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Based on the complement behavior of information gain, a new definition of information entropy is proposed along
with its justification in rough set theory. Some properties of this definition imply those of Shannon’s entropy. Based
on the new information entropy, conditional entropy and mutual information are then introduced and applied to
knowledge bases. The new information entropy is proved to also be a fuzzy entropy.
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INTRODUCTION

The entropy of a system as defined by Shannon (1948) gives a measure of uncertainty about

its actual structure. It has been a useful mechanism for characterizing the information content

in various modes and applications in many diverse fields. Several authors (Düntsch and

Gediga, 1998; Beaubouef et al., 1998; Wierman, 1999; Liang and Xu, 2000; Liang et al.,

2000) have used Shannon’s concept and its variants to measure uncertainty in rough set

theory. But Shannon’s entropy is not a fuzzy entropy, and cannot measure the fuzziness in

rough set theory.

This paper introduces a new definition for information entropy in rough set theory. Unlike

the logarithmic behavior of Shannon’s entropy, the gain function considered here possesses

the complement nature. Some important properties of this definition are also derived. Based

on the new concept, conditional entropy and mutual information are then introduced and

applied to knowledge bases. The new measure of information is also proved to be a fuzzy

entropy, and can be used to measure the fuzziness of rough set and rough classification.

MEASURE OF UNCERTAINTY IN ROUGH SET THEORY

Rough set theory (Pawlak, 1991) has become well established as a mechanism

for uncertainty management in a wide variety of applications related to Artificial
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Intelligence (Dubois and Prade, 1990; Slowiński, 1992; Pawlak et al., 1995; Lingras and

Yao, 1998).

Let

K ¼ ðU;RÞ

be an approximation space, where U is a non-empty, finite set called the universe; R is a

partition of U, or an equivalence relation on U.

An approximation space K ¼ ðU;RÞ can be regarded as a knowledge base about U.

Let

R ¼ {R1;R2; . . .;Rm}: ð1Þ

Of particular interest is the discrete partition,

R̂ðUÞ ¼ {{x}jx [ U}; ð2Þ

and the indiscrete partition,

�RðUÞ ¼ {U}; ð3Þ

or just R̂ and �R if there is no confusion as to the domain set involved.

Given a partition R, and a subset X # U; we can define a lower approximation of X in U

and a upper approximation of X in U by the following:

RX ¼ <{Ri [ RjRi # X}; ð4Þ

and

RX ¼ <{Ri [ RjRi > X – B}: ð5Þ

The R-positive region of X is POSRðXÞ ¼ RX; the R-negative region of X is NEGRðXÞ ¼

U 2 RX; and the boundary or R-borderline region of X is BNRðXÞ ¼ RX 2 RX: X is called

R-definable if and only if RX ¼ RX: Otherwise, RX – RX and X is rough with respect to R.

Definition 1 (Wierman, 1999) Let K ¼ ðU;RÞ be an approximation space, and R

a partition of U. A measure of uncertainty in rough set theory is defined by

GðRÞ ¼ 2
Xm

i¼1

jRij

jUj
log2

jRij

jUj
ð6Þ

where G : R ! ½0;1Þ is a function from R, the set of all partitions of non-empty finite sets, to

the non-negative real number, and jUj is the cardinality of U. This granularity measure, G,

measures the uncertainty associated with the prediction of outcomes where elements of each

partition set Ri are indistinguishable.

If p ¼ ðp1; p2; . . .; pnÞ is a finite probability distribution, then its Shannon entropy

(Shannon, 1948; Klir and Wierman, 1998) is given by

SðpÞ ¼ 2
Xn

i¼1

pi log2 pi: ð7Þ

Let

pi ¼
jRijXm

j¼1

jRjj

¼
jRij

jUj
;
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and it turns out that p ¼ ðp1; p2; . . .; pmÞ is a probability distribution on R. Hence

GðRÞ ¼ SðpÞ: ð8Þ

The Hartley measure (Hartley, 1928) of uncertainty for finite set X is

HðXÞ ¼ log2jXj: ð9Þ

The relationship between the granularity measure and the Hartley measure is as follows

(Wierman, 1999):

GðRÞ ¼ HðUÞ2
Xm

i¼1

jRij

jUj
HðRiÞ: ð10Þ

We introduce a new definition for information entropy in rough set theory as follows.

Definition 2 Let K ¼ ðU;RÞ be an approximation space, and R be a partition of U.

Information entropy for rough set theory is defined by

EðRÞ ¼
Xm

i¼1

jRij

jUj

jRc
i j

jUj
¼
Xm

i¼1

jRij

jUj
1 2

jRij

jUj

� �
ð11Þ

where Rc
i is the complement of Ri, i.e. Rc

i ¼ U 2 Ri; jRij=jUj represents the probability of

equivalence class Ri within the universe U; jRc
i j=jUj denotes the probability of the

complement of Ri within the universe U.

Now we define a partial order on all partition sets of U. Let P and Q be partitions of a finite

set U, and we define the partition Q is coarser than the partition P (or the partition P is finer

than the partition Q ), P W Q; between partitions by

P W Q , ;Pi [ P;’Qj [ Q ! Pi # Qj: ð12Þ

If P W Q and P – Q; then we say that Q is strictly coarser than P (or P is strictly finer than Q )

and write P a Q:

Proposition 1 (Cardinality) If P and Q are partitions of U with jPj ¼ jQj and there

exists a one-to-one, onto function h : P ! Q such that

jhðPiÞj ¼ jPij;

then

EðPÞ ¼ EðQÞ:

Proposition 1 states that the uncertainty is invariant with respect to different partitions of U

that are size-isomorphic.

We first prove the following lemma in order to derive other propositions later.

Lemma 1 Let p be a finite probability distribution in U. Let EðpÞ ¼
P

x[UpðxÞ �

ð1 2 pðxÞÞ ¼ 1 2
P

x[Up2ðxÞ: Then

(1) 0 # EðpÞ # 1 2 1=nðjUj ¼ nÞ;

(2) EðpÞ ¼ 1 2 1=n iff pðxÞ ¼ 1=nðx [ UÞ:
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Proof Let

HðlÞ ¼
x[U

X
p2ðxÞ þ l

x[U

X
pðxÞ2 1

0
@

1
A:

Since

H 0
lðlÞ ¼

x[U

P
pðxÞ2 1 ¼ 0

H 0
pðxÞðlÞ ¼ 2pðxÞ þ l ¼ 0 ðx [ UÞ

8><
>:

we know that pðxÞ ¼ 1=nðx [ UÞ: So the minimum value 1/n of
P

x[Up2ðxÞ can be achieved

only under the restriction
P

x[UpðxÞ ¼ 1 when pðxÞ ¼ 1=nðx [ UÞ: A

Proposition 2 (Monotonicity) If X and Y are finite sets and jXj , jYj; then

EðR̂ðXÞÞ , EðR̂ðYÞÞ:

Proof Let pðxÞ ¼ j{x}j=jXj ¼ 1=jXjðx [ XÞ; and pð yÞ ¼ j{y}j=jYj ¼ 1=jYjðy [ YÞ: From

Lemma 1, we have that EðR̂ðXÞÞ ¼ 1 2 1=jXj and EðR̂ðYÞÞ ¼ 1 2 1=jYj: Since jXj , jYj; it

follows that 1 2 1=jXj , 1 2 1=jYj; i.e. EðR̂ðXÞÞ , EðR̂ðYÞÞ: A

Proposition 3 (RoughnessMonotonicity) Let P and Q be two partitions of finite set U.

If P a Q; then EðQÞ , EðPÞ:

Proof Let P ¼ {P1;P2; . . .;Pm}; and Q ¼ {Q1;Q2; . . .;Qn}: Since P a Q; we have that

m . n and there exists a partition C ¼ {C1;C2; . . .;Cn} of {1; 2; . . .;mÞ such that

Qj ¼
i[Cj

[
Pi; j ¼ 1; 2; . . .; n:

Hence

EðQÞ ¼
Xn

j¼1

jQij

jUj

� �
1 2

jQij

jUj

� �
¼ 1 2

1

jUj
2

Xn

j¼1

jQjj
2
¼ 1 2

1

jUj
2

Xn

j¼1 i[Cj

[
Pi

������
������
2

¼ 1 2
1

jUj
2

Xn

j¼1 i[Cj

X
jPij

0
@

1
A

2

:

From m . n it follows that there exists Cj0 [ C such that jCj0 j . 1: Therefore

i[Cj0

X
jPij

0
@

1
A

2

.
i[Cj0

X
jPij

2

and

i[Cj; j–j0

X
jPij

0
@

1
A

2

$
i[Cj; j–j0

X
jPij

2
:
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Thus

EðQÞ , 1 2
1

jUj
2

Xm

i¼1

jPij
2
¼ EðPÞ:

From Proposition 3, it is clear that the information entropy E increases monotonically as the

granularity of information becomes smaller through finer partitions. A

Corollary 1 Let P and Q be two partitions of finite set U. If P W Q and EðPÞ ¼ EðQÞ;
then P ¼ Q:

From Lemma 1 and Proposition 3, one can obtain immediately the following propositions.

Proposition 4 (Maximum) The maximum of the information entropy E for any finite set

U is 1 2 ð1=jUjÞ: This value is achieved only by the discrete partition R̂ðUÞ:

Proposition 5 (Minimum) The minimum of the information entropy E for any finite set U

is 0. This value is achieved only by the indiscrete partition �RðUÞ:

INFORMATION MEASURE BETWEEN KNOWLEDGE BASES

Let U be the universal set, and K1 ¼ ðU;PÞ and K2 ¼ ðU;QÞ be two knowledge bases about

U, where P ¼ {P1;P2; . . .;Pm}; and Q ¼ {Q1;Q2; . . .;Qn}:

Definition 3 Conditional entropy EðQjPÞ of Q about P is defined by

EðQjPÞ ¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jQc
i 2 Pc

j j

jUj
: ð13Þ

Definition 4 Mutual information EðQ; PÞ of Q and P is defined by

EðQ; PÞ ¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jQc
i > Pc

j j

jUj
: ð14Þ

Proposition 6 Let U be the universal set, and K1 ¼ ðU;PÞ and K2 ¼ ðU;QÞ be two

knowledge bases about U, then

EðQ; PÞ ¼ EðQÞ2 EðQjPÞ: ð15Þ

Proof Since Qc
i ¼ ðQc

i > Pc
j Þ< ðQc

i 2 Pc
j Þ; we have that

EðQÞ ¼
Xn

i¼1

jQij

jUj

jQc
i j

jUj
¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jQc
i j

jUj

¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jðQc
i > Pc

j Þ< ðQc
i 2 Pc

j Þj

jUj
¼ EðQ; PÞ þ EðQjPÞ:

Hence

EðQ; PÞ ¼ EðQÞ2 EðQjPÞ: A
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Proposition 7 Let U be the universal set, K1 ¼ ðU;PÞ and K2 ¼ ðU;QÞ be two knowledge

bases about U, and D be a decision on U (i.e. a partition of U ). If P a Q; then EðD; PÞ $

EðD; QÞ:

Proof Let

P ¼ {P1;P2; . . .;Pm}; Q ¼ {Q1;Q2; . . .;Qn};

and

D ¼ {d1; d2; . . .; dr}:

Since P a Q; we have that m . n and there exists a partition C ¼ {C1;C2; . . .;Cn} of

{1; 2; . . .;m} such that

Qj ¼
k[Cj

[
Pk; j ¼ 1; 2; . . .; n:

Hence

EðD; QÞ ¼
Xr

i¼1

Xn

j¼1

jdi > Qjj

jUj

jdc
i > Qc

j j

jUj
¼
Xr

i¼1

Xn

j¼1

jdi > Qjj

jUj

jðU 2 ðdi < QjÞj

jUj

¼
Xr

i¼1

Xn

j¼1

di >
k[Cj

S
Pk

�����
�����

jUj

U 2 di <
k[Cj

S
Pk

 !�����
�����

jUj

¼
Xr

i¼1

Xn

j¼1

k[Cj

P
jdi > Pkj

 !

jUj

U 2 di <
k[Cj

S
Pk

 !�����
�����

jUj

#
Xr

i¼1

Xm

k¼1

jdi > Pkj

jUj

jU 2 ðdi < PkÞj

jUj
¼
Xr

i¼1

Xm

k¼1

jdi > Pkj

jUj

jdc
i > Pc

kj

jUj
¼ EðD; PÞ:

A

Example 1 Reverse relation of Proposition 7 cannot be established in general.

Let U ¼ {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}: Assume that

P ¼ {{1; 5}; {2; 3; 4; 6; 7}; {8; 9; 10}}

Q ¼ {{1; 3; 4}; {2; 5; 6}; {7; 8; 9; 10}};

and

D ¼ {{1; 3; 5; 8; 9}; {2; 4; 6; 7; 10}}:

It is easily computed that

EðD; PÞ ¼ 0:38; EðD; QÞ ¼ 0:34;

i.e.

EðD; PÞ . EðD; QÞ:

However, we have that P ˛ Q:
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Proposition 8 Let U be the universal set, and K1 ¼ ðU;PÞ and K2 ¼ ðU;QÞ be two

knowledge bases about U. Then P W Q if and only if EðQjPÞ ¼ 0:

Proof

i) Suppose that P W Q: From P W Q; it follows that Qi > Pj ¼ B or Pj # Qi for ;Pj [ P

and ;Qi [ Q: Thus, jQi > Pjj jPj 2 Qij ¼ 0 for ;Pj [ P and ;Qi [ Q: Hence, we

have that

EðQjPÞ ¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jQc
i 2 Pc

j j

jUj
¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jPj 2 Qij

jUj
¼ 0:

ii) Suppose that EðQjPÞ ¼ 0: We want to prove that P W Q: Assume that P ˛ Q: Then

there exists a Pk [ P such that

Pk � Qi; ;Qi [ Q:

Let {Qi [ QjQi > Pk – B} ¼ {Qi1 ;Qi2 ; . . .;Qik0
}; where k0 . 1: Then

jQil > Pkj . 0 and jPk 2 Qil j . 0; l ¼ 1; 2; . . .; k0:

Hence

EðQjPÞ ¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jQc
i 2 Pc

j j

jUj
¼
Xn

i¼1

Xm

j¼1

jQi > Pjj

jUj

jPj 2 Qij

jUj

$
Xn

i¼1

jQi > Pkj

jUj

jPk 2 Qij

jUj
$
Xk0

l¼1

jQil > Pkj

jUj

jPk 2 Qil j

jUj
. 0:

This yields a contradiction. Therefore, P W Q: A

MEASURE OF FUZZY INFORMATION OF ROUGH SET AND ROUGH

CLASSIFICATION

Let U be the universal set, F(U ) the class of all fuzzy sets of U, mA(x ) the membership

function of A [ F(U ), w(U ) the class of all crisp sets of U, [1/2]U the fuzzy set of U for which

m½1=2
U ðxÞ ¼ 1=2; ;x [ U; and F a sub-class of F(U ) with (1) wðUÞ # F; (2) ½1=2
U [ F; (3)

A;B [ F ) A < B [ F; Ac [ F; where Ac [ FðUÞ is the complement of A [ FðUÞ; i.e.

mA c ðxÞ ¼ 1 2 mAðxÞ; ;x [ U:
The entropy of a fuzzy set is a measure of fuzziness of the fuzzy set. De Luca and Termini

(1972) introduced the axiomatic construction of entropy of fuzzy sets and referred to

Shannon’s probability entropy. Liu (1992) systematically gave the axiomatic definitions of

entropy, distance measure and similarity measure of fuzzy sets and discuss some basic

relations between these measures.

Definition 5 (Liu, 1992) A real function e : F ! ½0;þ1Þ is called an entropy on F if e has

the following properties:

(1) eðDÞ ¼ 0; ;D [ wðUÞ;

(2) eð½1=2
UÞ ¼ maxA[FeðAÞ;
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(3) ;A;B [ F; if mBðxÞ $ mAðxÞ when mAðxÞ $ 1=2; or mBðxÞ # mAðxÞ when mAðxÞ # 1=2;
then eðAÞ $ eðBÞ;

(4) eðAcÞ ¼ eðAÞ; ;A [ F:

Let U ¼ {x1; x2; . . .; xn}; and define

EðAÞ ¼
Xn

i¼1

mAðxiÞ ð1 2 mAðxiÞÞ; ;A [ F: ð16Þ

Then E is an entropy on F.

In fact, we have the following:

(1) For ;D [ wðUÞ; we have mDðxÞ ¼ 1 or 0 for ;x [ U: Hence, EðDÞ ¼ 0:
(2) From 0 # mAðxÞ # 1; it follows that maxA[FðmAðxÞð1 2 mAðxÞÞÞ ¼ mA0

ðxÞ �

ð1 2 mA0
ðxÞÞ ¼ 1=4; where A0 [ F and mA0

ðxÞ ¼ 1=2 for ;x [ U: Hence, Eð½1=2
UÞ ¼

maxA[FEðAÞ:
(3) Let A;B [ F be two arbitrary fuzzy sets. Let f ðmðxÞÞ ¼ mðxÞð1 2 mðxÞÞ; where 0 #

mðxÞ # 1; and x [ U:
It can be easily proved that f ðmðxÞÞ is strictly increasing on mðxÞ [ ½0; 1=2
; f ðmðxÞÞ is

strictly decreasing on mðxÞ [ ½1=2; 1
:
Assume thatmBðxÞ $ mAðxÞwhenmAðxÞ $ 1=2 ormBðxÞ # mAðxÞwhenmAðxÞ # 1=2:

From the property of f ðmðxÞÞ; it follows that f ðmAðxÞÞ $ f ðmBðxÞÞ: Thus,Pn
i¼1 f ðmAðxiÞÞ $

Pn
i¼1 f ðmBðxiÞÞ; i.e. EðAÞ $ EðBÞ:

(4) Let A [ F: Since mAc ðxÞ ¼ 1 2 mAðxÞ; it follows that mAðxÞð1 2 mAðxÞÞ ¼ mAc ðxÞ �

ð1 2 mAc ðxÞÞ: Therefore, EðAcÞ ¼ EðAÞ:

Summarizing above, we obtain that E is an entropy on F.

We remark that

SðAÞ ¼ 2
Xn

i¼1

mAðxiÞlog2 mAðxiÞ; ;A [ F

is not a fuzzy entropy.

Definition 6 (Liu, 1992) Let e be an entropy on F. If, for ;A [ F;

eðAÞ ¼ eðA > DÞ þ eðA > D cÞ; ;D [ wðUÞ ð17Þ

then we call e a s-entropy on F.

Proposition 9 The entropy E is a s-entropy on F(U ).

Proof Let U ¼ {x1; x2; . . .; xn}: For ;A [ FðUÞ and ;D [ wðUÞ;

EðA > DÞ þ EðA > DcÞ ¼
Xn

i¼1

mA>DðxiÞð1 2 mA>DðxiÞÞ þ
Xn

i¼1

mA>D c ðxiÞð1 2 mA>D c ðxiÞÞ

¼
Xn

i¼1

ðmA>DðxiÞ þ mA>D c ðxiÞÞ2
Xn

i¼1

ððmA>DðxiÞÞ
2 þ ðmA>D c ðxiÞÞ

2Þ

¼
Xn

i¼1

mAðxiÞ2
Xn

i¼1

ðmAðxiÞÞ
2 ¼

Xn

i¼1

mAðxiÞð1 2 mAðxiÞÞ ¼ EðAÞ:

Thus, E is a s-entropy on F(U ).

J. LIANG et al.338



Let K ¼ ðU;RÞ be an approximation space, where R is an equivalence relation on U or a

partition of U. Let [x ]R denote the equivalence class of the relation R containing the

element x. Then, for any non-null subset X of U, in terms of equivalence classes, the lower

and upper approximations of X in K can be expressed, respectively, by

RX ¼ {x [ Uj½x
R # X}

and

RX ¼ {x [ Uj½x
R > X – B}:

For an element x [ U; the degree of rough belongings (Pawlak, 1991) of x in X is given by

mXðxÞ ¼
jX > ½x
Rj

j½x
Rj
ð18Þ

where mXðxÞð0 # mXðxÞ # 1Þ represents a vague concept.

This immediately induces a fuzzy set FR
X of U given by FR

X ¼ {ðx;mXðxÞÞjx [ U}: A

Definition 7 The measure of fuzziness of rough set X in an approximation space

K ¼ ðU;RÞ is defined by

EðFR
XÞ ¼

Xn

i¼1

mXðxiÞð1 2 mXðxiÞÞ ð19Þ

where jUj ¼ n:

Proposition 10 The fuzziness of an exact set in an approximation space is 0.

Proof Let X be an exact set in an approximation space (U, R ). Then RX ¼ X ¼ RX; and

;x [ X; mXðxÞ ¼ ðjX > ½x
RjÞ=ðj½x
RjÞ ¼ ðj½x
RjÞ=ðj½x
RjÞ ¼ 1: For each x [ U 2 X; ½x
R >
X ¼ B: Hence, for each x [ U 2 X; mXðxÞ ¼ 0: Thus, for each x [ U; mXðxÞ �

ð1 2 mXðxÞÞ ¼ 0; i.e. EðFR
XÞ ¼ 0: A

Proposition 11 A rough set and its complement have the same fuzziness.

Proof Let X be a rough set in an approximation space (U, R ), and X c its complement.

For ;x [ U; we have that

mXðxÞ þ mXc ðxÞ ¼
jX > ½x
Rj

j½x
Rj
þ

jXc > ½x
Rj

j½x
Rj
¼

j½x
Rj

j½x
Rj
¼ 1;

i.e. mXc ðxÞ ¼ 1 2 mXðxÞ: Thus, for ;x [ U; mXðxÞð1 2 mXðxÞÞ ¼ mXc ðxÞð1 2 mXc ðxÞÞ; i.e.

EðFR
XÞ ¼ EðFR

Xc Þ:
Let C ¼ {C1;C2; . . .;Cr} be a classification of U, i.e. C be a partition of U. Ci are called

class of C. Then

RC ¼ {RC1;RC2; . . .;RCr}

and

RC ¼ {RC1;RC2; . . .;RCr}

are, respectively, called the lower and upper approximations of C in K.

MEASURING UNCERTAINTY AND FUZZINESS 339



For an element x [ U; the degree of rough classification of x in C is given by

mCðxÞ ¼
jCj > ½x
Rj

j½x
Rj
; x [ Cj ð20Þ

where mCðxÞð0 # mCðxÞ # 1Þ represents a vague concept.

This immediately induces a fuzzy set FR
C of U given by FR

C ¼ {ðx;mCðxÞÞjx [ U}: A

Definition 8 The measure of fuzziness of rough classification C ¼ {C1;C2; . . .;Cr} in an

approximation space K ¼ ðU;RÞ is defined by

EðFR
CÞ ¼

Xn

i¼1

mCðxiÞð1 2 mCðxiÞÞ: ð21Þ

Proposition 12 The fuzziness of an exact classification in an approximation space is 0.

Proof Let C ¼ {C1;C2; . . .;Cr} be an exact classification in an approximation space

(U, R ), i.e. RCi ¼ RCi; i ¼ 1; 2; . . .; r: Then, for ;x [ U; there exists uniquely Cj [ C such

that x [ Cj; and mCðxÞ ¼ ðjCj > ½x
RjÞ=ðj½x
RjÞ ¼ ðj½x
RjÞ=ðj½x
RjÞ ¼ 1: Therefore,

EðFR
CÞ ¼ 0: A

CONCLUSIONS

A new definition of information entropy based on the complement behavior of information

gain has been proposed along with its justification in rough set theory. Based on this concept,

conditional entropy and mutual information have been introduced. In particular, the new

information entropy can measure both uncertainty and fuzziness in rough set theory. Now we

are studying information measures in generalized rough set model (Slowiński and

Vanderpooten, 2000) for data mining applications, which will be reported in another paper.
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Slowiński, R. (1992) Intelligent Decision Support, Handbook of Applications and Advances of Rough Sets Theory

(Kluwer Academic, Dordrecht).
Slowiński, R. and Vanderpooten, D. (2000) “A generalized definition of rough approximations based on similarity”,

IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336.
Wierman, M.J. (1999) “Measuring uncertainty in rough set theory”, International Journal of General Systems 28(4),

283–297.

Jiye Liang is a Professor of Computer Science at Shanxi University,

China. Dr Liang received his Ph.D in Information Science from Xi’an

Jiaotong University. He also has a B.S. in computational mathematics

from Xi’an Jiaotong University. Dr Liang’s research interests include

the rough set theory, data mining and artificial intelligent.

Dr K. S. Chin is an Associate Professor in the Department of

Manufacturing Engineering and Engineering Management, City

University of Hong Kong. Before joining the University, Dr Chin had

more than 10 years of experience in the manufacturing industry. He is

a Chartered Engineer in the UK and a Registered Professional

Engineer in Hong Kong. Dr Chin is a fellow of Hong Kong Society for

Quality, senior members of Institute of Industrial Engineers (IIE),

American Society for Quality (ASQ) and Society of Manufacturing

Engineers (SME), USA. Dr Chin has published over 80 international

refereed papers in the field of engineering management. His current

research interests are information management in global supply chain and applications of

Artificial Intelligence technologies in engineering management.

Dr Chuangyin Dang received his Ph.D degree (Cum Laude) from

Tilburg University in 1991. Currently, he is an Associate Professor of

Department of Manufacturing Engineering and Engineering Manage-

ment. Before joining City University of Hong Kong in 1998, he had

taught at the University of California and University of Auckland.

Dr Dang’s research is in operations research and optimization. He is

best known for developing the D1-triangulation of the Euclidean space

and simplicial approaches to integer programming.

MEASURING UNCERTAINTY AND FUZZINESS 341



Richard C. M. Yam received his Master of Science degree in

Management Science from the University of London, Imperial

College of Science and Technology and the Ph.D. degree from the

University of Warwick, UK. He is now an Associate Professor and a

Program Leader of the M.Sc. Engineering Management and the

Engineering Doctorate Programmes at City University of Hong Kong.

Dr Yam’s current research interests include competitiveness analysis,

engineering and technology management, and smart asset

management.

J. LIANG et al.342




