some other article).

1.4. General results
The proofs of the statements below are spread over Sections 2, 3, 5 and 6.
1.4.1. The first result claims that the invariant manifolds~ and W+ are exponentially close

one to the other: it provides an upper bound for the partial derivativeésSo6f order1 or 2. We
shall use the notatiofk| = |k1| + - - - + |ka| if k € Z<.

THEOREM 1.1. — Consider the Hamiltonian systeffd.1) with F' satisfying the assump-
tions(Al) and (A2) of p.160andw satisfying the Diophantine condition

(1.5) Ve Z {0}, |k-w| =~k T

for some fixed positive numbeysand ~ (7 > d). Denote byA S the differenceS™ — S~ of the
two functions determined in Propositidnl and byw, the number

we=(1+(r-1)71 ((T - 1)%1%)1”.
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For any w €]0,w,[ and for any closed subintervad;, g2] of |0, 2|, there exist positive
numbersuy andC' such that the inequalities

(1.6) d(AS)], |d2(AS)] < Ot/ || exp (—we~1/27)

hold for

q€lq,q], ¢€TY >0, pe[—po,pol

Of course the inequalities (1.6) mean that each of the first and second-order derivatives with
respect to the variableg or ¢; of AS is bounded by the right-hand side. Note that all the
variables are required to be real for that exponentially small bound to hold. To quote the words
of [17], we could say that “the most important feature in the formula (1.6) is the experigat-
of ¢”. Indeed, in the case where= d, this exponent coincides with the one which is involved
in the lower bound for the exponentially long time of stability for trajectories starting in the
vicinity of a simply resonant surfacede[19] for this version of Nekhoroshev theorem with
local exponentsf stability).

In order of importance, the coefficient inside the exponential of the formula (1.6) comes
after the exponent1/27 of €. We shall see how to let it reach the valug in order to obtain a
smaller upper bound.

Remark1.1. — In view of Corollary 1.1, what we are interested in is red(lx.S) andd?(AS).
But the functionAS itself is exponentially close to a constant: under the hypotheses of Theo-
rem 1.1, there exists a real-analytic functiefz, 1) such that, for alkw €10, w.[ and for all
closed subintervdly, ¢2] of 10, 27],

3.”“07 C >0 such that V(q7§0,€,ﬂ) € [QDQQ] X Td X R*+ X [_/U‘Oa/U‘OL
|AS(q, p;6, 1) — pale, )| < Ce2|u] exp(—we /7).

1.4.2. In order to go farther and to obtain a better information on the asymptotidsSofvith
respect t, it is natural to try to isolate the first-order approximatits®; with respect tqu of
that function, which is usually called the Poincaré—Melnikov approximation.

DEFINITION 1.1. - ThePoincaré—Melnikov approximation &S is the function
ASi(q,p3€) = 0u(AS)(g; ¢5¢,0).

Thus we can writeAS(q, ¢; e, 1) = uASi(q,¢;€) + O(u?), and our goal is to study that
remainder ©(x?)™: is it smaller than the Poincaré—Melnikov approximation itself? Of course,
in order to provide a true answer to that question, we would need to know howAsfgés
exactly, and this turns out to be a difficult problem. Proposition 1.3 below showgtfatan
be expressed directly as an integral involving the perturbation fundti@and bounded from
aboveby an exponentially small quantity depending Bnbut in the general situation we do
not know how to obtain dower bound forAS; (the problem is more tractable when= 2;
seeSection 4). We shall thus content ourselves with proving that the remaixéler nAS; is
smaller than a quantity which can be compared to the known upper boukf,ofalthough this
is not completely satisfactory.

Let us define the change of variable

(1.7) q = qo(u) =4 arctane.
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The variable is nothing but the time along the separatrix of the pendulum and it will prove very
useful in the sequel. In particular, it will be essential to see it as a complex variable, and to try to
obtain the largest possible domains of analyticity with respect to it for all the functions defined
on the configuration space. We shall put a tilde over the symbol denoting such a function in order
to indicate that we have performed the change of variabiey,(u).

The functiongy(u) extends analytically to the universal covering®©f\ (I + irZ) with
logarithmic singularities only, and it defines a (uniform) analgti¢-periodic functiorf in

ir 3imw .
C=C~ ({5,7] +217TZ).

For0 < § < w/2, we shall denote by a subset of which containsR:
. ir 3imw .
(1.8) Cs = {ue@’dmt(u, {5,7] +217TZ) 26}.

Because of the assumptions (A1) and (A2), the function

F(u, ) =F(qo(u), ¢)
is analytic inC x Tio and for allé, o > 0 (with 6 < 7/2 ando < hy), there exists a number
A=A(b,0) =21

such that
(.9) V(u,9) €Cs x Thy g |F(u,ip)| < Ae 2%

(we have used the notatidh, = {¢ € C/27Z; | Sm¢| < h} if h > 0). We shall consider this
function A(-,-) as a datum of the problem in the same way as the fundidatself; it is in fact
a manner of measuring the size Bf or the strength of the singularitiesgfon the imaginary
axis for the variable; and on the boundary d_fzo for the variablep. One may keep in mind
the typical example of a function likd(J, o) = constd~"c =", with n,m € N*, which would
correspond to polar singularitiesf(the notion oforder of the perturbation along the separatrix
in [7]).

Here is an example taken from [4]: if

coS 1 COS Y4

(Q7 QO) ( COS q) cosh hO — Ccos 1 cosh h() — COS Sod’

one chooses!(,0) = constd 20~ (observe thatl — cos go(u) = 2cosh™?u has a second-
order pole).

4The image ofC by qq is the vertical strip{qg € C| — 7 < Req < 37} except for the points 0 an2ir which are
obtained only at the limit whefite u tends to—oo or +oco respectively (the singular points /2 and3ir /2 correspond
to Sm g = +o00 andSm g = —oo respectively, and the left and right sides of the]égt, 3’7’7 [ correspond to the vertical
boundariesite ¢ = —m andRe g = 37 respectively).
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PrROPOSITION 1.3. — The Poincaré—Melnikov approximation can be expressed in the vari-
ableu as
“+o0
ASi(u,pie) = [ Flaolut O+ =7/

Assume thab satisfies the Diophantine conditi¢h.5) and use the notation

. 1/7
w, = (1+ (1 — 1)_1) ((T - 1)7h8_1§> .

For any closed subintervad , g2 of |0, 27, there exist positive constants andb such that, for
(ro,7) € N x N4 with 1 < 7o + || < 3,

_rotlrl+d—7

(1.10) ](aq)m (8¢)TA51‘ < bA(El/ZT,El/QT)E A exp(—w*e_l/QT)

whenever
(a,¢) € a1, 2] x T¢ and e €10,¢e0].

Of course,(9,,)" means(d,,)™ ---(0,,)"* and|r| meansr; + --- + rq. This proposition
may be viewed as a refined version of the result which appears already in [17]. Observe that the
analyticity widthh, enters into the upper bound (1.10) through in fact, if F' is a trigonometric
polynomial (and thus anj is allowed), one can obtain a much smaller bound, witty2 in
place of—1/27 as an exponent farinside the exponential.

THEOREM 1.2. — Under the hypotheses and notations of Theorkrd for any closed
subinterval[gi, g2] of 10,27 there exist positive constants and b such that, for(rg,r) €
N x N withrg + |r| =1 or 2,

(1.11) (09)7°(0p)" (AS — pAS1) (g, 36, 1)
< b|u‘2A(€1/27761/27)267 ro+|r|§fd+377 exp(_w*gfl/ZT)
whenever

(4:9) € la1,42] x TY, e €]0,e0], 1€ [—po(e), po(e)];
with
po(e) = bflA(el/QT,sl/QT)fls%.
Remark1.2. — As for the cas@, ) = (0,0), there exists a real-analytic functia(e, 1) such
that AS — pAS; — p2a satisfies the same kind of an inequality:

_ 3dt4-7

[(AS — uAS1) (g, 956, 1) — pPale, p)| < b|u\2A(€1/27,51/2T)25 7 exp (—w.e” V).

As we said before, what is not satisfactory is the fact that in gerefal does not admit a
lower boundwhich would be of the same kind as the upper bound (1.10) and thus comparable to
the upper bound (1.11) for the remaindef — 4 AS;. We must insist on this poinTheorent.2
does not solve the question of the preponderance of the Poincaré—Melnikov approximation over
the remainderBut in some sense the problem is reduced to the estimatidnSef because the
method that we use is quite adaptable: if an argument is given for obtaining a better upper bound
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of AS;, one can also try to incorporate it to the method in order to bound the remainder. This
is done in Section 4 in a particular case witk= 2, where the coefficien, is replaced by an
oscillating function ofs.

In inequalities (1.10) or (1.11) we focused on the exponent ahd the coefficient inside
the exponential, but we did not pay much attention to the prefactor (the quantity in front of the
exponential) which could be slightly decreased easily.

1.4.3. We believe that our method can be applied to Hamiltonian systems more general
than (1.1). The first generalization that we envisage would consist in taking a perturbation
which depends ofy, ¢, p, I) (and alsc: and ) and not only on(q, ), but which still satisfies
assumptions analogous to (Al) and (A2). The characteristic vector field would still be defined
according to Section 2.1, but the technical details (especially the proof of the analytisity) of
would need to be rewritten. One could also consider the case where the invariafit tiepsnds

one andy, i.e. the case where (A1) is no longer satisfied and some KAM-type Pesutteeded

at the beginning to find an invariant hyperbolic torus before to study its whiskers. In fact, one
would demand from such a KAM theorem the largest possible domain of analyticity for the
parametrization of the torus, and in order to go on with the method, one would put the torus at
the origin by a symplectic change of coordinates (or one would exploit its isotropy and look for
its invariant manifolds as (non-exact) Lagrangian graphs — the characteristic vector field is still
defined because the default of exactness is the same for both manifolds [21]). Finally, it would
be interesting to investigate more general models, e.g. including a coupling term between the
variablesp and! like for a general simple resonance [5].

2. Characteristic vector fields
2.1. Geometrical aspect

In all the Section 2.1 we suppose thaf is a differentiable manifold of dimension
(configuration space),* M its cotangent bundle (phase space) &hdl'* M — R a Hamiltonian
function.

Letw:T*M — M be the natural projection. The canonical exact symplectic structuré of
is induced by the Liouville formh, which is defined as follows: fak € T*M, A(a) = a0 Ty,
wherex is considered as a linear map frdm ) M toR andT, 7 denotes the linear tangent map
to 7 (from T (T* M) to T (o) M). A local system of coordinatés),,...,Q,) of M induces a
local system of coordinaté®)y,...,Qn, P1,..., P,) of T*M in which X takes the usual form
Pd@Q+ -+ Pod@y.

The Hamiltonian vector field{y associated td{ is characterized by the propertfd =
—ux,dA. For a Lagrangian submanifold d* M to be invariant byXy, it is necessary and
sufficient that some constant-energy hypersurface contafns it.

5This kind of result usually requires non-degenerate torsiongi;e# 0 for j = 1,. .., d. But [20] shows how to deal
with the case wherer; = --- = a;n = 0 (m < d) and F' depends only ofig, v, p, Im+1,--.,1q). The case where
a = 0 and F" does not depend ohis the easiest one, since the normal hyperbolicity which is then present in the reduced
system (1.3) provides an invariant torus for (1.3) (without any KAM technique) which can be lifted in an invariant torus
for (1.2).

6 A submanifold)V is said to be Lagrangian if the restriction ¥t of the symplectic2-form d vanishes identically
and if the dimension oV is n (maximal dimension for the previous property): at each pointiafthe tangent space is
equal to its symplectic orthogonal. Andif is constant oV, at each point o#V the Hamiltonian vector field belongs
to the symplectic orthogonal of the tangent spackutpthus to the tangent space itself, and conversely.
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If « is a one-form of\/, we denote by inx its image inT* M (wiewing « as a section of):
ima={a(x), re M} C T*M.

It is a submanifold ofT* M and~ induces a diffeomorphism between dimand M, by which
>‘|ima can be identified tay itself (this property characterizes the Liouville form). Thusam

is Lagrangian if and only ifv is closed, and exact Lagrangian if and onlys exact! We are
particularly concerned with the latter case; what we have dergtetS) previously should be
written imd.S in this intrinsic formulation.

In the case whera is closed, imy is invariant by the Hamiltonian vector fieldl;; if and only
if H is constantonit, i.e. if and only if the functidif o « is constant o/ : this is the Hamilton—
Jacobi equation. In that situation thkaracteristic vector fielf im « is usually defined to be
the vector field ofM which corresponds via to the restriction of the Hamiltonian vector field
to ima. It may be writtenl'r o X o a.

We propose the following generalization of that construction:

DEFINITION 2.1.—Given any paifag,aq) of 1-forms of M, we call characteristic vector
field of (ag, a1 ) the vector field of\/ obtained as

D= /Dt dt, whereforallt €[0,1], D; =Tmo Xpo (o +t(a1 — ).

In the exact case, i.eg = dSy, a1 = dSy, with Sy, S; functions on the configuration spade,
will be calledcharacteristic vector field ofSy, S1) as well.

Thus, if we consider a point of the configuration space, the fib&i M intersects the
manifolds imey and ima; at the pointsag(xz) and aq(x), this determines a “vertical”
segmen®(z) between both manifolds above X(z) = {ao(z) + t(a1 — ap)(x), t € [0,1]},
and the characteristic vector field:ats nothing but the projection onto the configuration space
of the Hamiltonian vector field averaged alofgr).

In a local system of coordinaté€), ..., Q,) of M we can write

)dt,

w\m

b= ¥ p pio- [

1<j<n

settinga; = (1 — t)ay + tay fort € [0, 1] and using the induced canonical system of coordinates
(Q, P) of T* M. If the Hamiltonian function is quadratic in the momea. .., P,,, the vector
field is merely the arithmetic mean dp, and D;, the ordinary characteristic vector fields
associated tayy and a, hence the definition oD in Proposition 1.2 in the case df. ,,
apg=dS, a1 = ds+.

PROPOSITION 2.1. —Let D be the characteristic vector field of a pait, 1) of 1-forms
of M. Its action on the difference; — «y may be described as

(o — g, D)y =H oy — H o a.

7 A submanifoldV is said to be exact Lagrangian if its dimensiomisand if the restriction td/V of the Liouville
form X is exact.
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Proof. —Fix € M, denote byH, the restriction ofH to T A and consider the path
ar = ap(x) +t(a; — ap)(x) in TEM:

1 1
(HOO&l HOO[O /d /< t>dt
0 0

Butif ¢ € [0, 1], using the canonical isomorphism between the vector spadé and its tangent
spaceT,,, (T:M) ata, (as well as the dual isomorphism), we can idenﬂf} €T, (TEM)
with (a1 — ao)(x) € TEM, anddH, (o) € T}, (T5M) with Dy(x) = T, 7 Xpr (o) € T, M
(the last identification may be checked in local coordinates).

COROLLARY 2.1.-If Sy and S; are solutions of the Hamilton—Jacobi equation associated
to the same energy.e. if Gr(dSy) andGr(d.S; ) are both contained in the same constant-energy
hypersurfacg their characteristic vector field acts by zero on their difference, i.e.

(d(S1—50),D)=0
with the notations of the previous definition.

2.2. Analytical aspect

The linear homogeneous partial differential equatidnAS = (d(AS), D) = 0 obtained in
Proposition 1.2 is thus a particular case of the previous corollary. According to the following
lemma, the knowledge of a large domain of analyticity fof and for the flow ofD will be of
importance to us: in the case where all but one of the coordinates are angular variables and if new
coordinates can be found in whidh has constant coefficients, complex extension is sufficient
to ensure exponential smallness with respect to large frequency-vectors.

We shall use the notationfs-[ and[-, -] for open and closed segments of the complex plane.

LEMMA 2.1.-Letx(v,601,...,60q) be afunctior2m-periodic with respect to the variablés,
analytic in] — ipg, ipo[ x Tﬁo for somepy, ho > 0. Suppose that, for sonfe € R?, it satisfies

the partial differential equation
0 0
<8 +Q- 89) x=0.

Then the functiony extends analytically t§| Smv| < po} x T¢ and its Fourier coefficients with
respect to the angle®; satisfy the following inequalities, for all positiye< po andh < ho,

VEeZ Yo eR, |xp()| <e MHTAROLsup |y
[—ip,ip]xT},
with the notations (v) = (2m) ¢ [, x(v,0)e=*9d0, [k| = |k1 |+ -+ |ka| if k = (1, ..., k),
andT), = {¢ € C/27Z; |Sm¢| < h}.

A version of this lemma was already given in [4]; it is the quasiperiodic generalization of a
lemma by Lazutkin [16] on the Fourier coefficients of a periodic function.

Proof. —The function
(0) = x(0,0)
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is analytic and2z-periodic with respect to the variablés. Because of the partial differential
equation, we have

X(v,60) = U(0 - v 2),

hence a relation between the Fourier coefficients:
(2.1) Xk (v) = Upe™ P9
Let us denote byB the supremum ofy| over|[—ip, ip] x TZ. The Cauchy inequalities
Vo € [=ip,ip],  |xx(v)| < Be ",
when specialized to = +ip (according to the sign df - 2), show that
VkeZ?, U] < Be MFI=plk-0l
Thus Eq. (2.1) implies that
VkeZ YoeC, |xi(v)| < Be Mk=(p=ISmulik-l

and the Fourier seri€s, i (v)e'*? converges fof Smv| < p and|Smé;| < h. O

In the situation described by the lemma, if moreaRer ¢ ~'/2w, each Fourier coefficient of
of nonzero index is thus exponentially small with respect {@s soon as is non-resonant).
It is natural to try to deduce from that fact a result of exponential smallness for the whole
oscillatory part of the functiory. But we are now faced with a difficulty which is typical of
the cased > 2 and which we could name thgroblem of small exponentsven if w is non-
resonant, the coefficient '/2|k - w| which enters into the argument of the exponential in the
bound of| x| may reach arbitrary small values &svaries. Yet if we impose a Diophantine
condition onw, there will be a balance between the terms/?|k - w| andh|k|: for the former
to be small, the latter must be large. We shall thus recover some exponential smallness for the
oscillatory part ofy. This phenomenon was clearly identified in [17] or [18], and then in [27], [4]
and [25].

COROLLARY 2.2.— Let x(v,0,¢) be analytic for(v,0) €] — ipo,ipo[xT{ ande > 0.
Suppose that there existsc R? satisfying the Diophantine condition

VEeZ {0}, |k-w| =k T

for some fixed positive numbeysand 7 (7 > d), and such thaly is a solution of the partial
differential equation

O | i O\
(% +e w - 20 x =0.
For all positivep < pp andh < hg, we shall use the notations
B(p,h,e)= sup Ix(v,0,¢)] and v= (1+(T— 1)_1)((7-— 1)7)1/7.
(U,G)E[fip,ip]XTZ

The functiony extends analytically tg| Smv| < po} x Tf  x {e > 0}, its mean value on the
torusa(e) = (2m) = [ x(v, 6, ) dd does not depend on the variahleand
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(i) forall 6 €]0,pol, o €]0,%2[, e >0, (v,0) € R x T¢,
‘X(/U7 975) - a(&)‘ < %B(po - 67 hO - 075) €xXp ( - ’LU((S, 0)5_1/2T)>
g

wherew(d,0) = v(py — 6)*/7(ho — 20)"~D/7 and ¢ > 0 depends only on the dimen-
siond;

(ii) there exists a positive numbep which depends only omy and hy such that, for
0,00 €]0,10] ande €]0, 0], (v,0) € R x T4,

|X(v, 0,e) — a(5)| < c’a_d/zTB(,oo — 80e™?  ho — 0051/27,5) exp ( - w*a_l/zT),

wherew, = vpt/"hS ™/ and¢’ > 0 depends only o, 7, 7, po, ho.

Remark?2.1. — Unfortunately this result is not optimal. We focused on the exponép2r
of ¢ and the coefficientv, inside the exponential, but we do not know how to improve them
under general hypotheses — in Section 4 we shall see how to replanesomething larger in a
particular situation withl = 2. On the other hand the prefactée ~/2 B(- - ) could be slightly
decreased by an appropriate modification of the proof below.

Proof. —The fact that the functioa(c) does not depend anis an obvious consequence of the
partial differential equation.

() Let p=pg — 9, h=ho — o andh; = hg — 20. For eacte > 0, we obtain from Lemma 2.1
the following bounds for the Fourier coefficientsof

VEeZd, YweR, |xi(v,e)| <B(p, h,g)e—hl’fl—Pfl/z\k-w\
< B(p, h,e)eckle=halkl=pe =221k

(we have used the Diophantine condition in the second inequality). On one hand, one checks
easily that

Yo,y >0, y+yay' T vzl
so, ifk € Z¢ < {0},
halk|+ pe Y2k - w| = w(5,0)e /2.
On the other hand,
Z ekl = —1 + coth? g < <
2 od
kezZd~{0}

with a positive constant depending only on the dimensidn
Thus, ifv € R, § € T? ande > 0,

Z Xk(vag)eik.e

kezZd~{0}

[X(v,0,¢) —ale)| = < — B(p, h,e) exp(—w(8,0)e~1/?7).

<
od
(i) With the choice(s, o) = (60e/27, 0pe'/?7), we get

w(8,0)e 2T 2w,V ) 0<e<eq,

where ¢y depends only orpg,hy and ¢’ depends only orv,pg, hy (becausew(d,o) =
wy + O(d,0)). Itis thus sufficient to take’ =ce® . O
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Remark2.2. — There is no necessity of confining the variablesdé to the real domain: we
could have worked in a set of the forfhSmv| < p'} TZ, with p’ < p andh’ < h, but then the
coefficientsw(d, o) andw, would have been smaller, whereas we were interested in the largest
possible coefficients (even if they were not optimal). On the other hand we could have replaced
£~%27 in front of the upper bound in (i) by a smaller term, but we prefered a simpler resuilt.

3. Exponential closeness of theinvariant manifolds
3.1. Hamilton—Jacobi algorithm

Let us return to our Hamiltonian (1.1). The notations will be slightly simplified by a rescaling
of time and variables (the timebeing multiplied by='/2, and the action-like variablgsand I
divided by the same factor): it is equivalent to study the Hamiltonian system generated by

1 1
(3.1) H.,(q,0.p,])=2w-1+ §a12 + 5;02 +cosq— 1+ pF(q,p),

with a large frequency-vectatv, where

z:sfl/z.

The unperturbed solution of the Hamilton—Jacobi equation is now

Sl )= So(0) = 4(cos g - 1).

After having determined and studied particular solutions of the Hamilton—Jacobi equation for
the system (3.1), we shall have to multiply themddy? in order to come back to the original
system (1.1). Still, we shall use the same notafiénbefore and after this rescaling.

Our first task is to prove Proposition 1.1. To begin with we shall see how the Taylor expansions
of S~ and S with respect tou are determined: we shall work with formal seriesirwhose
coefficients are functions d@f;, ¢) but also ore, but the dependence arwill be understood.

PROPOSITION 3.1. — Fix w € R? and suppose that the functidn satisfies the assumptions
(Al) and (A2). For all z > 0, there exists a unique sequenSg,S; ,... of real-analytic
functions of(q, ) defined forg close to0 and ¢ € T<, vanishing at order on {g = 0}, and
such that

S™=S0(q)+ Y 1" Sy (0, ¢)
n>=1

satisfies formally the Hamilton—Jacobi equatidd, ,(q,¢,0,5,0,5) = 0. In fact, these
functions extend tb— 2, 27| x T and depend analytically on=¢~1/2,

For all z > 0, there exists a unique sequensg, S, ... of real-analytic functions ofq, ¢)
defined forg close to2r andp € T<, vanishing at ordee on {q = 27}, and such that

ST =So(a)+ D> 1w"S;(a,%)

n>=1

satisfies formally the Hamilton—Jacobi equation. In fact, these functions extéagite x T?
and depend analytically on=¢—1/2,
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Proof. —Of course the two parts of the proposition are analogous, and we shall content
ourselves with the proof of the first one. Let us denotdsbythe space of all analytic functions
vanishing at orde? atq = 0:

B~ ={U(q, ¢) analytic forg close to0 andy € T¢, with U(0,¢) = 9,U (0, ) =0},

and use the notatioR, = %3% + 2w - %. Let us call

T=>Y 1S, 1(0,¢)

n=0

the formal expansion that we are looking f&fy + 7" is solution of the Hamilton—Jacobi
equation if and only if

DoT = ~F(q, ) ~ 5u[a(@,7)" + (2,7

We observe thaf' belongs toB~. Thus, expanding the equation in powersgfwe can
determine inductively the functions, ; and conclude the proof by applying a simple lemma
(whose proofis left to the reader):

LEmMA 3.1.— The operatorD, induces an automorphism @&~ . The change of variable
w = tan { gives to it the formDy = wa% + 2w - % and allows to express its inverde™ =
(Dojp-)~" as

(E7U)(w,p) =— / U (we', ¢ + z¢w)d(.
0

Note that, ifU depends analytically on for z > 0, this is also the case df~U: indeed,
if z is allowed to move in a sector which contaiR$™, we still can change the half-line of
integration[0, —oo| into [0, —z~1oo] in order to keep:¢ real and the new formula will provide
the analytic continuation of — U with respecttoe:. O

Here are the induction formulas that we obtain:
ST =—-E"F,

_ 1
Sn+1 = —§E ( Z [aawsn]+1 . 8¢Sn2+1 + (9an1+18an2+1]>, n 2 1.

ni+ns=n—1
They define what we call the Hamilton—Jacobi algorithm.

DerINITION 3.1.—The vector field (or differential operator) of the configuration space

dSy 0 0

"= ae T By

will be called the unperturbed characteristic vector fieldNote that after the change of
variable (1.7) it reduces to

~ 0 0
Do—£+zw~%.
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Proof of Proposition1.3 of p. 169 — It follows from the proof of Proposition 3.1 that
Sy =—E~F and similarlyS;" = — ETF, which means

+o0

55 (u, ) = S (q0(uw), o) = / Flut ¢ o+ 2(w) dC
0

when one uses the variable The difference is the familiar Poincaré—Melnikov integral, as
announced in Proposition 1.3. Let us prove the inequalities (1.10) for the fukfipfu, ;&) =
Sf -5y,

This function is obviously analytic if| Smu| < 5} x T¢_x R**. Using the function4 to
measure the size df according to the formula (1.9) of p. 168, we obtain easily the following
bounds: if(rg, ) € N x N¢ with ro + |r| < 3,

- 5 ) —
(3.2) ](8@’”0 (8¢)TA51] < 24A<§, %)6”’0’”' in {| Smu| < g — 6} X ’H‘ZO_U x R*t
where (9,)" = (9p,)"" -+ (8p,)"*, |r| = 71 + -+ + ra. SinceDy - (AS;) = 0, we can apply
Corollary 2.2 to the functionAS; or to its partial derivatives (because, has constant

coefficients); if we assume < ro + |r|, there is no mean value to substract in the results of
exponential smallness we get: the first part of the corollary yields

e

(3.3) [(8)"(8,)" AS) | < 24CA<§, 5)5%d“ exp(—we /?7) inRx T¢ x R*¥,

withw = (1 + (7 — 1)) ((r — )Y 7(Z — §)1/7 (ho — 20)(7~Y/7, and the second part (with
00 = 0g = 2) yields

_ro+lri+d

|(0u)" (8¢)TA§1| < 24C/A(€1/2T,€1/2T)6 T exp(-— w*efl/%),

for (u, ) € R x T? andz = ¢~/2 > 0 large enough, with

. 1/7
w*—(1+(7—1)_1)((7—1)7h61)1/T<§) :

This allows us to end the proof of Proposition 1.3, since the inverse change of variable
has its derivatives bounded in any closed subintgaly;] of |0, 27[. We just have to multiply
by £'/2 because of the rescaling from (3.1) to (1.1)1

_Remark3.1. - Link with parametric resurgence and Gevrey properties/26] the operator

Dg was studied in the case wheite- 1 which is much simpler, and it was shown that its inversion
led to divergent series in the parameteMore precisely, the obtained series were expanded in
powers of:'/2 and weraesurgenin z = e ~1/2. Here we can at least show that Gevrey properties
take place in the variable = 2!/ = ==1/27, in the sense that formel Borel transforms with
respect tar will be convergent.
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Since this remark is a little far from our topic, we shall only give a statement without proving
it. We recall that the formal Borel transform with respectts defined by the formula:

o) — INL,=N ., () — €
x() ZN:X X(6) XN:X V)

in our situation the indexV will run through 7N* and £x(£) will converge to a regular
holomorphic germ in the variablgf, which means thag(¢) will be analytic with ramification
at the origin. Thus we may consider th@e C,, the Riemann surface of the logarithm. For
simplicity we shall consider the case where the variahiteoves only inside disks.

ProOPOSITION 3.2. —Let pg,hg > 0 and denote byD,, the open disk of centr® and
radius pg. Suppose that a functian(u, ¢) is analytic in®,,, x Tio and extends continuously to

the closure of that domain, and suppose that R¢ satisfies the Diophantine condition
Ve Z3\ {0}, |k-w| >~k
The partial differential equatioriT)oX = ¢y admits a unique formal solution of the type

x=y x"u,0)z,

n=1

and its formal Borel transform with respect to= z!/7 converges and defines a function
X(u, p, &) analytic in

¢ ={(u,,6) €Dp, x T, x Ca; [£| < W (u,0)}

with W (u, @) = 'yl/T(po — |u\)1/7(h0 — max, |%mapj|)(7_1)/7.

In fact the formal Fourier coefficients; (u; z) of x have a Borel transform with respect o
which is convergent and can be expressedrgcé;;wk (u — ilfw), and this leads to parametric
resurgence (with respect 19, e.qg. if the data),, are meromorphic functions, but the associated
Fourier series may be divergent (because the singularities ig-piene may accumulate the
origin). One could present things using the apparatasoélero-summatiof]: the deceleration
operator fromx to z = z'/7 yields entire functiong. (v, &) as individual Fourier coefficients and
restores the convergence of the whole Fourier series. Moreover, this operator should allow one
to express these Borel transforms with respect,tqx(u,£), as integrals involving the Borel
transforms of the;, with respect to: and some kernel. This could lead to a better knowledge of
the analytic continuation of with respect t&.

Thinking of the Hamilton—-Jacobi equation and its particular soluti®nsndS+, we suspect
the existence of a formal solution (formal power series'if?) to which bothS— and S+ are
Gevrey asymptotic (Gevreyl in the variablex = ¢~'/27) and which must be considered as
resurgent in the variable = ¢~'/2 (even if the Borel transform with respect todoes not
converge as a Fourier series). This could shed another light on their exponential proximity.
(Notice that a relationship between Gevrey properties and exponential smallness was recently
studied in [23].)

3.2. Analyticity of the solutions

Let us now define complex domains in theplane, D, s andD; ;, in which the Taylor
expansions with respect joof the solutionsS— or 5+ will be proved to converge. Far; € R
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and0 < § < 7/2, we consider all the open sectors
{u: —Uu1 +£elﬁa £> 07 5 E] _617/61[}

for 81 €10, 7 /2], and select among them the largest one which is containésg ime caIIDj[l s
this sector; ifu; > —4, its vertex is—u; and its apertur@; is determined by the equation

gcosﬁl =0 + uqsin By,

but if u; < —4, itis the open half-plangReu > —u4 } andfy = 7/2.
Similarly, D, 5 is the largest of the sectors

{u:ul—few;£>O,ﬂ€]—51,ﬂ1[}, 516]0,71’/2},
which is contained it€’s; it is the opposite sector:
D;M; = { —u; u € D:{hg}.

We define also a complex domain for the variabtefor Ajg €]0,7/2[, with moreover
AB < arctanﬁ if u; >0,

Susap={z=E£"; >0, Be]— 1+ AB, B — AB[},

where the half-aperturg; €]0,7/2] of the sectorD,_ ; andD; .5 IS supposed to be strictly
larger thanAg; this will be the case i is small enough with respect tg andAp.

™ ~ € Xy, ,6,A8

THEOREM 3.1. - For all u; € R and AB €10, 7/2[ with Af < arctan 57— if u; >0, and
for all small enoughy, o > 0, there exist positive numbers and{By} such 'that the series of
Proposition3.1expressed in the variable

u) + Z 1S (u

n>1
convergesto a functioﬁi(u, ©; z, 1v) analytic with respect to all its arguments for
u€ Du1 5 pETE o, 2 = V2e, 508 |ul <p,

satisfying in the closure of that domain the inequalities

|0(5* = So — uST)| < BolufPe™F27e),
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whered stands for one of the operatof8,, )™ (9,,)" with (ro,r) € N x N%, 7o + |r| < 2.
More precisely, i < o, one can take;, = b; *A(6/2,0/2)"do%+! and

B J01A(8/2,0/2)25 27 supthrolgm2d =1 if || =0,
7\ b1 A(6/2,0/2)26 202" if [ >1,

where the positive numbéy depends only on; and Aj, and the functiomd measures the size
of F" according to the formul#1.9).

Of course(d,)" meansd,,)™ - - - (0yp,)" and|r| =71 + - - - 4+ r4. The proof of this theorem
is delayed to SectioB, because it involves some technicalities although it is not difficult:
appropriate Banach spaces are defined and the ordinary fixed-point theorem is applied. The key-
point lies in Lemma 5.2 which asserts the boundedness of the inverse to the op&ydthis
inverse isE™ or £, depending on whether one studies the stable or the unstable manifold, with
the notation of Lemma 3.1; in other words the “homological” equation — or rather the linearized
equation — which isDyx = 1 in the variablegu, ¢), can be solved by = E+, whereE* is a
bounded operator of the suitable Banach space: no small divisor appears because of the presence
of the variableu beside the angular variables).

Proof of Propositionl.1 and of its corollary. -Proposition 1.1 is indeed a consequence of
what has been done up to now: if we consider for instance, by letting andwu, vary we see
that the variable: can reach (provided tht| is kept small enough) any compact subset of

D™= U D, s={ueC|Reu<0or|Smu|<m/2}
6>0,u1 ER

whose image byyy is {—7 < Req < 27} ~ {0}; the 2ri-periodicity in u of S~ and its
exponential decrease fdte u tending to—oco ensure that it defines a functidgfr analytic for

g belonging to any compact subset{ofr < e ¢ < 27} provided thafyu| is small enough. We
would obtain any compact subsetf 27 < Re ¢ < 7} simply by repeating the previous work
with the change of variable= —27 + 4 arctane™" instead ofy = g (u).

Now, the manifoldV~ = Gr(dS™) is Lagrangian and contained in the zero-energy level of
the Hamiltonianf; ,, (sinceS— satisfies the Hamilton—Jacobi equation), it is thus invariant by
the Hamiltonian flow. This manifold contains the tofflidvecauselS— vanishes foyy =0 — it is
in fact its unstable manifold; more information on the dynamics on it is given in Sectiom5.

3.3. Exponentially small upper bounds

Theorems 1.1 and 1.2 will derive from the following result. We use here the variabtel
we recall that the solutions of the Hamilton—Jacobi equation for system (3.1) must be multiplied
by £'/2 in order to yield solutions corresponding to (1.1).

THEOREM 3.2. — Consider the Hamiltonian systefi3.1) with F' satisfying the assump-
tions(Al) and(A2), andw satisfying the Diophantine condition

VE€ZE {0}, |k-w| =k T

for some fixed positive numbeysand (7 > d). Denote byA§ the differences™ — S~ of the
two functions determined above.
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For all ug > 0 and for all small enough, o > 0, there exist a real-analytic functiom(e, 1)
and positive numbergy, {C»s} such that, if we use the notation

T 1/7
G4 =D =00 (F-0) 2000

the inequalities
(35)  [0((AS = pASy) (upie™ /% 1) = pPale, )| < Colul® exp(—we™/?7)

hold for
u € [—U07U0], ()OETda €>07 IS [_.UJOMUJO]

andd = (9,)(9,)" with ro + [r| < 2.
If 20 < o, one can takey = by ' A(6/4,0/4)"15%0¢ and

O — boA(6/4,0/4)26 30341 if 7o + |r| =0,
boA(5/4,0'/4)257277’00'7%717‘7" if 7o + ‘7“ =1or?2,

where the positive numbeép depends only om, and the functionA measures the size @t
according to formulg1.9).

Theorem3.2 implies Theoren.1 — The numberv defined by (3.4) can be made arbitrarily
close tow, by an appropriate choice éfando. Then inequalities (3.5) and (3.3) together with
the assumptionu| < uo produce bounds for the partial derivatives of the functidfi, which
translate into the bounds (1.6) for the partial derivative& fsince the change of variabje— «
has its derivatives bounded i (—uo), go(uo)]. O

Theorem3.2 implies Theoreni.2 —Fix any ug > 0 and chooseé, o,,., such that, for all
g,6,0 > 0 satisfying2§ < 0 < omax, iNequalities (3.5) hold fow € [—ug, ug], ¢ € T¢ and
i € [—po, to], with the numbersi; and Cs which are indicated at the end of Theorem 3.2.
Let us specialize the result to the case whiere4e!/2™ ando = 8¢1/27, for ¢ small enough (in
order to ensur@d < o < onax)- As noticed earlier (at the end of the proof of the last statement
of Corollary 2.2), we have in that case

6_1/2T —1/27

w 2 W€ — const,

hence the result in the variabl@s ¢). We transfer it to the variabldg, ) by the same argument
as above. O

Proof of Theoren3.2. —
(a) Let us callD the characteristic vector field ¢f5—, S™). Since the dependence on the
action-like variables in our Hamiltonian (3.1) is so simple (it is quadratic), we find

0

_ i fl + 9 1 + —
D-(AS)=0 wuthD_28q(S +S )aq+<zw+2a8¢(5 +S )) 90

(so, in our caseD is the characteristic vector field associated to the Lagrangian manifold
1 _
gr(§d(s++s )),
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i.e. the projection onto the configuration space of the Hamiltonian vector field restricted to this
“averaged” manifold which is generally not invariant!).

The components ab are real-analytic in the intersection of the domains of analyticity of
andS™, and foru, = 0 we find the unperturbed characteristic figdg again. In the same manner
that we had at our disposal the coordinatesy) in the configuration space to straightéh,

i.e. to conjugate it to a vector fielB, with constant coefficients, we shall “straighted’ Let us
start by writing it in the coordinate:, ¢):

(3.6) D-(AS)=0,
N _ 1 d(Io - o+ o— 0 1 o+ ~_ 0
We shall henceforth use the notatity, s = D, ;N D, ;.

2,

Yus,0,08

t
|
|

PROPOSITION 3.3. — For all up > 0, for all A3 €]0, arctan 57—[ and for all small enough
8,0 > 0, there exist positive numbers, and { My}, and there exists a real-analytic change of
coordinates

(u,0) = (v,0) + Ul (v,0;2,1) <= (v,0) = (u, ) + pV(u, ; 2, 1)

satisfying the following properties

— it conjugatesD and 2 + zw -

—the mappindd +p{ induces a bijection between the domain
— =d
VEDy,s5, 0T,

and its image fotu| < o, 2 € ¥, 5,a5; for those values ofv, 6, 2, 11), the components; of i/
are analytic with respect to all their arguments and satisfy

|oU;| < Mo,

whered stands for one of the operatof8, )™ (9 )" with (rg,7) € N x N4, rg + || < 2;
—the mappindd +pV induces a bijection between the domain

— —d
UGDU%(S, (,OEThO,J

and its image fofu| < p2, 2 € B, 5. 5; for those values dfu, ¢, z, 1), the components; of V
are analytic with respect to all their arguments and satisfy

|0V;| < Mo,
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whered stands for one of the operatof8,, )™ (0,,)" with (rg,r) € N x N%, ro + |r| < 2.
More precisely, i2§ < o, one can take

.u2:b2_1A(5/4,U/4)*152gd and Ma:bgA(5/4,0/4)5717”’0'7‘1*‘“’

where the positive numbés depends only on, and Aj3, and the functiomd measures the size
of F" according to the formul#1.9).

The proof of Propositior8.3 is postponed to Section 6.However, we already notice that it
claims only the existence of global flow-box coordinates/foin some complex neighbourhood
of [27 — ga,qa] x T, for m < g2 < 27 and || small enough. This is not surprising, at least in
the real domain, since there exist global transversal sectionsas we have already noticed
earlier (Section 1.3.2). At a technical level, only the Banach fixed-point theorem is needed, the
key-point lying in Lemma 6.2 which provides a bounded inverse to the righDfor

(b) Let us see now how we can deduce Theorem 3.2 from what has been done up to now. The
idea is simply to apply Corollary 2.2 to the function

x(v,0;2, 1) = AS o (Id +pld) — pAS;

and to its partial derivatives, and then to transfer the exponentially small bounds which we shall
obtain from the real part of th@, #)-domain to the real part of the:, ¢)-domain. We shall end
up with exponentially small bounds for

(AS — uASY) (u, 03672, 1) = x o (Id+uV) + u[AS) o (Id+pV) — AS) ]

and its derivatives (but only for real valuessodndy since we want realness to be preserved by
the transfer). We only need to write carefully each step of the process in order to keep track of
the dependence of the boundsdando.

We thus suppose that the hypotheses of Theorem 3.2 are fulfilled and that we areygiven
We define

m s

T T T
= — =——, Af=inf tan — — —
Uy 73 Uo WeL [ =in {arc an Suy’ ﬂ(ul, 8)7 ﬂ<u2, 4)},

where we have used the notatiG(u;,d) for the half-aperture of the sectof¥, ; ande{i’&,
and

op =

2

These definitions are quite arbitrary. In particular, they are meant to ensure that,if< 7,
Yu1,5/2,A8r Sus,s,A5 AN, 5, A4 are well defined sectors which contdirit and

ho, 50—linf{ao,gcosAﬂ—uosinAﬂ}.

[<ip,ip] C Duy,s, p= g — 26.
(c) Lety and o be positive numbers such that< 7, and small enough for Theorem 3.1
to apply with (u1,AB,8/2,0/2) and for Proposition 3.3 to apply witkus, AS3,5,0). Let
p= % — 26 and definev according to formula (3.4).
— Proposition 3.3 provides an analytic vectorial functibwhose components are bounded by

someM = M (ug, AB,68,0) N Dy, 5 X TZO_U X Yuy 6,08 X Dy, Whereps = pa(ua, AB,8,0)
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is some positive number anid,,, denotes the closed disk of centrand radiusus. If (2, 1) €
Rt x [—pa, 2], the image ofD,, 5 x Ti by Id 4/ is contained IrTD S Ll

r X
sin 8o’ 6 ‘MU\/‘[

TZO_( M)» Wheresz = B(uz, §). In particular, if

ul < ¢ 1) o
HIS ps = inb w2, 5o 507

o—|ul

andj < 7, we havesin 35 > > V3

.. . . = —=d .
this image is contained @ul 572 X Ty, _q /o (SiNCEUL = 7

andus + <ug +

2f

QSmg =u1). We can summarize by

2\/_

Id+pl:& = quxThO o 51:Du175/2><']r20_0/2

if we forget about the parametes 1) and focus on the variables.
— The definition of an analytic function

(3.7) x =AS o (Id+uld) — pAS;

is allowed by Theorem 3.1 which shows thAlS is analytic in&; x X, 52,43 x Dy, and
bounded in the closure of that domain for some= 11 (u1, AB,8/2,0/2):

AS:& — R, |AS—pAS | <2*Blu> in€.

Thus the functiony is bounded i€oRT x [— 4, p14] Wherepy = inf{us, 11 }. The identity
(3.8) X = (AS — pASy) o (Id+pth) + p[AS; o (Id +uld) — AS: ]
shows thaty| is bounded by”’|x|? in that domain, where

C'=2e""B+ M sup |d(AS)].

= —d
Du175/2 XThO—o‘/Q

We retain

Xigg — R, |X‘ <0/|,u‘2 in 22.

— SinceD - (AS) =0 and Dy - (AS;) = 0, the functiony defined by formula (3.7) satisfies
the partial differential equation
AN
v Y e )X T

and so do all its partial derivatives. Singeip, ip] C D, s, Corollary 2.2 applies and we find

|X — ,u2a| <co™0C|pl? exp (— wa_l/zT) iNR x T x R** x [~ 4, 4],
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wherea is an analytic function of = ~'/2 andy only which is defined by the formula

pa(z, pu) = (2W)_d/x(v,9;z,,u) deé.
Td

— In order to come back to the variablés, ) we apply Proposition 3.3 again, but
with (ug, AB, do, 00): We get an analytic vectorial function whose components are bounded
by M' = M(ug,AB,80,00) in Dyy.s5y X TZO_UO X Sug.60.08 X D, ., for some uf) =
pa(ug, AB, do, 00). We choose

pro = inf{fia, pis}.

Since realness is preserved by our change of variables (for real parameters), we have

Id+uV: [~ug,up] x T* — R x T

and the identity
(3.9) AS — pAS; = x o (Id+uV) + p[AS; o (Id +uV) — AS, ]
yields the inequality

‘Ag— uAS; — pra) < (co™?C’ exp(—wefl/%) + M’ sup ‘d(Agl)DMQ
RxTd

in [—ug, uo] x T x R** x [— o, po]. And it is clear that bounds of the type (3.5) may be obtained

too, since at each step of the process we could bound the appropriate partial derivatives too.
(d) Let us now suppose that < o < 1 and compute explicit values that the numbggs

andCy may assume. We shall denote byhe number (6/4, o /4) (which is not smaller thah).
According to the above chain of reasoning, we can take

il O
Ho = 111 M2>2M72M7,u17:u’2 .
According to Proposition 3.3, we can take
p2 = po(ug, AB,5,0) =by L A716%04, M = M (uz, AB,6,0) =byAd to~ 1,

where the numbe, depends only omg, andu), = ua(ug, AB, do, 00) depending only onug.
According to Theorem 3.1, we can take

p1 = (ur, AB,§/2,0/2) =b P A7 60 by depending only om.

Hence the choicgg = b, ' A~16%20% with a numbeih, which depends only.

Let us number frond to d the coordinates ifC x (C/27Z)¢ and denote by); the operator
of partial differentiation with respect to thih variable;0 will denote a differential operator
0y 01" --- 04" with rg +r1 + - - + 74 < 2. According to Proposition 3.3, the componentg/of
satisfy

\3Z/lj| < Ma = b2A5717r00,7d7\r| in Zg X R+ X [—,uo,‘uo], j: 071, ood

)
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(the above numbed/ coincides with M1q). And according to Theorem 3.1, the function
U =AS — puAS; satisfies

9] < 267 Bylpl? iy x RY x [—po, po],

with
B b1A25—2—sup{1,ro}O,—2d—1 if |T| =0,
97 by A25—2g—2d—Ir] if ] > 1.

The formula (3.8) can be rewritten as
X=x1+x2, xi=Vo(ld+ulh), x2=p*®-U

with
1
P = / d(ASy) o (Id +pald) dz.
0

The following lemma (whose proof is left to the reader) will help us to compute nun@grs
such that

|Ox| < Chlul? inEyx RT x D,

LEMMA 3.2.— Let &; and &, be subsets of x (C/27Z)?, and number fron® to d the
coordinates in that space. L&t be a function analytic i€, andi/ an analytic vectorial function
such that the image of; by Id +uif is contained in¢;. Suppose tha¥ and the components
of U satisfy the inequalities

‘8\11|<Ba in &,
0U;| < My in€,, j=0,1,....d,

foro=0,°01" --- 0" withrg + 11 + - - - 4+ 74 < 2. Then the functiow o (Id +x{) satisfies the
inequalities
|0(¥ o (Id+uth))| <Cp in &,
with
Cia = Bia,
Ca, = Ba; + (d + 1)| | Mo, sul}p {Ba,}.
Co, o, = Bo,o, + (d+1)|ul (Mo, sup {Bo.o, } + Mo, sup {Bo,o, } + Ma,s, sup {Ba,})

+ (d+ 1) |pul* My, Mo, sup {Ba,o, }-

We apply the lemma to; = ¥ o (Id+uf) and to ®, = d(AS;) o (Id+uald) (bounds
for the functionsdd; (AS;) in €, = &; are given by formula (3.2)). Using the assumption
lu| < byt A™16%07, we obtain

! {b6A25_3J_2d_1 if 7o 4+ |r| =0,

o= b6A25—2—roU—2d—1—\T| if ro + |7’| =1or2.
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By Corollary 2.2, we deduce that
|0(x — p2a)| < caidCéMzexp(—wa*l/zT) iNR x T¢ x RT x [—po, 1ol
and the formula (3.9) can be rewritten as
AS—pAS —pPa=xi+ x5, Xi=(x—pa)o(Id+pV), x5=p*®* -V

with
1
P* = / d(ASy) o (Id +pxV) dz.
0
We apply again Lemma 3.2, but with, = &, =R x T andV (or zV) in place ofi/ (its partial
derivatives are bounded by a number which depends only,pand we use the bounds for the
functionsdd; (AS1) in €; which are given by the formula (3.3)). We end up with inequalities

|0(AS — uAS; — pa)| < Colp|? exp (—we=1/27), where we can take for the numbets the
values which were announced in Theorem 3.21

Remark3.2. — Proposition 3.3 allows one to present things slightly differently and to obtain
an interesting intermediary result without any Diophantine conditiow.on

Let &, =]qo(—us2), qo(u2)[ x T¢ be the part of the configuration space which corresponds to
the real part of the domaifv,§) € D, s x Ty _,. The change of coordinatés + i/ induces
a mappingf according to the formula

(u’ QO) = (Id —|—,u,u)(1}, 0) — (qO(u)’ QO) = f(QO(U)79)7

which is a diffeomorphism betweeafy and some domaiéi; . We may considef as a change of
coordinates as well, its reciprocal will be denoted

(¢,9) = f(Q,0) < (Q,0) =9(q,).
According to the classical constructigradmits an exact symplectic lift defined as

o { T ¢, — T*C,
’ ﬂH@f(ﬂ):t(TfO‘n'(ﬁ)g)ﬂ7

wherer denotes the projectici*€s; — €.

f
T*¢, —2° . Tre,
W\ \ﬂ
f
C — ¢
g

Not only ®/ is a lift of f (i.e. 7o ®/ = f o 7) which preserves the Liouville form, but its action
on exact Lagrangian graphs is easily describef:ig a function on¢,,

Gr(dS) =@/ (Gr(d¥)) withE=So f.
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/
T*¢, o T e,

N /

™ Gr(d¥) — Gr(dS) ™

m;m

Thus we have two reciprocal transformatiohé and ®9, that we can consider as an exact
symplectic change of coordinatesTH ¢, under whichW~ = Gr(dS~) andW™* = Gr(dS™)
become the exact Lagrangian graphs associated to new generating functions de@ined on

¢

1

WE =&/ (Gr(de*)) with £+ =S50 f.

The interest of all this is the possibility of applying Lemma 2.1 to the funcfidh= X+ — X~
(or rather to the function®(AX — uASy)), since f was chosen precisely in order to yield
Dy - AY =0.

Of course all these transformations depend andy, but we notice that, sincé=I1d +O(u),
the functiony = AY — uAS; (which is the same as in the formula (3.7) up to the change of
variableQ = qo(v)) is O(i?). Using the same inequalities as above we end up with the following
result:

THEOREM 3.3.—Let Q3 €]m,2x[ and let §,c be small enough positive numbers. Let
p=73—28,h=ho—oand€, =]2r—Q2,Q2[ x T%. There exist a subdomath of ]0, 27| x T,
an exact symplectic diffeomorphigbetweerl* ¢, andT*¢; and function®~ andX™ on ¢,
(which depend analytically ofx, 1)) such that
WE=2(Gr(dx*)), =t - =pAS; +y,

where the Fourier coefficientg of the partial derivatived)y of the functiony satisfy

IX2(Qs,p1)| < Chluf?ere P kel=nik

for

kEZd> Q€]27T_Q2>Q2[7 €>0> ME[_M2>M2]

ando = (0g)™ (0p)" wWith rg + |r| < 2.
If 26 < o, one can takgiy = b, *A(6/4,0/4)"16%c and

o — boA(6/4,0/4)26 30241 if 7o + |r| =0,
o — bzA(6/4’0,/4)257277’00.72d717\r| if 7o + ‘T“ =1or?2,

where the positive numbés depends only of)s.

4. Resultsfor thethree-degree-of-freedom case (d = 2)

In this section we restrict ourselves to a very specific case in order to benefit from some
arithmetic results contained in [4] and to adapt them to our situation. Our goal here is to obtain

4° SERIE— TOME 34 — 2001 N° 2



MEASURING THE SPLITTING OF INVARIANT MANIFOLDS 189

in the upper bound of the splitting an exponential term of the same kind as in [4], which will
be optimal in some cases. We shall be concerned not only by the funktSoand its partial
derivatives, but also by its Hessian matrix: we saw in Proposition 1.2 and its corollamss that

is determined by its restriction to any sectipp= ¢, } of the configuration space and that it
admits critical points. In fact the Hessian (i.e. the determinant of the Hessian matrix) of such a
restrictionAS|,—,, at a critical point provides a symplectic measure of the splitting along the
corresponding homoclinic orbit [21], whereas the gradiem6fonly measures the distance of

the invariant manifolds above a given point of the configuration space. We shall see cases where
lower bounds are available for the gradient$ and the Hessian of its restrictions.

4.1. Statement of theresults

Notations — In this section; =d =2 andw = (1,T") with I’ = 1+2V5. We denote by z} the
distance of a real numberto Z:

VreR, {z}=dist(z,Z2)€][0,1/2],

and for anyp, h > 0 we define a continuoud log I')-periodic functionw, ;, onR by the formula

X—-X,n
VX eR, wyn(X)=C,p cosh<{ﬁ} logF),

where

5
Cpn=5"YAT\/Iph, X, = 210g<%> .

THEOREM 4.1. — Consider the Hamiltonian systeffd.1) with F' satisfying the assump-
tions (A1) and (A2), the differenceAS of the solutions of the Hamilton—Jacobi equation as-
sociated to the stable and unstable manifolds and its Poincaré—Melnikov approxindafion
We shall use the notation

Wy = wﬂ/2,h0'

Under the above hypotheses and notations, for any closed subinferyal] of ]0,2x[ there
exist positive constants, andb such that the inequalities

(4.1) [(09)7°(0p)" AS| < bA(51/4, 51/4)5_r0+|4# exp(—w(log 5)5_1/4)
and
(4.2) (84)°(9)" (AS — pAS1)(q, 56, )|

ro+r|+5
4

<b\u|2A(51/4,51/4)25_ exp(—w*(log5)5_1/4)

hold for
(0,¢) € [q1,a2] x T?, €€]0,e0], p€[—po(e),po(e)],
with 7o + || =1 or 2 and uug(e) = b= T A(e'/4, e /%) e,

The improvement with respect to Proposition 1.3 and Theorem 1.2 consists in the replacement
of the fixed coefficient previously denoted by by a new coefficientv.. (log ) which oscillates
between two positive values (the new coefficient being never smaller than the fixed value it
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assumed in Section 1.4). Moreover, the upper bound (4.2) may be compared to a lower bound
of AS; which is available whei#’ satisfies further assumptions:

THEOREM 4.2 [4]. — Suppose thak,« > 0 and

F(q,¢) =m(p1,92)(1 —cosq)

with an analytic functionn whose Fourier coefficients satisfy

— forall k € Z2, |my| < Ke~holkl;

— forall n e N*, [myyom | > ae~hol*™1 if we denote by:(") = (—F,, F,,_1) the Fourier
numbers which correspond to the Fibonaccisequefge 1, F1 =1, F, = Fp_1+ Fn_2
forn > 2.

Then there exists a positive constarstuch that

(4.3)  max{|(9,)(9,) AS1(q,5¢)|} = e

_ *1 —1/4
magy exp(—w, (loge)e /%)

for e > 0 small enough and, + |r| =1 or 2.

Note that the left-hand side in inequality (4.3) does not depend on the vagidigleause of
the invariance ofAS; underD,. The first hypothesis on the Fourier coefficients:ottould be
replaced by the conditioA(d, o) = const ~2c—2 which is slightly weaker.

Thus the size of the Poincaré—Melnikov approximation is always bounded as indicated by
the inequality (4.1) of Theorem 4.1, and under the assumptions of Theorem 4.2 it is not
“abnormally small” (i.e. it is not exponentially small with an exponent which would be smaller
than—1/4 or with a coefficient which would be larger than (loge)): in that case one can take
A(e'/*,eY/4) = conste ! and inequalities (4.2) and (4.3) indicate as a range of valugsfof
which yAS; is the dominant part oA S an interval{y € R; |u| < consts"/?} at least.

Theorem 4.1 constitutes a generalization of one of the results of [4], inasmuch as that paper
was confined to the case where=0.

Were the first-order approximation abnormally small (e.g. because the right harmonics are
lacking in F), we could still try our luck with the second-order approximation, or look for the
first finite-order approximation oAS of the “right” exponentially small size. The Hamilton—
Jacobi algorithm above gives a way of determining the functibnsandS+ at each finite order
with respect tqu (there still remains the problem of bounding from below the partial derivatives
of the functionsAS,, = S;F — S,), and the method for proving Theorem 4.1 may be adapted to
bound the partial derivatives of the remainder

AS — puASy — - — N ASy

at any orderV. But perhaps a better solution would be to perform a change of variables in order
to modify the form of the perturbation as in [27].
Let us now introduce some other notations in order to deal with Hessians.

Notations — For anyp, h > 0 we define a continuoug log I')-periodic functions, ;, onR by
the formula

1 (X - X,
VX € R, SpJL(X) = Cp,}LF3/2 COSh((E — {ﬁ}) logF),

with the same numbers, , and X, ;, as above. We sét. = s, /5, and X, = X1 /2 4,-
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Forx €]0,1/4][, we define

X—-X, 1
.= < < - — .
L, {XGR‘K\{MOgF}\Q n}

Notice thatR \ L, is the union of the intervals of length: log I" which are centered on the
solutionsX of the equations, (X) = C orw,(X) = C, cosh 1"% (i.e. the points of minimum
or maximum ofw.,.).

Notice also that

spn(X)=Cphn [cosh({%}logf) + cosh((l - {%}) logfﬂ )

hence2w, ,(X) < s,x(X). According to Theorem 4.1, we know that the Hessian of the
restriction of AS to any section{q = ¢.} is exponentially small with at least a coefficient
2w, (loge) in front of e~1/4, but we shall see that under the hypotheses of Theorem 4.2 it can
reachs, (loge). But we exclude some intervals feiby requiringloge € L.

THEOREM 4.3. — Letg, €]0,2n[ andx €]0,1/4[. Under the hypotheses of Theordrg, for
¢ > 0 small enough and such thadge € L,, and for u € R such that|u| < const'3/4, the
function

@ € T? — AS(qu, @3 11, €)
is a Morse function with exactly four distinct critical points, at which the absolute value of its
Hessian is bounded from above and from below by expressions of the form

constu|?e!/? exp (= s.(log 5)5_1/4).

The results for the three-degree-of-freedom case can be generalized to some extent: in all this
section the ratio of the two components of the frequency-vecisikept fixed to the valug' in
order to use the arithmetic arguments of [4], but [25] provides other arithmetic tools to deal with
the case of any constant-type ratio.

4.2. Proof of Theorems4.1 and 4.2

The only difference with the previous sections lies in what we have called the analytic part
of the method (Section 2.2), which can be improved: the accurate knowledge of the arithmetic
properties ofv = (1,T") makes it possible to replace Corollary 2.2 by a refined result, which we
essentially take from [4] (Lemma 4, p. 50).

LEmMMA 4.1.— Letpg, ho > 0. Suppose that a functiop(v, 0, €) is real-analytic for(v, 0) €
|—ipo,ipo[ % ’H‘,dm ande > 0, and satisfies the partial differential equation

O | i 9N

For all positivep < pp andh < hy we define

B(p,h,e) = sup Ix(v,8,¢)|.
(v,0)€[~ip,ip] T},
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The functiony extends analytically tg| Smuv| < po} x T§ x {e > 0}, its mean value(c) =
(2m)~2 [ x(v,0,£)d6 does not depend amand
(i) there exists: > 0 such that, fors > 0 small enough(v,6) € R x T2, %po < p<poand
1ho < h < hy,

‘X(% 975) - a(f—;)‘ < CB(p, h75) exp ( - wp,h(10g€)8_1/4)§

(i) forall 5y, 00 > 0, there existg’ > 0 such that

Ve > 0 small enoughV(v,0) € R x T?,
Ix(v,0,e) —a(e)| < c’B(pO — 8oe/* ho — 0'061/476) exp ( — Wpy,ho (logs)efl/‘i);

Proof. —(i) The proof is given in [4], p. 50-51. We reproduce it in order to show where the
functionw, ;, comes from.

We begin like for the proof of Corollary 2.2 (we are in the same position, but with additional
hypotheses) by applying Lemma 2.1 for each 0; it yields the following bounds for the Fourier
coefficients ofy:

VkeZ2, YweR, |xi(v,e)| < Blp, h,e)e lkl=pe 2 lkw]

Thus, ifv € R, 6 € T? ande > 0,

Z Xk(vag)eik.e

kezZ?~{0}

|X(U7976)_a(6)|: SB(p,h,E)XL

with

_ e /2.
- § e h|k|—pe |k w\.
kezZ?~{0}

We decompose this sum according to a partitioddf. {0}:

L= >+ > + >

|k-w|>1/2 |k-w|<1/2 and |k2|2e~1/2  |k-w|<1/2 and |ko|<e—1/2

Observe that in the last two terms the conditibrw| = |k; 4+ T'kz| < 1/2 implies that the indexk
is determined by its second compongntNow, one checks easily that each of the first two terms
can be bounded by an expression of the form

1/2

Cons§ e—conshe*

with const = p/2 for the first term, const= h(T" + 1) for the second one, and constepending
only onhg in both cases. In order to conclude, it is thus sufficient to show that

(4.4) Z e~ hlkl—pe™Z|k-w] < cexp(—wp,h(loge)gfl/‘l)7
|k-w|<1/2 and 0<ko<e—1/2

with somec > 0 independent op andh (the restriction to positive values &b is allowed by
parity).
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The left-hand side in (4.4) is a finite sum which contains no more than® terms; let us
look for the largest one. The Fibonacci sequefiEg),,>o appears here in relation with the best
approximations of. It is recalled in [4] that, if|k - w| < 1/2 and ks > 1, there are only two
possibilities:

— either there exists € N* such thatcs = F,,_1, then necessarily = k() (ie.ky =—-F,)

and

k-w|=T7", [k|=C(""~(-1)"T7"7?),

with C' = 5-1/2;
— orksy does not belong to the sequer{dg,) and

NG
o] > =
Z

The second possibility leads immediately to a “very small” contribution:
(4.5) ko @ {Fn} = e MEmpe Pkl oxp(—e= V4 /ATCph),

with /4T Cph > /T3Cph = maxxcr {wpyh(X)}.

Whereas in the first case we can compute

efh|k|fps*1/2|k.w| — exp(—(psflﬂ + (_1)n+10h1-w72)1—‘7n — ChT? Fn) _ exp(—Am(n))
with
2
Az (n) = 2x1/4F\/C’phcosh<i logx — %log<r Ch) — nlogF)7
(4.6) g

_1\n+lp—2 2
r=¢c"1 <1+—( Dlitie) Ch51/2> ,
P

(by use of the identityit + bt~ = 2v/abcosh (% loga — % logb + log t) for a,b,t > 0).
Observe that depends slightly on but takes only two values i is fixed, and

4.7) g/t =M1+ 0(12)), logz = —loge + O(e/?).
It is thus interesting to study, for a fixed valuexofs> 1, the sequence

logz + X, 1,

Agy(n) =240, cosh( 1

—(n+1)1ogr>.

Let n, be the integral part of%gxrm: the sequencéA,(n))n<n, is decreasing and the

sequencéA, (n)),>n, IS increasing, thus

(4.8) min {A,(n)} = (Ap(ng — 1) or Ay(ny)) = 2/ *w, 5 (—logz),

but apart from these two exceptional terms we get again “very small” contributions:
n¢ {n. —1,n.} = Ay(n)>az/*C,  cosh(logl),
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thus
(4.9) ko=Fn_1withné{n,—1,n,} =
P e L P cexp(—5_1/4Cp,h cosh(logT)),

with C, j, cosh(logI') > C,, }, cosh (% log F) = maxxeRr {wp,h(X)}, and with a constant
stemming from the use of (4.7) to replack* by e~ 1/4.
We finally obtain the inequality (4.4) by observing that its left-hand side is bounded by

de 1% exp (- W5_1/4) + " exp (- wp,h(log5)5_1/4),

whereW > maxw,  in the first term thanks to (4.5) and (4.9) (witii — max w, ; bounded
from below by some positive number which does not depeng andh), and the second term
takes into account the two exceptional indices (in order to repldeg x by loge, one can use
the estimate (4.7) and the fact that the functioyy, is Lipschitzian with a Lipschitz constant
uniformin p, h).

(i) We apply the first part of the lemma with= py — dpe'/* andh = hg — o'/, and we
observe that

Con
wmh(X) = Cpp N wpmho(X + Xpo,ho - Xp7h)>
0,ho

% =14+ 0(eY*), X, 1o — X, = O(e/4) and the functiono,, j, is Lipschitzian, thus

Wy, 1 (X) = wWpy 1o (X)+0O(/4) where the involved constant depends onlygmg, 6y, 0. O

Proof of Theorerd. 1 —In order to prove the inequalities (4.1) it is sufficient to adapt the proof
of Proposition 1.3 which was given on p. 177: the inequalities (3.2) are still valid but one can
now use Lemma 4.1 (instead of Corollary 2.2 which was used there) — we let the reader check
the details.

In order to prove the inequalities (4.2) we substitute to Theorem 3.2 the following assertion:

For all uy > 0 there exist positive numbetg andb, such that, for all small enough o > 0
satisfying2d < o, the inequalities

(4.10) |(0u)7(0)" (AS — nASy) (u, 32, 1) |
<bolu2A(6/4,0/4)*6 27065 M exp (— w, 1, (loge)e~1/4)
hold for
(u, @) € [~ug,uo) x T2, €€]0,e0], p € [~po, ol
withrg +[r| =1o0r2,andp =% — 6, h=ho — o, 1o = by "A(5/4,0/4)"*6%02.
Such a result is sufficient to conclude, since the chaice) = (4¢'/4,8¢1/4) yields

’w%_(;,ho_g(X) = w*(X) + 0(51/4)

as noticed previously. To prove the assertion we proceed as on p. 181-187, but where
Corollary 2.2 was used we apply Lemma 4.1 instead.

Proof of Theorerd.2 —See [4], p. 41-43, where it is shown that the chain of reasoning which
leads to Lemma 4.1 is optimal in the considered case. Indeed, if we use the varialdecan
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write
+o0 9
AS ;05 :1/2/7 + e Y2¢w)d
ngie) = [ gt e )G

and the theorem of residues allows us to compute each Fourier coefficient of the function

X7 =eT20(AS)), 0=(0.)"0,)"

One finds

27T(€71/2k'W)T0+1]€T L _—1/2
4.11 Iy e) = —1 Tojro+|r] —ie uk-w
( ) Xk (use) = (=1)™i sinh(%e*l/%-w) mge
Since

b

it is sufficient to estimate the size of a well chosen Fourier coefficient. The largest one was
identified in the course of the proof of Lemma 4.1: it corresponds to the minimum of the sequence
which we had denoted,,, i.e. k = k(™) with n = n, orn, — 1 according to the formulas (4.6)

and (4.8) (we have now=7/2 andh = hg). With that indexk,

Vk € 227 V(U,E) ceR x ]R*+’ ’X‘z(u;E)‘ < m%r)g{‘xa(u7<p;8)
pe

‘Xg(u;e)’ > const(571/2|k’ . w\)mﬂ\kl\” |ka|" exp(—gal/zve cw| = h0|kz>

thanks to the second hypothesis on the Fourier coefficients @e recognize in the exponential
tﬁrmexp(—Am(n)) =z'/4w,(—logx); we conclude by observing that — 41f§g””r | is bounded,
thus

log x
|k -w|=T""2> conste™ "1~ > const £1/4
and, forj =1 or2,

log @
|k;| > const™ > conste™1~ > const= /4,

O
4.3. Proof of Theorem 4.3

Our goal is to study the critical points of the function

fs,u = ASlqzq* pe T? — fs,;t(@) = Ag(“*v@%&ﬂ)

with u, defined byq. = qo(u.) (we shall often omit, 1 in subscript). We shall use the same
scheme (and the same notations) as in the proof of Theorem 3.2. In particular, we fix some
ug > |u.|, and we work witho = 2§ = 8¢'/4 and

p:g—851/4, h=ho—8'/%.
The subset§; andé&; of C x (C/27Z)¢ now depend or and we taked(d, o) = const 1.
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— The mutually reciprocal transformatiohs+if : £; — & andld +uV : [—ug, ug) x T¢ —
R x T¢ provided by Proposition 3.3 allow to define

A = AS o (Id +p) solution of (9, + /2w - 95) AX =0

fore > 0 andu € [—p0(e), o ()], with 119 (¢) = const:2. The functionAY. is in fact determined
by its restriction

Ge,n = Af:|v:0 0 eT? — gs,,u(e) = ZE(Q@; 57.“)

according to the rul\X(v, 0) = (6 — e~ /2vw). Thus we can define a diffeomorphistn ,
of T? by

Ocu(p) = — e Puw+ (Vo — e 2 Vow) (us, 56, 1)
which satisfies

Jer =9e,u©Oc

As soon agy| is small enough, independentlyafthe JacobiadacO of ©. ,, at any point has
a determinantlarger thdr'2 (because the definition &fis required here only in the real domain,
we need not bound the partial derivatives of its components near the complex singularities). Thus,
for p € [—po(e), no(e)], there is a one-to-one correspondence between the critical poifits, of
andg. ., any critical pointyo of f with HessiarnH ¢ (o) giving rise to a critical point of g
with HessianH, (6y) = Hs(¢0)(Jac®)2(¢p), and the problem is reduced to the study of the
critical points ofg. ,,.

We shall apply tgy. ,, the following lemma, in which|dR|| is a notation fomaxy2{|0g, R|,
|89, R|} and||d*R)|| for maxr={|0;, R|, |99, 0a, R|, |05, R|}, and whose proof is left to the reader:

LEMMA 4.2.—LetA, A’ € R*, w,w’ € R, n e N* andk = k("1 k' = k(™). Consider the
function

6 cT? — P(0)=Acos(k-0+w)+ A cos(k' -0+ =)

and a perturbation® : T2 — R which is aC? function such that

min{|A|, [A"[}

min{|A|, [A"[}
10[ky| 7 '

dR|| <
[dR| ST

l*R]| <

Then the functio® + R is a Morse function ofi?, which possesses exactly four distinct critical
points. Furthermore, at each critical poil§ of P + R, the HessiarH p z(fy) satisfies

1
SIAA| < [Hpyn(80)] <3144

For that purpose, we shall identify inside the Fourier expansign gfthe two pairs of largest
coefficients (they go in pairs of terms with opposite indices due to realness) and show that the
corresponding indices are of the form

X, —loge
— f(ne=1) I — (ne) |2 P
he =k o ke =R, e { 4logT ]
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([-] denotes the integral part of a real number). Note that isolating the dominant pair (with indices
sayk. and—k.) would amount to providing a “monomial” approximation

Geu(0) = Acsin(k. - 6 + w.)

which cannot be a Morse function 6 for dimensional reasons: we need at least a “binomial”
approximation with independent pairs of indices, as in Lemma 4.2.

— Let us now state a refined version of Lemma 4.1 which will produce such approximations.
We shall use the notations

X-X
/ -, 1— *
VX eR, w,(X)=C cosh(( { TlogT }logf))

andW = C, cosh(logT"). Observe that.. = w. + w.

LEMMA 4.3. - Under the same hypotheses and notations as in Lefninéhere exists > 0
such that, fors > 0 small enough such thabge € L., $p0 < p < po and 1ho < h < ho, one
can write

x(0,0,¢) = Ay, cos(ke - 0 + wy, ) + Ag, cos(kL - 0 + wp: ) + R-(0)
with a perturbationR. which satisfies
AR, [|d*Re|| < cB(p, h,e) exp(~We™ /),
and real numbersl, ;. depending or and defined by the Fourier coefficients\gf—, as
Xk (0,8) = 247",
Moreover the absolute value of one of the numbgys, Ay, is bounded by
c¢B(p,h,e) exp(—w*(log5)5_1/4),

and the absolute value of the other is boundedBY)p, h, ¢) exp(—w’. (loge)e ~'/*), depending

on whethem, or n. + 1 is closest toxigl;lgoﬁs.

For the sake of simplicity, we shall assume in the sequel thats closer to leglg"ﬁs

thann. + 1. The proof of Lemma 4.3 follows the same lines as the proof of Lemma 4.1 and we
omit it. We only indicate that the restrictidnge € L,; is meant to ensure gaps in the hierarchy
of Fourier indices, in the sense that

hlke| + pe 12|k, - w| ~ w.(loge)e /4,

PR+ pe V2K, | loge)e /4,
hEM™| 4+ pe V2 M L w| > We™Vt i n¢ {n.—1,n.},

max w, < minw), < maxw, < W.

Moreover, when applied to the functidnS; , the chain of reasoning which leadsto Lemma 4.3
yields also bounds from below for the main coefficients:

AS1(0,0,6) = A;lg) cos (ke -0+ w,(fls)) + A,S) cos (kL -6+ w,(j)) +RM(0)
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—1/4

with [dRY|, [|d2R | < conste}/2e="="""" and
—1/4

—1/4
) )

|AI(€1E)| - COHSE1/467M*(IOgE)€ |A§€1,)| ~ const 61/467w;(10g6)5

where he symbok means that the left-hand side can be bounded from above and from below by

expressions like those in the right-hand side (use formula (4.11) and the inequalities (3.2)).
When applied to the functiop = AYX — pAS;, which satisfies

Ix| <conste™3|u? in&s,
Lemma 4.3 yields
Ge,u(0) — uAgl (0,0,¢) = p? (Ag cos (k’g -0+ w,(i)) + A,(js) cos (k; -0+ wli)) + Rg)t)

with
1/4

2 -3 — —1/4 2 i —
’A,(CE)‘ < conste3e wx (loge)e , ’Aéé) < conste3e w,(loge)e ,

and
Hng)Hv HdQRg”H < conste 3" W,

— We are now in a position to apply Lemma 4.2 to

Geu(0) = Az cos(ke -0 +we ) + A’E,u cos(kl -0+ w’E,u) + R, .(0)

with
Acp=p A+t AT AL = p ) + 12 A, ey = pRE + i BE).

This yields the desired information on the number of critical points and the Hessian at them
for g ., and thus forf. ,. O

5. Proof of Theorem 3.1: domain of analyticity for the solution S+
5.1. Method

We shall content ourselves with the caseSdf. Let us fix once for al, AgB, 0, 0; we suppose
of course that the half-aperture of the sedtl;jr1 s Is strictly larger thamA 3.

In the particular cases where=1 or a = 0, we could treat directly the Hamilton—Jacobi
equation, but for the general situation we can only propose an indirect method. The idea is that
the Hamilton—Jacobi equation does not tell much — at least explicitly — about the dynamics on
the invariant manifold under concern, and for that reason we could not rephrase it as a fixed-
point integral equation involving only bounded operators (or perhaps we should say that all the
information is contained in the Hamilton—Jacobi equation but we do not know how to extractit in
an efficient manner). More specifically, this unboundedness phenomenon takes place with respect
to the angular variableg; and notu: when we solve the linearized equatiéhyy = ¢ in the
space of the functions decreasing exponentially fast whéends to+oo, we findx = E* ¢
where ET is a bounded operator of the suitable Banach space, but beside the ogesator

4° SERIE— TOME 34 — 2001 N° 2



MEASURING THE SPLITTING OF INVARIANT MANIFOLDS 199

the Hamilton—Jacobi involves separately the partial derivatives of the unknown function, which
means that we should study the operat@fs E* andd,, o E* too; the first of them is a
bounded operator, but not the others whkh 2, hence the difficulty (this difficulty does not
arise if « = 0). But we shall see that the operatdis, o E* are no longer involved when the
Hamilton—Jacobi equation is bypassed through dynamical considerations.

The alternative strategy which we propose consists in finding first a parametrization of the
invariant manifold

q=qo(u),
(5.1) W5 o =0+ j®(u,6; 2, ),
Izﬂj(uae;za/u’)?

which makes use of the plain variableand of new angular variablés with respect to which
the pull-back of the restricted Hamiltonian vector field is straightened, i.e. can be written

{=1+0(s),

0=zw.

Requiring moreover that the functio®s®;, J; decrease exponentially fast whegoes to+oo,

we shall be able to apply the fixed-point theorem in some Banach space (the op@yatafs"

won't appear thanks to the straightening condition) and to obtain the analytic extension of the
solution to the domain

d
W€Dy, 5 €T, o, 2E€Dusap |ul<p,

u
for some positive.] .
This means that we shall replace the representation of the invariant manifold as a Lagrangian
graph by a parametrization which will carry a better control of the dynamics on it because it will
correspond to the stable foliatichby fixing # € T¢ in the formulas (5.1) and letting vary, one

would obtain the parametrization of a cun/g,” which is a part of the stable manifold of the
pointf = (27,6,0,0) € 7, i.e.

W, ={M e T*¢|dist (¢} (M), ¢3 () tends to) exponentially fast astends to+oo},

denoting¢ =27 — qo, 27| x T? a part of the configuration spacE: ¢ the corresponding part of
the phase space, apd, the time+ map of the Hamiltonian flow associatedt ,.
Then we shall solve the inversion problem

o=0+p@(u,b;2, 1) < 0=0p+uO(u,¢;z,p)
and find functiong; analytic for

d
’U,E’D:Lrl’&, SDET]_LO_QG, ZEEUI,&Aﬁ, ‘,u,|<,u/27

10

8 In fact our method is close to the usual one for proving the stable manifold theorem in finite differentiabif§0(,
[15]), and somewhat easier since the analyticity with respegtdomes for free.
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for some positives,. For|u| small enough, we shall do the substitution:

q=qo(u),

wt. d P=do(w) + P (u, o+ pO(u,¢; 2, p); 2, 1),
<p = %07
I'=pd(u, o+ pO(u, @52, 1); 2, 1),

and there will remain only to perform an integration in order to recover the funétion
5.2. Fixed-point theorem and various Banach algebras

We shall use twice (to find the parametrization and to solve the inversion problem) the
following classical fixed-point theorem:

THEOREM 5.1. — Let B be a Banach space and', ¢/, ¢’ positive numbers. Denote Hy: ||
the norm ofB and suppose that for every complex numbesuch that|.| < p*, a mapping#,
is defined from the ball = { X € B; || X|| < 2¢'} to B, which satisfies

IFuO)f <" and VX, X"€ A, [[Fu(X) = Fu(X)| < |ul[| X = X

Then, foriu| < inf{yn*, 53~ }, the mappingF,, admits a unique fixed poidf , in A, the sequence
of iterates(F,* (0))m>o is well defined and converges 1, in B unlformly with respect tqu,
and

IX, <2, [1X, = Fu0)] <2¢¢"|l.

Let us define the Banach algebPasvhich our unknown functions will belong to. We
begin with spaces for their Fourier coefficients. IZf be the Banach algebra of all analytic
functions in the domamDJr 5 X Xuy 508 which extend continuously to bounded functions on

its cIosureDuM; X 3,58, €quipped with the supremum norm. dfe N, we shall use the
notations

B ={veBf; [l <oo}, [wlsi=  sup {em ety u, 2)[}.

=
(u,2)€D,, | 5XTuy,5.08

Sinceu; + Rew = 0 forall win D s this defines a decreasing sequence of Banach algBbras
(with weighted normg - || ;). We deflne also the Banach algebras

0
B {y € BJ; [[¢lls < oo}, |¢||§:—|¢||S+Ha_¢

S

It € By, [¥lls < [¥llsrs if ¥ € Bf andx € B, vx € BJy, and [vxlsre < [¢]s]Ix]le-
And these properties hold also for the sequeiRE) >o.

The corresponding Banach algeb#is(h) andB7 (k) are defined according to the following
construction: if3 is a Banach algebra (with norin ||) andh a positive number, we consider the
Fourier series inl angular variables with coefficients i and introduce the notation

(5.2) Illn =" ™ flabyl if =" 0y

kezd kezd

9 All the Banach algebras that we consider are commutative Banach algebra§ avevhich the product of two
elements), x satisfies the inequalitifyx || < ||||1x]l-
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Here of coursek - 0 = k16, + - - - + kq04 and|k| = |k1| + - - - + |kal. It defines a Banach norm
on the algebra

(5.3) B(h) = {zp = > ey with ¢y, € B such that||, < oo}.

keZa

Any Fourier serieg) in B(h) converges to a continuous mappitgigfrom TZ to B which
satisfies the inequalityup=. [|¥|| < [|¢[|». Moreover, ifh” < h, it also satisfiesgee[24])
h

h—h
(5.4) 9] gcothd( 5 >Slldp||1/)|.

Th
One checks easily the inequality for the product:

Vip,x € B(h), [[¥xln < [19llnllx]ln,

and if0 < h < h*, the Cauchy inequalities:
Vi€ B(h*), Vre N4 [[(8p) ||, <ri!--ral(h* — )~ -

(SeeAppendix A.)

Such a construction was already used in [24,25]. The reason why we too use this kind of norm
for Fourier series will appear in Lemma 5.2. We shall denot¢ by, », and|| - || s,» the norms of
B (h) andB/ (h). These are spaces of functions analytic in the dom'ilr]g X T¢ X Sy, 6.8
and bounded in its closure.

For the parametrization & " and the inverse change of angular variables which we described
in Section 5.1, we shall obtain

X = (P,J,®) € Bf (1) x [Bf (h)]" x [BS (h)]", © € [BS (ha)]”,

with hy = hg — % ha = hy — S{—g (and X and© will depend analytically on:). When dealing
with products of Banach spaces of this kind, we shall use as a horm the supremum of the norms

of the components. Let us give already two lemmas which will prove useful:

LEMMA 5.1.— Let B be a Banach algebra anfl < h < h*. SupposeG € B(h*) with

99G € [B(h*)]%, and lety € C and A = {¢ € [B(h)]%; ||ub|ln < 252 }. The formula

7|

\
VpeA, GW)=GCod+up) =Y —l——plt ..y (3)C

et rileorg!
defines a mapping frord to B(h) which satisfies

Vo' € A, (IG(W") = Gk < 27dlul 96 Glln- 10" = -

(Proofin Appendix A.)
For the second one, we introduce the notation

. 2
po(u) = do(u) = coshu
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and we note thato(u) ! = Je¥(1 4+ e2*), thus

VUED

1,09

_ d(py*
()| < pen e and |20 )<

with A =sup {1, § coshus } (A depends only om;).
LEMMA 5.2.—Leth > 0ands > 1. The formula

27 loo

vy e BE(h), (ETY)(u,0,2)=— / Y(u+¢,0+4 2w, 2)dC
0

é)

defines an operataE* : B (h) — B (h) which is an inverse to the right fab, = Ltow-Z

(i.e. Dy o E* is defined and equal thil). Moreover, for ally) € B (h),

HE+7/}||sh “Hd’”sh and ||p01E+7/}||s Lh S

s,h

with k = 4/sin A (k > 4 and x depends only of\3).

Proof. —-We supposé: > 0, s > 1 andy = 3, .4 ¥i(u, 2)e™? € B (h). Let 1 the half-
aperture of the sectdp, ;. Fork € Z%, we define a functiom;:

2 too

(5.5) V(u,z) € 531,5 X §u1,57Aﬂ7 Xk(u,z)=— / Y (u+ ¢, z)eizCk-w d¢
0

(observe thatarg (| = |argz 1| < 1, thusu+¢ € 5; s). Thisintegral converges, singe> 1,
[P (u+ ¢, 2)| < e sur=sReu|jyy || e~ Re¢ andRe ¢ = |¢| cos(arg z) with cos(arg z) > sin AS3
(becausgarg z| < § — Af). Moreover, the inequalities

[, 2)] e o e gy | sin ™t A
show thatE+1p = x = 3", .74 Xk (u, 2)el*? belongs taB.f (k) and
K
xllsn < 1% lls.n
with = 4sin~! Ag. Clearly, y satisfies the partial differential equation
Dox =1

|nD+5><’1rhx2ul5M

Let (u,z) € Duh(s X Yu,.5.a5- The Cauchy theorem allows us to change the half-line of
integration in (5.5). It - w > 0, we increase the slope of the half-line in order to take advantage
of the decrease of the exponenti&f>«:

Xk:(u7 Z) = — / r(/}k (u + geiﬁl)eizeiﬁlfk-weiﬁl d€7
0
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and we obtain a new bound:

1
scos By + |z|k - wsin(By + arg z)

[Ixells < [0kl s-

Since0 < ) < 5 andAS < fB1 +argz <7 — A, we end up with

K
lzk - wxk|ls < Z‘W}kus'

Similarly, if £ -w < 0, we decrease the slope of the half-line of integration, and the previous
inequality holds true in all cases (everkif w = 0). But 9, xx = ¥, — izk - wxy because of the
partial differential equation, thus for alle Z<, |9, xx|s < 4 ||vx|s and

g

s,h-

(PJI)(U)’ < Aewrtieu imply that the

du

Lastly, the inequalitiesVu € 5;75) |po(u)~
functionp, ' x belongs ta3; , (k) and

[P0 Xy 1y < Alxlsns

and its derivatived,, (py ' x) = (pO deo )y 4 519, belongs taB:, (k) too with

[10u(pg ), s < Mlxlls,n + M1ux s,

smce\ (B )( )| < Aetr1tReu Hence
lpg oy < AL2lXlsn + 10uxllo ] < Aklllsne O

5.3. The (u,8)-parametrization

Let P, Ji,...,Ja, ®1,..., 24 be analytic functions ofu, 01, . . ., 04, z) 2m-periodic in thed;
and consider the manifold

W ={(g,¢.p,1) = (qo(w),0 + n®(u,0, z), po(w) + pP(u,0, 2), pJ (u,0,z))}.
A necessary and sufficient condition for the Hamiltonian vector field

{qu7 {g_b_zw—FozI,
p=sing — pud,F(q,p), I=—p0,F(q,0),

to leave)V invariant and for its pull-back to be of the form

{d—1+0(u)7

0=zw,
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is thatX = (P, J, @) satisfy

Do(poP) = =8, F (u,0 + pu®(u,0, z)) — uPo, P,
(5.6) DoJ = —0,F(u,0 + p®(u,0,2)) — upy POy J,
Dy® = aJ — pupy ' PO, ®.

PrROPOSITION5.1. — Let hy = hg — % There exists a positive numbet; such that
system(5.6) admits a solutionX in B = B (h1) x [B3 (h1)]? x [BF (h1)]? for |u| < p}.
Moreover, the solutioX = (P, J, ®) depends analytically op and there exisB;,C; > 0 such
that

IPll1r, <C1, 28, <C1, [|®fl2,0, < Ch,y

IP+pg ' EX0uF |10, < Bilpl, ||J+ET0,F

|Z7h1 < Bl‘ru’|'
If § <o < A2, one can take

py =07 A" 60, By =bA% %07, Oy =040,

whereA = 0=%A(5/2,0/2) and the positive numbé; depends only on; and Ag3.

Proof. —Let us define a mapping,, of B in itself by the formulas

f#(P’ J’(I)) = (P*aJ*aq)*)7
P* = —py B (0uF (u, 0 + p®(u, 0, 2)) + PO, P),
J* = —E1(0,F(u,0 + p®(u,0,2)) + pupy * PouJ),
®* = E*(aJ* — upy PO, ®).
Our goal is to apply Theorem 5.1, since a fixed poinfis a solution of (5.6). We first note
that7,(0) = X = (PO JO eM)) with

PO = ptEr9,F, JY =—ET9,F, oW =ET(aJW).

In order to indicate explicit constants in the course of the demonstration, we shall assume
§ < o < A2 right from the beginning. But it will be clear that, if this is not the case, there still
exist constants which satisfy the desired inequalities: only the formulas for them may then differ.

LEMMA 5.3.—LetA=0"?A(6/2,0/2) andhy = ho — 12. There exists a positive constant

(which depends only om; ) such that, for anyj, ;' € {1, ...,d}, the following inequalities hotd

|0, F

|2,h1+% <CA071 and \|8uﬁ|27h1+% <CA(571,

10,051 Fllo 4 & <cAoc™> and [[0udy, Fllan g < cAS "o

(Proofin Appendix B.)
The lemma implies that

10uF |20, <cAS™,  [|0,F |2, <cAo' <cAd™,
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and thus, by virtue of Lemma 5.2,

Hp(l)Hth < AkeAs™L, HJ(l)Hg,hl < kedd™ L.

H<I>( <sup{|aal, ..., jag|sZcAsE

.,

Let b} = Ax%esup{l,|al,...,|aq|}: this positive number depends only en and AS and
allows to bound the first approximatioti(!) by

XD < ¢ =b A5
By applying Lemma 5.1 to the Banach algel#3, we see that whenever

g
ul <pi=—— and [[®|2n, <26,
17 40¢) ! 1
the composition ofauﬁ or 8¢ﬁ with Id +u® defines an element ij(hl), thus the
mappingF,, is well defined on

A={X eB; | X]| <2¢}

provided thalp| < p.

Let us now compute a constasit = ¢/ which will satisfy the assumptions of Theorem 5.1.
Suppose thafu| < p} and X, X’ € A. Let X* = F,(X), X"" = F,(X’). We must study the
component®’* — P*, J'* — J*, &' — &* of X" — X*.

Lemmas 5.1 and 5.3 show that

5.7 [|0uF o (Jd+pd) = 0, F o (Id+u®)||,, <2%deAd™ o7 u|| X' - X|
and
(5.8) |0, F o (1d+p®') = 0,F o [d+pd)|, , < 2%dedo™|ul| X' — X||.

We observe also that the identi/o,, P’ — P9, P = (P’ — P)d, P’ + PO,(P’ — P) implies
[P0y P" = POuP 2,5, <P = Pllin [P'ln: + 1PI1a 1 P" = Pllin, <4ct]|P = Pllwn,,

hence

(5.9) |P'8y P — PO, Pl2n, <4bjAS~ X' - X|.

And the identityp, ' P'0,,J' — py ' POy J = py (P’ — P)dy,J' +py ' PO, (J' — J) together with
the inequalitiesp, * (u)| < Ae"r ¥ ev (Vu e D} ;) imply

1
g ' P'0uJ — pglpauJHMl
SAP" = Pllyn 17|20, + AP

| (1T = Tz, AN X = X
Hence

(5.10) |pg " P'0uJ — palPauJHz,h] AN AT X = X ||,
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and similarly,
(5.11) |pg ' P9, — py PO, <ANASTH|X — X]|.
Now, in view of the inequalities (5.7) and (5.9), Lemma 5.2 yields
| P — P*||1,n, < A6(2%dc+4bio) AS o u| X — X
< /\715(2dd)\20—|— 4b’1)A571071\,u|||X' - X].
And, in view of the inequalities (5.8) and (5.10),
(5.12) |7 = T* |20, <K ( 2¢dedo ™" +4Nbj o) AS T ol | X7 - X ||
<A'R(2%Ae + 4b1) As o pl | X - X |-
Finally, because of the inequalities (5.12) and (5.11),
@ — @*||2,n, < Ak[sup{|oy[IA" K (2%dAe + 4b)) + AN o AS Lot || X' — X ||
< K sup{1, ||} (2%dNe + 8b)) Ad o | X7 — X,
and|| X" — X*|| < b/ A6 1o~ ul|| X' — X|| with a positive number

b = k?sup{1, |aa],..., |aal} (27d\2c + 8b))

which depends only on; andAgS.
So, we can take] = by A5~'o~! and Theorem 5.1 provides a solutidh= (P, J,®) in A,

analytic iny for
. .. : 1,
|ﬂ<lnf{ﬂ1,ﬂ}—lnf{m7ﬂ}z4 160’.

[P PO 1= O < X = X0 < 26k = 240 A% 20~

Moreover,

and

1PlL 15 1@[l2.h, < X < 26; =263 A6

one can thus easily choose large enough, but depending only en and A3, so to ensure
the three inequalities announced in Proposition 5.1. The uniform convergence of the sequence

(F(0))m>0 guarantees the analyticity with respecttof the solution.

5.4. Elimination of the variable 8

Let us now focus on the functiortisl, ..., ®4 discovered in the previous section. As functions
of (u,0, z) they belong ta33 (ho — ) but they also depend analytically pnThey are defined
for |u| < i and satisfy|| @, ho—1g < < Ch.

PROPOSITION 5.2. — Let ho = hg — %. There exist positive numbers, C> such that, for
|| < ph, the close-to-identity change of angular variables

=0+ p2(u,0,z, 1)
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admits an inverse
0=+ puO(u,p,2, 1)
with © belonging toB = [B] (h2)]¢, depending analytically op, and satisfying the inequality
1©ll2.n, <C
If § <o < \2, one can take
ph=by A" 50, Cy=byA5 !,
whereA = 0=%A(§/2,0/2) and the positive numbés depends only on; and Ag.
Proof. —The equation to be satisfied B/can be written
©=F,(0):=—-do (Id+u0)

(here of course composition must be understood with respect to the vafdaluely, the rest of
the variablesu, z, 1) being considered as a parameter).

We shall assumd < o < A2, so that we can take) = b A~ 160 and C; = by A5!
with A = o~%A(§/2,5/2). In view of applying our fixed-point theorem, we first observe that
Fu(0)=—-®and

1@l < [ llg 22 < ch = b1 A5,

and that according to Lemma 5%, (©) is defined and belongs 8 as soon a§o ||z ;, < 2¢,

and
* : 4
|l < s —mf{m—,,u’l}.

Let us suppose that| < 5 and||O||2,n,, [|©’||2,n, < 2¢5. According to Lemma 5.1,

17,:(8") = Fu(©)llzhs < 2%l |06 P 2,0+ £, 110" ~

but the Cauchy inequalities show tHely ®||2,n,+ = < 1061 A6~ 'o~". Thus we can define
cy =10-2%by As ot

and apply Theorem 5.1.0

5.5. Substitution and integration

Let us supposé < o < A2 and consider the functions

{P(uy%au) = P(u, ¢+ puO(u, 0,2, 1), , 1),
T (u, 0,2, 1) = J(u, 0 + pO(u, 0, 2, 1), 2, ).

Since||O|; 5, — 9s <[18]|g,py— 22 < Ca=by A", we can apply Lemma 5.1 with=ho — 92,

10
h*:ho—ﬁ,B B orB;:

90 9o o
-+ _ 7 + _ 7 / I
Pe B (ho 10), J €B; (ho 10) for |u| < 1nf{u1,,u2,2002}
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and these functions depend analytically,arMoreover,
PP
| T —J

Using the Cauchy inequalities and Proposition 5.1 with= b, A5~!, we find

24d|ul (|96 Pl 1, ny— 32 Ca,
24d| ] (|09 I | 3,1 — 52 Ca-

10

|1,h0—22

|2,h0—22

|0s P

|l7h0_8_<7, Ha@J||27h0_80 g 100’716\(17

10 10
SO
(5.13) P — Pllypg sz, 17 = Jligpy 20 < bsA%6 207l

with b3 =10- 2ddb1b2.
Proposition 5.1 provides also the inequalities

||P_P(1)||1,ho—§—z7 [ J(l)Hg,ho—Z—g <biA%6 %0 ul.
We thus end up with the inequalities
(5.14) 1P = POy aas [T =Ty 0 00 <0sA%6 207 ul,

where we choosk, > b3 + by large enough (depending only an andA3) so that all this holds
for

| <b;tA 160,
PROPOSITION 5.3. — The series of Propositiod.1

§+ = §0(u) + Z:U’ng;l_(u7907'z)

n>1

converges fofu| < b; ' A~'é0 to

+oo
5 (u, 0,2, 1) = So(u) — / po(w!YP(u 0, 2 1) du!

and
Du (ST =Sy — ,ugf') = upo (P — P(l)), 8¢(§+ —So— ugf') =u(J - J(l)).
Theorem3.1 follows from this propositionone checks that there exists a positive numiger

which depends only on; such that|po||: < b56—! and||p}||1 < b56~2 (seeAppendix B), thus
the first inequality in (5.14) implies that fon| < b, ' A~'d0,

|0u(S* — So — uSy
H85(§+ —§0 —Mgfr

b4b5A25_3U_1|/1,‘2,
babs A2(1+ 516307 ul%

)”27,1079_0 <
(5.15) 0 <

©

20
10

Mo p, -
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The second one can be rewritten

055 ~ S~ 1Sl sz
R

<b4A2(5_2(T_1|/1‘2,
0s < by A% 207 pul?.

10

Mz p,-
The Cauchy inequalities yield
|02(S* — 8o — ST

My, < 10642620 2|uf?,

and, by integration, the first inequality in (5.15) implies also
~ = ~ 1
(S = S0 — nSF) (s 52, 1) < Sbabs A% 20 pufPem 2 =2 e

foru e 5:175, pE Tio,g andze€X,, sap. O
Proof of Propositiorb.3. — The formal manifoldir(dS™) may be written

q=qo(u),
w*: p :po(u) + #ano ’unfp;:(u’ ©, Z)7
I= :u“Zn>O ;Lnj;(u,<p7z)7

with coefficientsP) = pglaug“:{ﬂ, I = 8¢§j{+1 exponentially decreasing ato with respect
to u, and it is invariant by the Hamiltonian vector field

{qu7 {g_b_zw—FozI,
p=sing — pud,F(q,p), I=—p0,F(q,0).

The same is true for the Taylor expansion with respegt td V-

O(U)v
po(u) +u Zn;O ,u"’Pn(u? ®, Z)a
H zngo W T (u, 0, 2),

Il
)

W:

~D R
Il

with P =" u"P, andJ = > pu"Tn.
This means that we have got two formal solutiof®®%, 7*) and (P, 7), of the system

{ Do(poP) = =0, F — u(PO,P + poad - 9,P),
DoJ = =0,F — p(py ' POLT + T - 0,7),

which expresses the invariance by the Hamiltonian vector field. But this system has a unique
formal solution whose coefficients decrease exponentially with respecata-oo, as is easily

checked by using the invertibility ab,,.
Therefore, we get for alb > 0 the identities

p(;laug;;_l = Pna 8@,05»,-:.»,_1 = jrn
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the first of which can be integrated:

+oo

Sth(up,2)=— / po(u )P (', p,2)du’. O

u

Remark5.1. — The fact thaV is Lagrangian stems from the isotropy of the tofudndeed,
the symplectic 2-form is preserved by the flow, but)dh all the trajectories lead té where
it vanishes identically, thus it vanishes oVi too: W is isotropic — and Lagrangian since it has
dimensiond + 1.

6. Proof of Proposition 3.3: straightening of the characteristic vector field D

In order to prove Proposition 3.3, we shall apply twice the fixed-point Theorem 5.1: once to
find/ and once to inverid 4 1/; then we shall deduce from the Cauchy inequalities bounds for
the derivatives of{ andV (each time the domain which we work in will shrink a little). We first
define the appropriate Banach algebras.

6.1. Definitionsand initial bounds

Let D and X be open subsets @. We denote by3p s the Banach algebra of all analytic
functions inD x X which extend continuously to bounded functions on the cloBuxe> of that
domain, equipped with the supremum norm, andby, 5, the subalgebra of the functions whose
partial derivative with respect to the first variable belong8#g, 5. too. Forh > 0, we define then
the Banach algebra$p (k) and B, 5, (h) according to the construction of Section 5s2¢
formulas (5.2) and (5.3)).

Letus fixus >0, AS € ]O, arctan 57— [andd, o > 0. The last two parameters will be supposed
small enough with respect tg, andAg, even if we do not mention it explicitly (for instance the
half-aperture of the sectof3 ; andDjQ,g must be larger than\ 3). We define four domains

D3 :Du@),% c D@ :Du@),% c DM :Du(1)7%6 c DO :Du(m,%a
by the conditions

B-i)§ s _3+i

DY =D, 5u @) —
W@ 5, U u2+6sinﬂ2’ 6

5, i=0,1,2,
wheref, denotes the half-aperture of the sectB(§ ; andD;, ;, so that

) 1) .
DB =D, 5, {ue(Cdist(u,D(z))<6}CD(’_1), i=3,2,1,
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Since the sector®*

- s Nave the same aperture, there is only one corresponding sector for the
variablez:

Eu(i), 5(1‘), AB = E, Z = O, ]., 2, 3

,m____vkmé(il—l) J

The interest of these definitions is the property that foralh D), the disk of centres
and radius /6 is contained inD~1), which allows us to benefit from the Cauchy inequalities
with respect tau. Observe that, if say < 1, the numbers(9), +(') and«(?) are bounded by a
numberu; which depends only on, (one can takei; = 7 cot 3, whereg is the half-aperture

of the sectoDy ).

2
We shall write3®) or B instead ofBp) 5 OF Bpi 5, (the norm of B, resp.B®, will
be denoted - ||V, resp.|| - | ¥) and we shall use four different values/af

h<3>:h0—a<h<2><h<1><h<°>:ho—g, h() = hy — 32”

ag.

We shall obtain, fofx| small enough,
U e BV (hM) x [ﬁu)(h(l))]d’ VeB?(h®) x [B® (h<2))]d,

When dealing with products of Banach spaces of this kind, we shall use as a norm the supremum
of the norms of the components.
Section 5 provides initial bounds B(°) (h(?)) for the vector fieldD that we want to straighten:

LEMMA 6.1.— In the coordinategu, ¢), the characteristic vector field can be expressed
as

~ o~ ~ 0 =~ 0
D=D D,—+D, - — |,
0+M( 3u+ @ &p)

with
. dao\ 2, (Lce o 2
_,,—1( 1Y - + -\ —
D= (m) au(z(s 5 so>,
- B 1o~ ~ . =~
By 1a6¢(§(5++8 )_so>.

If AB,6,0 are small enough, there exists a positive numpgrsuch that the functions
Dy,D,,,...,D,, are analytic for

weD®, ©eTlo, 2€3, |ul<po
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Moreover, these functions and their partial derivatives belond3t® (h(?)), and there exist
positive number€, C; such that

~ 0 = 0 = 0 = 0 .
1D, 1D, 1110 < Co,  1dD, )|, 11dDg, |10 < €1, 1< <d.

If 6 <o <1, onecan take
,U,():balA_l(s(T, C():boA(s_l, Cl :boA(s_lO'_l,
whereA = oc=%A(§/4,0/4) andb, depends only on, and Af.

(Proofin Appendix B.)
6.2. Straightening of D by Id +uif

We now prove the first part of Proposition 3.3:

PROPOSITION 6.1. — There exist positive numbers and M, and there exist real-analytic
functionsit,,, Uy, , ..., U,, satisfying the following properties
— the vector field$ and Dy = % + zw - % are conjugated by the mapping

(u, ) = (v,0) + ph (v,0; 2, 1),

withtd = (U, Uy, ... Uy,),
— these functions are analytlc with respect to all their argumefats|u| < u1, they belong to
BY (WD) with (U, |15, U, |17, < M.

More precisely, it < o < 1, one can take

n1 = 171_11471(3~2 and M = 111145717
whereA = 0=%A(§/4,0/4) andb, depends only on, and Af.

Proof. —If we omit the variables andyu, the equations to be solved can be written
Doy = Dy o (Id +uld),
(6.1) = e
Doy, = Dy, o (Id+puld).

In order to apply fixed-point Theorem 5.1, we shall define an inverse to the right for the
operatorDg in BM (h(1)),
The domairD() is a lozenge whose corners aréd), ip, —u(!), —ip, where

T 26
2 3cosfs

p=uMtan By =
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(92 denotes the half-aperture of the sectdry,) ; andD;Ql)’&).

ip

—a®

LEMMA 6.2.—Lety =3, ;a0 ¥r(v, 2)el*? € BW(hW). The formulas
ip
—e-izvk'w/eiz<k'wk(g,z)dg ifk-w>0,

v

VE€ZY, xp(v,z)={ g-izvhw /eizC’f'wk(g,z)dg ifk-w<0,

—ip
v

/wk(c,z)dc it hw—0,

0

define a functiony = 3, <z i (v, 2)e* ¢ of BM (1) such thatDyy coincides withy. The
correspondence — y = E, defines an operatak, : B(Y (h(1)) — B (h(1)) which satisfies
a bound

1 1
1Eoll < Allwllh,
wherex depends only on, and AgS.

(This lemma is slightly reminiscent of [10], Lemma 3.3, which deals with a difference
equation.)

Proof of Lemmd5.2 —We note that ifv € DX,

—ip,v CD(l), v4+ipl2 <72 +u?,
[~ip, ] p 1
[v,+ip] DO, [u—ipl2 <72 + 1,

where the numbes; depends only om, and is larger than ().
Suppose that - w > 0, (v, 2) € D x T and¢ e [v, +ip]. We have

’efizvk-uﬂriz(k-w’ _ efk-w Sm(z(—zv) <1
- ~X )
sinceSm(zv) < Sm(z¢) < Sm(izp). Thus|xk (v, 2)| < [v — ip||[1x ]|V, and

1/2
el < (7% 4+ u2) 2 ]| .
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In fact, the previous inequality holds alsdiif w < 0 or k - w = 0. Thusy € B (1)) and

1/2

1 1
Nt < (7% +ud) 2 ).

Since for allk € Z%, 0, xx + izk - wxr = 11, the functiony satisfies the partial differential
equation
Dox =1

inDW x T¢ ) x %

But we can derive another bound by using the inequality
Sm(zw) = |zw|sin AS,

wherew = ip — v, in the case wherg - w > 0: if we parametrize the segment of integration by
¢=v+&w, & €]0,1], we obtain

|wl|

1
< (1) —Ek-w%m(zw)d < (1)
e, < oVl [ e £< ronmgay
0
hence
1
k- (Ug )
k-l < vl

In the case wherg - w < 0, we would obtain the same inequality by using= v + ip. Finally,
in all cases,

1
W< (1 (1)

because of the partial differential equation, thuselongs ta3") (h1)) and we have the desired
bound. O

Remark6.1. — One checks easily thatgifis real-analyticy = E,v is real-analytic too.

End of the proof of PropositioB.1 — System (6.1) is thus equivalent to the equatiiif) =
U where the mapping,, is defined by the formulas

Uz = E,[Dy o (Id+ul)],

F.U)=u* ~
n) {Z/{;j:Ep[D%o(Id—kuL{)], 1<j<d.

In order to specify its domain of definition and to study that mapping, we apply the following
lemma, which is analogous to Lemma 5.1 but with the variabiesolved as well as the angular
variableg;:

LEMMA 6.3.—LetD andD* be open subsets 6fandh a positiv_e* number. Suppose that for
eachw in D, the closed disk of centreand radius% is contained irD , and leth* = h + .

SUPPOSE € Bp-wx(h*) with dG € [l”)’p*xg(lf‘)]dJr1 and lety, € C and

.A: {Z/{: (X,l/)) S Bpxg(h) X [Bpxz;(h)]d; ||/J,Z/{||h < inf{%, 10—2}}
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The formula

VU= () €A, GU) = Go(Id+uld)
/’LT0+| ‘ T T, T T
= Z rolry!--- IX U1yt (00)" (0p)" G

(ro,r)ENXN4

defines a mapping from to Bp« s (h) which satisfies

vUU' € A, |GU) = GU)||n <27 (d+ D) ulldG ;- U’

_u”h-

(Proofin Appendix A.)

From now on we shall assume thak o < 1 in order to indicate explicit constants (but it
will be clear that, if this is not the case, there still exist constants which satisfy the desired
inequalities). Specializing the previous lemma with= D) ¢ D* = D) andh = r(H) <
h* = h(9), we find that our mapping,, is defined at least fqu{Hhm 2 (and|u| < po).

By virtue of Lemmas 6.1 and 6.Z,,(0) = (E,D.,, E,D,,) satisfies

17 (0) 1) < ¢ = rbo A,

In view of applying Theorem 5.1 we define the Banach sgite= BV (A1) x [BM) (hW))4,
denote by|| - ||§}()1> its norm, and we restrict the domain of definition &, to {U/ € BW;
HuHhm 2¢'} assuming

1 1

.4
ul<p" = 5=

= AT182,
12 °2¢  24kby

We observe now that, fqrun;%), \|Z/{’||h(1> 2¢, the images(* = F,,(U) andU’" = F,(U')
satisfy
o™ =2 < ullu’ = Ui,

with ¢/ = 2471 (d + 1)xCy = 291(d 4 1)kboAS~*o~1. We thus obtain a solutioty € B”
which satisfies
IS, < biAT™ for [u] < i = by ' A~16?

with a positive numbeb; which depends only ons, andAg. And one checks easily that is
real-analytic thanks to Remark 6.10

6.3. Inversion of 1d +u4/ and end of the proof of Proposition 3.3

PROPOSITION 6.2. — There exist positive numbetis and NV, with s < u1, and there exists
areal-analytic vectorial functio’ = (V,, Vs, , . .., Vs, ) Which satisfies the following properties

— the components of are analytic with respect tdu, ¢, z, 1); for |u| < pe, they belong
to B () and V. [ [Ve, 1 < N
—foru e D?, o € T¢,), z € ¥ and || < 2, the point (u, ) + pV(u, ¢, z, 1) belongs

oD x Tim and its image byd +ui{ coincides with(u, ¢).
More precisely, i2§ < o < 1, one can take

Mo = b2_1A7162 and N = bgA(Sil,

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



216 D. SAUZIN

whereA =o0~%A(6/4,0/4) andb, depends only on, and AS3.
Proof. —The equation to be solved1s= F,(V), where
Fu(V) :=—Uo (Id+uV).
We use Lemma 6.3 with a slight adaptation: we define D? ¢ D* = DM andh = h? <
h*=h+ 5. Sinceh™) = h* + 75, we can use the Cauchy inequalities#bm order to obtain

bounds irB* := B*(h*) x [B*(h*)]*:

(6.2)

< Ul <M, oatl;- <1207M.

We shall suppose < 1 and we retain thatdi/||;. < 120! M. According to Lemma 6.3F,())
is defined as soon asy € B® := B®(n?) x [B® (h(Q))]d and ||/W||§f()2> <
inf{6/12,0/24}. From now on we shall suppo&é < o.

Let us check the hypotheses of Theorem 5.1: the first approximatiBg(iy) = —/ and

1FL(O)1%), <& = M =b A5

We can restrictF), to the set{V e B(?); HVH,(f()Q) < 2¢'} if we suppose

511
Spfi=m = ATl
n<H =15 50 = 3,

Andif V|2, IV'I12), <2¢, we find

1F. V) = Fu I, < ullV = VI,

with ¢’ =24t (d+1) - 12071 M = 12-29+1(d + 1)b; A6 ~1o~1. We thus obtain a solutiol €
B which satisfies|V[| %)) < b2A6 for |u| < p2 = by LA~162, with someby = by (uz, Af).
Of courseV is real-analytic sincéf is. O

According to Proposition 6.2, for€ 3 and|u| < u2, the image oD x TZ@) byId+uVis
containedifD'"” x Tim and(Id +pif) o (Id +1V) = Id. Moreover, we can ensure the injectivity
of Id +uld onD x Ti(g) by takingb,, large enough, thanks to the inequalities (6.2). This means

that Id +ui/ induces a bijection betwee(@@) X Ti(z)) N (Id +uu)*1(5(2) X TZ@)) and its
image, the reciprocal beirlgl +uV .

sincellu/[| 1), < M and||V|| %), < N, the setgId +4) =1 (D®) x Ty, ) and(1d +j24)(D®
X TZ@)) containD® x Tim as soon agu|M < inf{Z, 2} and|u|N < inf{Z,<}. Thus, for
|M\ inf{M~1, N1} .inf{2, 2}, we have by restriction a bijectiokl + ./ betweerD"” x
’]l‘h<3> and its image, and a bijectidi +xV betweerD'” x TZ<3> and its image. The Cauchy
inequalities provide the desired bounds for their partial derivativa ih x Ti(g) .

Appendix A. Fourier normsand composition lemmas

Let B be a Banach algebra, denote|py]| its norm, and lek > 0.
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(B(h),]| - |») is a Banach spacé&uppose indeed thét(™)),,, is a Cauchy sequence B(h).

For eachk € Z4, the sequenc@bli"))@o of Fourier coefficients of indek is a Cauchy sequence
in B and admits thus a limi¢,. Let us check that) = 3=, _,. e’ belongs taB(h): if K is
fixed inN*, we can choose large enough so that

O =il <1,

k<K

and the partial sunp_, [[¥[lel*" < 1+ (|||, is thus bounded independently &f

(A, = ||™]|,, tends to some limitd > 0 since|A,, — A,,| < || — ™|, thus A4,, is
bounded independently af), andvy) € B(h). Let us check thajyy — (™ ||;, tends to zero: let
e > 0; we fix N € N such that, for alh, m > N, ||t — (™|, < &, and we fixK € N* such
that

S Vet e DTl <.

k| > K k> K

We observe that fon > N,

S [l e < ST et et 4 [l — ] < 2e,

|k|>K [k| > K
and
Z Hwk_wlin)ue\k\hg Z Hwk_QZJI(Cn)He\k\h_F Z ||1/Jk||e|k|h+ Z lein)Hemm.
kezd |k|<K |k|>K |k|>K

But for n large enough the first sum in the right-hand side is less thainus||«) — ¢ ||, <
4e. O

The inequality for the productyx||n < ||¥]lnllx]ln iS Obvious. Let us prove th€auchy
inequalities

1@6)7 ][, <71t ral(B* — )~ e
if 0 < h < h*, € B(h*)andr € N<. We have

1@6)" ]I, = > |1k - kgapu [l < My -~ My
kezd

with M; =sup;,_ ey {k}’e ~(W"=hk;} for j =1,...,d, and we observe that

M; < (h* _ h)—Tj sup {t"'je_t} < (h* _ h)—"'jr;je—’fj < (h* _ h)_TjTj!- O

t>0

Proof of Lemm&.1 —We suppose that we are givéhe B(h*) andy € [B(h)]¢ which satisfy
the assumptions of the lemma. We apply the Cauchy inequalitiésaiod we observe that

7|
By "1(0)" G

rileorg!

< |l (r —n)~
h
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hence the convergenceB(h) of the series which defingi(v), and the inequalityG(v)|| <
29| G|

We suppose now that we are giverand«)’ in A. According to what has just been proved, for
eacht € [0,1], 9G o (Id +pul[ty) + (1 — t)y)']) is bounded in3(h) by 2¢(|0yG||1-. But

GW') - G(v) = p(¥' — ) - / B6G o (1d-+pfty + (1 — )],
0

hence the result. 0

Proof of Lemmd.3. — The proof is the same as for Lemma 5.1, except that there is one more
variable involved. The Cauchy inequalities that we use are

(2

§\ "o =7l
i@l <mimi-ra(g) (3) 1o

e O

Appendix B. Initial bounds

We first adopt the notations of Section 5. The numhbersd, o and Ag are given, with
§<o< A2

Proof of Lemm&.3. — According to inequality (1.9),

V(u,p) €Cs x Tio |F(u, )| < A(8/2,0/2)e2 Feul,

_ %,
The Cauchy inequalities with respectitshow that

e2u1+2 S‘Ecu|f‘(u7 (,0)‘ g 62u1A(6/2’ 0/2)7

—d
V(u,0) €Cs x T}, _o, 9
(u; ) g ho—$ {e2ul+2ﬁcu|auF(u’(p)| <62u1+1A(5/2’0—/2)§.

(We have used the fact tha 1.) SinceD;” s CCs, the inequalities (5.4) provide a constapt

1

which depends only on the dimensidsuch that

I

o ho— st < Co™ A and [0y F ||z - 11, < coe™ A5,

whereA = 0=%A(6§/2,0/2). The Cauchy inequalities with respect to the angles now allow to
bound|[0,, F'lls, 1y~ 8 60 10uF ll2, 1 8,00 100,051 Fllg o~ 85 @Nd[|0u0, Fll3 1y~ 8. 5. O

Bounds forp, and pf,. —We can writepy (u) = e~“ f(u) wheref(u) = 4(1 +e~2*)~1 is 27i-
periodic and meromorphic, with simple polesaf2 and—ir /2. A compacity argument shows
that, if u belongs to the intersection G, and the strip{—u; < Reu < 1}, f(u) satisfies an
inequality

[f(u)l <b5~,

where the positive numbérdepends only oni;. On the other hand, foRew > 1, |f(u)| is
bounded by1 —e~2|~1. Thus

VueCsay Reu > —ui = |po(u)| < b6 te™ o,
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whereb’ depends only om;. The Cauchy inequalities allow us to conclude that
Ipolls <bs6~1 and [|pp|l < b5
for somebs which dependsonlyon,. O

Proof of Lemma6.1 —We now adopt the notations of Section 6. The first assertion of
Lemma 6.1 is a simple restatement of formula (3.7). Let us denotg, lthe function%o.
According to Proposition 5.3, we had

0u(ST = So) = upo Pt == ppoP,  0,(St = So) =pT+ = pJ,

and if we use again the bounds of Section 5 but with”),5/2,5/2) replacing (u1,6, ),
especially the bounds fd? — P and 7 — J in inequality (5.13) and the bounds fét and .J
in Proposition 5.1, we find

0 0 0 0 —
Pl g 1T e 1OPTID s 19T Tl 5 <HAS™

for || < po=b""A 160, whereAd = =2 A(5 /4, o/4) andb’ depends only om andA.

The functionsd, (ST — Sp) = upeP~ andd, (ST — Sy) = uJ ~ satisfy the same kind of
inequalities, and we have

~ 1 ~ 1 .
Du=§pal(77++73_), D¢j:§aj(g7j++g7ji)> J:1>~-~7d>

where the functio%‘1 and its derivative are bounded X by a number which depends only
onusy. We thus obtain

7 11(0) 7 10 7 11(0) 7 110 -1
1Bl 1Bl e 106Dl Doy g 10uD] Dy, o <B"AD

h(0)+% ’ =
with some new” = b’ (ug, AS3) and we can conclude by the Cauchy inequalities.
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