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�e spectrum of ground state and excited baryons (N, Δ, Λ, Σ, Ξ, and Ω particles) has been investigated by using nonrelativistic
quantum mechanics under the Killingbeck plus isotonic oscillator potentials. Using the Jacobi coordinates, anzast method, and
generalized Gürsey Radicati (GR) mass formula the three-body-wave equation is solved to calculate the di	erent states of the
considered baryons. A comparison between our calculations and the available experimental data shows that the position of the
Roper resonances of the nucleon, the ground states, and the excited multiplets up to three GeV are in general well reproduced. Also
one can conclude that the interaction between the quark constituents of baryon resonances could be described adequately by using
the combination of Killingbeck and isotonic oscillator potentials form.

1. Introduction

�e hadrons spectroscopy is very important to study its
structures and the nature of the interacting forces between
its constituents. In quark models, the baryons are three-
quark states and there are number of very di	erent model
calculations for the baryon masses [1–8]. Such a picture of
these elementary particles has been having success in explain-
ing and describing spatial ground state of the �avor ��(3)
vector mesons and baryon octet. But in recent years, baryon
spectroscopy has attracted much interest because baryons
were the focal point of quark model development [9, 10].
Such a system can be studied by quantum chromodynamics
which describes what between quarks and gluon and their
interactions [11, 12].

In order to study massive baryons there are two options,
experimentally and theoretically. For example, experimen-
tally mass spectrum of singly charmed heavy baryons is
well known but the other charmed heavy baryons are not.
Recently, Abazov et al. and Aaltonen et al. have published
articles separately in which there are mass measurements
of singly bottom baryon Ξ−� by 	0 [13] and CDF [14]
collaborations. On the other hand, from lattice QCD point of
view, there are interesting e	orts about quenched calculations

such as what is done by Bowler et al., in which they presented
the results of an exploratory lattice study of heavy baryon
spectroscopy [15], or Lewis et al. who calculated masses of
singly and doubly charmed baryons in quenched lattice QCD
using an improved action of the D234 type on an anisotropic
lattice [16] and/or Mathur et al. who computed the mass
spectrum of charmed and bottom baryons on anisotropic
lattices using quenched lattice nonrelativistic QCD [17]; also
Gottlieb andTamhankar published results froma lattice study
of the semileptonic decay of Λ � → Λ ��]� [18] and Ali Khan
et al. presented lattice results for the spectrum of mesons
containing one heavy quark and baryons containing one
or two heavy quarks [19], and in this discipline reader can
check [20] and for dynamical sea quark �avor simulations,
Na and Gottlieb studied the heavy baryon mass spectrum on
gauge con�gurations that include 2 + 1 �avors of dynamical
improved staggered quarks [21] and they present results for
the mass spectrum of charm and bottom heavy baryons,
using MILC coarse lattice con�gurations with 2 + 1 �avors
[22]; and also Lewis andWoloshyn bottom calculated baryon
masses based on a 2+1 �avor dynamical lattice QCD simula-
tion. Of course that for the heavy baryon mass spectrum and
most results is in fair agreement with observed values [23].
On the other handmotivation of studying light baryons is that
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it enables us to �nd an understating of the structures and their
interactions [24]. Actually to have fundamentalmanifestation
for the long-distance quark and gluon dynamics that is
governed inQCD, we use hadronmass spectra. As amatter of
fact, nonperturbative calculations and numerical simulation
in space-time lattice [25] lead to method to get to this matter
from QCD Lagrangian without having any approximations;
this results in determination of light quark masses as well
[26]. In the recent years considerable e	ort has been done in
the latticeQCD calculation of the light hadron spectrum [27–
29]. We can mention a calculation in which mass of hadron
has been calculated with accuracy of 0.5%–3% [30, 31].

As a matter of fact, the three-quark interaction can be
divided in two parts: the �rst one, containing the con�nement
interaction, is spin and �avor independent and it is therefore��(6) invariant, while the second one violates the ��(6) sym-
metry [1, 32–35]. It is well known that Gürsey Radicati mass
formula [36] describes quite well the way ��(6) symmetry is
broken, at least in the lower part of the baryon spectrum. In
this work we applied the generalized Gürsey Radicati (GR)
mass formula which is presented by Giannini et al. [8] to
calculate the baryon masses. �e model we used is a simple
Constituent Quark Model in which the ��(6) invariant
part of the Hamiltonian is the same as in the hypercentral
Constituent Quark Model [37, 38] and the ��(6) symmetry
is broken by a generalized GRmass formula. In this paper the
exact solution of the Schrodinger equation for theKillingbeck
plus quantum isotonic oscillator potentials [39–41] via wave
function ansatz is given and we introduce the generalized GR
mass formula; then we give the results obtained by �tting
the generalized GR mass formula parameters to the baryon
masses and we compare our calculation spectrum with the
experimental data.

2. The Used Theoretical Model

�e Hamiltonian of the Schrödinger equation is as the
following form:


 = −ℏ22� ∇2 + � (�) , (1)

where

∇2 = [ �2��2 + 5�−1 ��� −
� (� + 4)

�2 ] , (2)

since the Schrödinger equation is


�
]� = ��

]�, (3)

in the six dimensions, these equations for a system containing
three quarks with a potential �(�) and by considering �

]� =�
]�(�)�−5/2 can be written as

�2�
]� (�)��2
+ 2�[� − � (�) − (2� + 5) (2� + 3)

8��2 ] �
]� (�)

= 0,
(4)

where �
]�(�), �, and � are the hyperradial wave function,

the hyperradius, and the grand angular quantum number,
respectively. � is also given by � = 2�+��+��, 0 ≤ � ≤ ∞with
the angular momenta �� and �� which are associated with the

Jacobi coordinates ( ⃗ and !⃗) [44] and ] denotes the number of
nodes of three-quark wave functions. In (4) � is the reduced
mass which is de�ned as � = "�"�/("�+"�) in which"� ="1"2/("1 + "2), "� = 3"3("1 + "2)/2("1 + "2 + "3);"1,"2, and"3 are the constituent quark masses [38]. In our
model, the interaction potential is assumed as

� (�) = #�2 + $� + %� + ��2 + ℎ��2 + 1 + '�2
(�2 + 1)2 . (5)

Cornell interaction (Coulomb plus linear) which is
static and spherically symmetric interaction has a physical
application in Mesonic systems, that is, Charmonium and
Bottomonium. Coulomb-like part potential is a short range
potential that arises from exchanging a massless gluon
between the quarks, whereas linear part is a long range.
Coulombic interaction is known from perturbative quantum
chromodynamics and the large distance interaction known
from lattice QCD [45–47]. We modify the Cornell potential
by adding the harmonic term.�e resultant quark-antiquark

interaction is known as Killingbeck potential which is #�2 +$� + %/� [48]. Notice those terms regarding isotonic-type
interaction. �e energy spectrum of the isotonic potential
is isomorphous to the harmonic oscillator spectrum; that is,
it consists of an in�nite set of equidistant energy levels. For
this reason this oscillator is called “the isotonic oscillator.”
Generalized isotonic oscillators can be seemed as possible
representations of realistic quantum dots [41]. �e behavior
of the Killingbeck plus isotonic oscillator can be seen in
Figure 1.

By substituting (5) into (4) we obtain the following
equation:

�2�
]� (�)��2 = −2�[� − #�2 − $� − %� − ��2 − ℎ��2 + 1
− '�2
(�2 + 1)2 −

(2� + 5) (2� + 3)
8��2 ]�

]� (�) .
(6)

And regarding �2/(�2 + 1)2 = 1/(�2 + 1) − 1/(�2 + 1)2 we have
�2�

]� (�)��2 = [−2�� + 2�#�2 + 2�$� + 2�%� + 2� ��2
+ 2� ℎ��2 + 1 + 2� '�2 + 1 − 2� '

(�2 + 1)2
+ (2� + 5) (2� + 3)

4�2 ]�
]� (�) .

(7)

We suppose the following form for the wave function:

�
]� (�) = 7 (�) exp (9 (�)) . (8)
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Figure 1: �e red color shows the Cornell potential and the blue
color shows the Killingbeck plus isotonic oscillator potential for # =0.0072, $ = 1.16, % = −4.59, � = 0.0032, ℎ = −2.7904, and ' =1.01008.
Now for functions 9(�) and 7(�) we make use of the ansatz
[49–53]:

7 (�) =
{{{{{{{

1 ] = 0
]∏
�
(� − B]� ) ] ≥ 1,

9 (�) = B�2 + D� + ! ln � + E ln (�2 + 1) , B > 0.
(9)

From (8) we obtain

�		
],� (�)
= [9		 (�) + 9	2 (�) + 29 (�) 7	 (�) + 7		 (�)7 (�) ] �

],� (�) . (10)

And from (9) we have

9	 (�) = 2B� + D + !� + 2E�
(�2 + 1) ,

9	2 (�) = 4B2�2 + D2 + 4BD� + !2�2 + 4E2�2
(�2 + 1)2

+ 4!E�2 + 1 + 4B! + 8BE�2�2 + 1 + 2D!�
+ 4DE��2 + 1 ,

9		 (�) = 2B − !�2 + 2E(�2 + 1) − 2�2
(�2 + 1)2 ,

9		 (�) = 2B − !�2 + 2E
(�2 + 1) −

4E�2
(�2 + 1)2 .

(11)

Regarding �2/(�2+1)2 = 1/(�2+1)−1/(�2+1)2 and �2/(�2+1) = 1 − 1/(�2 + 1) we have
9	2 (�) = 4B2�2 + D2 + 4BD� + !2�2 + 4E2�2 + 1

− 4E2
(�2 + 1)2 +

4!E�2 + 1 + 4B! + 8BE

− 8BE�2 + 1 + 2D!� + 4DE ��2 + 1 ,
9		 (�) = 2B − !�2 − 2E�2 + 1 + 4E

(�2 + 1)2 .

(12)

Substituting (11) and (12) into (10) leads to

�		
]� (�) = [4B2�2 + D2 + 4BD� + !2�2 + 4E2�2 + 1
− 4E2
(�2 + 1)2 +

4!E�2 + 1 + 4B! + 8BE − 8BE�2 + 1 + 2D!�
+ 4DE ��2 + 1 + 2B − !�2 − 2E�2 + 1 + 4E

(�2 + 1)2]
⋅ �

]� (�)

(13)

or

�		0,� (�) = [4B2�2 + D2 + 4B! + 8BE + 2B + 4BD�

+ !2�2 − !�2 + 2D!� + 4E2�2 + 1 + 4!E�2 + 1 − 2E�2 + 1
− 8BE�2 + 1 − 4E2

(�2 + 1)2 +
4E

(�2 + 1)2 + 4DE ��2 + 1]
⋅ �0,� (�) .

(14)

A�er some simplicity, by comparing (7) and (14), it can be
found that

!2 − ! − 2�� − (2� + 5) (2� + 3)
4 = 0,

4B2 = 2�#,
−4E2 + 4E = −2�',

4DE = 2�ℎ,
4E2 + 4!E − 8BE − 2E = 2�',

4BD = 2�$,
2D! = 2�%,

D2 + 4B! + 8BE + 2B = −2��.

(15)
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Equation (15) immediately yields

! = 1 + √1 + 8�� + (2� + 5) (2� + 3)
2 ,

B = −√�#2 ,
E = 1 + √1 + 2�'

2 ,
D = �ℎ2E ,
# = (2! + 1)28� ,
$ = 2BD� ,
% = D!� .

(16)

And the energy can be obtained by

�
]� = − 12� (D2 + 4B! + 8BE + 2B) . (17)

�e spin and isospin dependent interactions are not the
only source of ��(6) violation. In order to study the baryon
spectrum one has to consider ��(3) violation produced by
the di	erences in the quark masses. �e Gell-Mann-Okubo
(GMO)mass formula [54]made use of a!8 violation of ��(3)
in order to explain themass splittingwithin the various ��(3)
multiplets. �e hypercentral Constituent Quark Model is
fairly good for description of the baryon spectrum [55], but in
some cases the splitting within the various ��(6)multiplets is
too low.�e preceding results [35, 54, 55] show that both spin
and isospin dependent terms in the quark Hamiltonian are
important. Description of the splitting within ��(6) baryon
multiplets is presented by the Gürsey Radicati mass formula
[36]:

M = M0 + NN2 [��
 (2)] + 	N1 [�� (1)]
+ Q [N2 [��� (2)] − 14 (N1 [�� (1)])2] ,

(18)

where M0 is the average energy value of ��(6) multiplet,N2[��
(2)] and N2[���(2)] are the ��(2) Casimir oper-
ators for spin and isospin, respectively, and N1[��(1)] is
the Casimir operator for �(1) subgroup generated by the
hypercharge T [56–58]. �is mass formula has been tested to
be successful in the description of the ground state baryon
masses; however, as stated by the authors themselves, it is not
the most general mass formula that can be written on the
basis of a broken ��(6) symmetry. In order to generalize (18),
Giannini et al. considered dynamical spin-�avor symmetry��SF(6) [43] and described ��SF(6) symmetry breaking
mechanism by generalizing (18) as

M = M0 + UN2 [��SF (6)] + VN2 [��
 (3)]
+ NN2 [��
 (2)] + 	N1 [�� (1)]
+ Q [N2 [��� (2)] − 14 (N1 [�� (1)])2] .

(19)

Table 1: Eigenvalues of N2[��SF(6)] and N2[��
(3)] Casimir
operators.

Dimension (��(6)) N2[��SF(6)] Dimension (��(3)) N2[��
(3)]
56 45/4 8 3

70 33/4 10 6

20 21/4 1 0

In (19) the spin term (NN2[��
(2)]) represents the spin-
spin interactions, the �avor term (VN2[��
(3)]) denotes
the �avor dependence of the interactions, and the ��SF(6)
term (UN2[��SF(6)]) depends on the permutation symmetry
of the wave functions, representing “signature-dependent”
interactions [56, 57]. �e last two terms (Q[N2[���(2)] −(1/4)(N1[��(1)])2]) represent the isospin and hypercharge
dependence of the masses. In Table 1, we give the expectation
values of the Casimir operators ��SF(6) and ��
(3) for the
allowed three-quark con�gurations.

�e generalized Gürsey Radicati mass formula (19) can
be used to describe the octet and decuplet baryons spectrum,
provided that two conditions are ful�lled. �e �rst condition
is the feasibility of using the same splitting coe�cients for
di	erent ��(6) multiplets. �is seems actually to be the
case, as shown by the algebraic approach to the baryon
spectrum [1]. �e second condition is given by the feasibility
of getting reliable values for the unperturbed mass valuesM0 [32]. For this purpose we regarded ��(6) invariant part
of the hCQM which provides a good description of the
baryon spectra and used the Gürsey Radicati inspired ��(6)
breaking interaction to describe the splitting within each��(6) multiplet. �erefore, the baryons masses are obtained
by three-quark masses and eigenenergies (�

]�) of the radial
Schrödinger equation with the expectation values of 
GR as
follows:

M = 3" + �
]� + ⟨
GR⟩ . (20)

In the above equation " is the reduced mass. 
GR is in the
following form:


GR = UN2 [��SF (6)] + VN2 [��
 (3)]
+ NN2 [��
 (2)] + 	N1 [�� (1)]
+ Q [N2 [��� (2)] − 14 (N1 [�� (1)])2] .

(21)

�e expectation values of 
GR(⟨
GR⟩) are completely iden-
ti�ed by the expectation values of the Casimir operators
(Table 1).

�erefor we have

M = 3" + �
]� + U⟨N2 [��SF (6)]⟩

+ V ⟨N2 [��
 (3)]⟩ + N ⟨N2 [��
 (2)]⟩
+ 	 ⟨N1 [�� (1)]⟩
+ Q [⟨N2 [��� (2)]⟩ − 14 ⟨(N1 [�� (1)])⟩2] .

(22)
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Table 2: �e �tted values of the parameters of (22) for\, Δ, Λ, Σ, Ξ, and Ω baryons, obtained with resonances mass di	erences and global
�t to the experimental resonance masses [42].

Parameter U V N 	 Q " B D � E
Value −19.616MeV 18.575MeV 38.3 −197.3MeV 38.5MeV 271MeV −0.381MeV2 0.489MeV 0.388 0.446

Table 3:Mass spectrumof baryons resonances (inMeV) calculatedwith themass formula (22).�e columnMOurCalc contains our calculations
with the parameters of Table 2 and columnM[43]Calc shows calculations of Giannini et al. Column 7 indicates the percentage of relative error
for our calculations.

Baryon Status M[42]exp State M[43]Calc MOurCalc Percent of relative error for our calculation

\(938)^11 ∗∗∗∗ 938 281/2[56, 0+] 938 938 0%\(1440)^11 ∗∗∗∗ 1410–1450 281/2[56, 0+] 1448.7 1448.51 2.73%–0.1%\(1520)	13 ∗∗∗∗ 1510–1520 283/2[70, 1−] 1543.7 1528.79 1.24%–0.57%\(1535)�11 ∗∗∗∗ 1525–1545 281/2[70, 1−] 1543.7 1528.79 0.24%–1.04%\(1650)�11 ∗∗∗∗ 1645–1670 481/2[70, 1−] 1658.6 1643.69 0.07%–1.57%\(1675)	15 ∗∗∗∗ 1670–1680 485/2[70, 1−] 1658.6 1643.69 1.57%–2.16%\(1680)`15 ∗∗∗ 1680–1690 285/2[56, 2+] 1651.4 1688.57 0.51%–0.08%\(1700)	13 ∗∗∗ 1650–1750 483/2[70, 1−] 1658.6 1643.69 0.38%–6.07%\(1710)^11 ∗∗∗ 1680–1740 281/2[56, 0+] 1795.4 1798.16 7.03%–3.34%\(1720)^13 ∗∗∗∗ 1700–1750 283/2[56, 2+] 1651.4 1688.57 0.67%–3.51%\(1875)	13 ∗∗∗ 1820–1920 283/2[70, 1−] — 1857.01 2.03%–3.28%\(1900)^13 ∗∗∗ 1875–1935 283/2[70, 2+] — 1966.7 4.89%–1.63%\(2190)a17 ∗∗∗∗ 2100–2200 287/2[70, 3−] — 2186.37 4.11%–0.61%\(2220)
19 ∗∗∗∗ 2200–2300 289/2[56, 4+] — 2237.44 1.7%–2.72%\(2250)a19 ∗∗∗∗ 2200–2350 489/2[70, 3−] — 2301.27 4.6%–2.07%\(2600)Q1, 11 ∗∗∗ 2550–2750 2811/2[70, 5−] — 2626.25 2.99%–4.5%Δ(1232)^33 ∗∗∗∗ 1230–1234 4103/2[56, 0+] 1232 1232.37 0.19%–0.13%Δ(1600)^33 ∗∗∗ 1500–1700 4103/2[56, 0+] 1683 1647.2 9.81%–3.1%Δ(1620)�31 ∗∗∗∗ 1600–1660 2101/2[70, 1−] 1722.8 1700.01 6.25%–2.41%Δ(1700)	33 ∗∗∗∗ 1670–1750 2103/2[70, 1−] 1722.8 1700.01 1.79%–2.85%Δ(1905)`35 ∗∗∗∗ 1855–1910 4105/2[56, 2+] 1945.4 1865.27 0.55%–2.34%Δ(1910)^31 ∗∗∗∗ 1860–1910 4101/2[56, 2+] 1945.4 1865.27 0.28%–2.34%Δ(1920)^33 ∗∗∗ 1900–1970 4103/2[56, 0+] 2089.4 1974.7 3.93%–0.23%Δ(1930)	35 ∗∗∗ 1900–2000 2105/2[70, 2−] — 1918.6 0.97%–4.07%Δ(1950)	35 ∗∗∗∗ 1915–1950 4107/2[56, 2+] 1945.4 1865.27 2.59%–4.34%Δ(2420)
3, 11 ∗∗∗∗ 2300–2500 41011/2[56, 4+] — 2303.79 0.16%–7.84%
∗∗∗∗Existence is certain, and properties are at least fairly well explored. ∗∗∗Existence ranges from very likely to certain, but further con�rmation is desirable
and/or quantum numbers, branching fractions, and so forth are not well determined.

In order to simplify the solving procedure, the constituent
quarks masses are assumed to be the same for Up, Down,
and Strange quark �avors (" = "� = "� = "�); therefore,
within this approximation, ��(6) symmetry is only broken
dynamically by the spin and �avor dependent terms in the
Hamiltonian. We determined �

]� by exact solution of the
radial Schrödinger equation for the hypercentral potential
equation (5). For calculating the baryons mass according to
(22), we need to �nd the unknown parameters. For this pur-
pose we choose a limited number of well-known resonances
and express theirmass di	erences using
GR and the Casimir
operator expectation values: \(1650)�11 − \(1535)�11 =3N, 4\(938)^11 − Σ(1193)^11 − 3Λ(1116)^01 = 4	, andΣ(1193)^11 − Λ(1116)^01 = 2Q, leading to the numerical
values C = 38.3, D = −197.3MeV, and I = 38.5MeV. For
determining", B,D,�, and E (in (17)) and the two coe�cients

U and V of (19) we have used the Newton-Raphson Method
for solving the nonlinear equations. For our purpose we
chose \(938)^11, Δ(1232)^33, Λ(1116)^01, Σ(1193)^11,Λ(1810)^01, Δ(1700)	33, and Σ(1940)	13 which yielded
the best reproduction (the maximum percentage of relative
error is 0.33%); then by solving seven nonlinear equations
with seven unknown parameters we calculated the free
parameters (", B, D, �, E, U, V). �e �tted parameters are
reported in Table 2. �e corresponding numerical values for
3 and 4 star baryons resonances are given in Tables 3 and
4, column Mour Calc. In Tables 3 and 4, column M[43]Calc, we
have shown the numerical values of the calculated masses of
baryon resonances by Giannini et al., where they regarded
the con�nement potential as the Cornell potential (−(b/c) +Bc). �e solution of the hypercentral Schrödinger equation
with this potential cannot be obtained analytically [43];
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Table 4: Like Table 3, but for Λ, Σ, Ξ, and Ω resonances.

Baryon Status M[42]exp State M[43]Calc MOurCalc Percent of relative error for our calculation

Λ(1116)^01 ∗∗∗∗ 1116 281/2[56, 0+] 1116 1116.05 0.004%Λ(1600)^01 ∗∗∗ 1560–1700 281/2[56, 0+] 1626.7 1647.99 5.64%–3.05%Λ(1670)�01 ∗∗∗∗ 1660–1680 281/2[70, 1−] 1721.7 1706.84 2.82%–1.59%Λ(1690)	03 ∗∗∗∗ 1685–1695 283/2[70, 1−] 1721.7 1706.84 1.29%–0.69%Λ(1800)�01 ∗∗∗ 1720–1850 481/2[70, 1−] 1836.6 1821.74 5.91%–1.52%Λ(1810)^01 ∗∗∗ 1750–1850 281/2[70, 0+] 1973.4 1816.04 3.77%–1.83%Λ(1820)`05 ∗∗∗∗ 1815–1825 285/2[56, 2+] 1829.4 1866.62 2.84%–2.28%Λ(1830)	05 ∗∗∗∗ 1810–1830 485/2[70, 1−] 1836.6 1821.74 0.64%–0.45%Λ(1890)^03 ∗∗∗∗ 1850–1910 283/2[56, 2+] 1829.4 1866.62 0.89%–2.27%Λ(2100)a07 ∗∗∗∗ 2090–2110 217/2[70, 3−] — 2089.04 0.04%–0.99%Λ(2110)`05 ∗∗∗∗ 2090–2140 485/2[70, 2+] 1995 2149.96 2.86%–0.46%Λ(2350)
09 ∗∗∗ 2340–2370 289/2[56, 4+] — 2360.52 0.87%–0.4%Λ∗(1405)�01 ∗∗∗∗ 1402–1410 211/2[70, 1−] 1657.9 1433.91 2.27%–1.69%Λ∗(1520)	01 ∗∗∗∗ 1518–1520 213/2[70, 1−] 1657.9 1433.91 5.53%–5.66%Σ(1193)^11 ∗∗∗∗ 1193 281/2[56, 0+] 1193 1193.05 0.004%Σ(1660)^11 ∗∗∗ 1630–1690 281/2[56, 0+] 1703.7 1616.12 0.05%–4.37%Σ(1670)	13 ∗∗∗∗ 1665–1685 283/2[70, 1−] 1798.7 1783.74 7.13%–5.85%Σ(1750)�11 ∗∗∗ 1730–1800 281/2[70, 1−] 1798.7 1783.74 3.1%–0.9%Σ(1775)	15 ∗∗∗∗ 1770–1780 485/2[70, 1−] 1913.6 1789.87 1.12%–0.55%Σ(1915)`15 ∗∗∗∗ 1900–1935 285/2[56, 2+] 1906.4 1910.7 0.56%–1.25%Σ(1940)	13 ∗∗∗ 1900–1950 283/2[56, 1−] 1913.6 1943.62 2.29%–0.32%Σ∗(1385)^13 ∗∗∗∗ 1383–1385 4103/2[56, 0+] — 1363.67 1.39%–1.54%Σ∗(2030)`17 ∗∗∗∗ 2025–2040 4107/2[56, 2+] 2085.0 2004.82 0.99%–1.72%Ξ(1318)^11 ∗∗∗∗ 1314–1316 281/2[56, 0+] 1332.6 1332.6 1.41%–1.26%Ξ(1690)�11 ∗∗∗ 1680–1700 281/2[70, 1−] — 1706.1 1.55%–0.35%Ξ(1820)	13 ∗∗∗ 1818–1828 283/2[70, 1−] 1938.3 1923.39 5.79%–5.21%Ξ∗(1530)^13 ∗∗∗∗ 1531–1532 4103/2[56, 0+] 1511.1 1503.2 1.81%–1.87%Ω(1672)^03 ∗∗∗∗ 1672–1673 4103/2[56, 0+] 1650.7 1643 1.73%–1.79%Ω(2250)	03 ∗∗∗ 2243–2261 2103/2[70, 1−] — 2227.87 0.67%–1.46%
∗∗∗∗Existence is certain, and properties are at least fairly well explored. ∗∗∗Existence ranges from very likely to certain, but further con�rmation is desirable
and/or quantum numbers, branching fractions, and so forth are not well determined.

therefore Giannini et al. used the dynamic symmetry d(7)
of the hyperCoulomb problem to obtain the hyperCoulomb
Hamiltonian and eigenfunctions analytically and also they
regarded the linear term as a perturbation. Comparison
between our results and the experimental masses [42]
shows that our model has improved the results of model
in [43], particularly in Λ(1810), Λ(2110)`05, Λ∗(1405)�01,Λ∗(1520)	01, Δ(1905)`35, Δ(1910)^31, Δ(1920)^33, andΣ(1775)	15 (refer to Tables 3 and 4). �ese improvements
in reproduction of baryons resonance masses are obtained
by using a suitable form for con�nement potential and exact
analytical solution of the radial Schrödinger equation for
our proposed potential. �e percentage of relative error for
our calculations is between 0 and 10% (column 7, in Tables
3 and 4). �e corresponding numerical values for some of
1 and 2 star baryons resonances mass up to 2.1 GeV are
given in Table 5, columnMour Calc. �e percentage of relative
error for our calculations is between 0.07 and 9% (column
6, in Table 5). Comparison between our results and the
experimental masses [42] shows that the baryon spectra are,
in general, fairly well reproduced.

3. Conclusion

In this paper we have computed the baryon resonances
spectrum up to 3GeV within a nonrelativistic quark model
based on the three identical quarks Schrödinger equation
and the algebraic approach. We have solved the Schrodinger
equation numerically to obtain the energy eigenvalues under
the Killingbeck plus isotonic oscillator interaction potentials.
�en, we �tted the generalized GR mass formula parameters
to the baryons energies and calculated the baryon masses.
�e overall good description of the spectrum which we
obtain by our proposed model shows that our theoretical
model can also be used to give a fair description of the
energies of the excited multiplets up to 3GeV and not only
for the ground state octets but also decuplets. Moreover, our
model reproduces the position of the Roper resonances of the
nucleon andnegative-parity resonance.�ere are problems in
the reproduction of the experimental masses in Δ(1620)�31
and Σ(1670)	13 that turn out to have predicted mass about
100MeV above the experimental value. A better agreement
may be obtained either using the square of the mass [1] or
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Table 5: Mass spectrum of some of 1 and 2 star baryons resonances (in MeV) up to 2.1 GeV calculated with the mass formula (22). columnMOurCalc contains our calculations with the parameters of Table 2 and column 6 indicates the percentage of relative error for our calculations.

Baryon Status M[42]exp State MOurCalc Percent of relative error for our calculation

\(1860)`15 ∗∗ 1820–1960 285/2[70, 2+] 1966.7 8.06%–0.34%\(1880)^11 ∗∗ 1835–1905 481/2[70, 2+] 1971.9 7.46%–3.51%\(1895)�11 ∗∗ 1880–1910 281/2[70, 1−] 1857.01 1.22%–2.77%\(1990)`17 ∗∗ 1995–2125 487/2[70, 2+] 1971.9 1.15%–7.2%\(2000)`15 ∗∗ 1950–2150 485/2[70, 2+] 1971.9 1.12%–8.28%\(2040)^13 ∗ 2031–2065 483/2[70, 2+] 1971.9 2.9%–4.5%\(2060)	15 ∗∗ 2045–2075 485/2[70, 2−] 1971.9 3.57%–4.96%\(2120)	13 ∗∗ 2090–2210 283/2[56, 1−] 2127.52 1.79%–3.73%Δ(1750)^31 ∗ 1708–1780 2101/2[70, 0+] 1754.5 2.72%–1.43%Δ(1900)�31 ∗∗ 1840–1920 2101/2[70, 1−] 1918.6 4.27%–0.07%Δ(1940)	33 ∗∗ 1940–2060 2103/2[70, 1−] 1918.6 1.1%–6.86%Δ(2000)`35 ∗∗ ≈2000 2105/2[70, 2+] 2028.2 1.41%Σ(1580)	13 ∗ ≈1580 483/2[70, 1−] 1574.12 0.37%Σ(1620)�11 ∗∗ ≈1620 281/2[70, 0−] 1674.97 3.39%Σ(1770)^11 ∗ ≈1770 281/2[70, 0+] 1783.84 0.78%Σ(1880)^11 ∗∗ ≈1880 281/2[20, 1+] 1842.68 1.98%Σ(2000)�11 ∗ ≈2000 281/2[70, 1−] 2002.47 0.12%Σ(2070)`15 ∗ ≈2070 485/2[70, 2+] 2117.37 2.28%Σ∗(1840)^13 ∗ ≈1840 4103/2[56, 0+] 1895.6 3.02%Σ∗(2080)^13 ∗∗ ≈2080 2103/2[70, 2+] 2058.2 1.04%
∗∗Evidence of existence is only fair. ∗Evidence of existence is poor.

trying to include a spatial dependence in the ��(6) breaking
part.
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