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Abstract
Light Detection and Ranging (lidar) has been widely applied
to characterize the 3-dimensional (3D) structure of forests as
it can generate 3D point data with high spatial resolution
and accuracy. Individual tree segmentations, usually derived
from the canopy height model, are used to derive individual
tree structural attributes such as tree height, crown diame-
ter, canopy-based height, and others. In this study, we
develop a new algorithm to segment individual trees from
the small footprint discrete return airborne lidar point cloud.
We experimentally applied the new algorithm to segment
trees in a mixed conifer forest in the Sierra Nevada Moun-
tains in California. The results were evaluated in terms of
recall, precision, and F-score, and show that the algorithm
detected 86 percent of the trees (“recall”), 94 percent of the
segmented trees were correct (“precision”), and the overall
F-score is 0.9. Our results indicate that the proposed
algorithm has good potential in segmenting individual trees
in mixed conifer stands of similar structure using small
footprint, discrete return lidar data.

Introduction
Light Detection and Ranging (lidar) is an active remote
sensing technology that measures properties of reflected
light to determine range to a distant object (Lefsky et al.,
2002). The range to an object is calculated by measuring the
time delay between transmission of a laser pulse and
detection of the reflected signal (Wehr and Lohr, 1999). Due
to its ability to generate 3-dimensional (3D) data with high
spatial resolution and accuracy, lidar technology is being
increasingly used in ecology (Lefsky et al., 2002; Gaveau
and Hill, 2003; Hopkinson et al., 2004a; Hopkinson et al.,
2004b), geomorphology (Glenn et al., 2006), seismology (Lee
et al., 2009), and remote sensing (Brandtberg et al., 2003).

Individual tree segmentations have significant implica-
tions in forestry (Chen et al., 2006; Koch et al., 2006; Chen
et al., 2007). Once accurately segmented, tree structural
attributes such as tree height, crown diameter, canopy based
height, basal area, diameter at breast height (DBH), wood
volume, biomass, and species type can be derived (Chen
et al., 2007; Korpela et al., 2007; Yu et al., 2011). Traditional
methods for characterizing the 3D structure of forest stands,
and capturing individual tree characteristics include field
inventory and aerial photography interpretation, yet both
methods have limitations that can be overcame using lidar
(Lang et al., 2006). Field inventories can be labor-intensive,
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time-consuming, and limited by spatial accessibility (Lee
et al., 2010); and optical aerial photography does not directly
provide 3D forest structure information (Chen et al., 2006).
Recently, lidar has been widely and successfully applied in
forest research (Naesset and Bjerknes, 2001; St-onge and
Achaichia, 2001; Popescu et al., 2002; Lim et al., 2003;
Popescu et al., 2003; Patenaude et al., 2004; Popescu and
Wynne, 2004; Riaño et al., 2004; Suárez et al., 2005;
Popescu, 2007; Chasmer et al., 2008; Stephens et al., 2008;
Huang et al., 2009), and it shows promise to map individual
trees in complex and heterogeneous forests (Brandtberg
et al., 2003; Popescu and Wynne, 2004; Chen et al., 2006;
Koch et al., 2006; Chen et al., 2007).

There are numerous methods proposed to delineate
individual trees using airborne lidar data. For example,
Popescu and Wynne (2004) used a local maximum filtering
technique to locate and measure individual trees. Tiede
et al. (2005) used a similar local maximum algorithm to
identify tree tops and then developed a region growing
algorithm to delineate tree crowns. Chen et al. (2006)
proposed a marker-controlled watershed segmentation to
isolate individual trees; the tree tops identified by local
maxima were used as markers to improve the accuracy.
Koch et al. (2006) delineated tree crowns with a combina-
tion of a pouring algorithm, knowledge-based assumptions
on the shape of trees, and a final detection of the crown-
edges. Korpela et al. (2007) used a multi-scale template
matching approach for tree detection and measurement.
They used elliptical and other shaped templates to represent
tree models. The spatial wavelet analysis has also been
proposed to automatically determine the location, height,
and crown diameter of individual trees from lidar data
(Falkowski et al., 2006).

What these segmentation algorithms share is that they
segment individual trees using the lidar-derived canopy
height model (CHM), which is a raster image interpolated
from lidar points depicting the top of the vegetation canopy.
This is not ideal, as the CHM can have inherent errors and
uncertainties from a number of sources. For example, spatial
error can be introduced during the interpolation process
from the point cloud to the gridded height model (Guo et al.,
2010), which can decrease the accuracy of tree segmenta-
tions and relevant measurements. Therefore, new methods to
segment individual trees directly from the lidar point cloud
need to be developed and enhanced. Morsdorf et al. (2003)
used the k-mean clustering algorithm to segment individual
trees from the point cloud, but their accuracy depended on
seed points extracted from the local maxima of a rasterized



digital surface model, and thus this method did not directly
rely on the lidar point cloud. Lee et al. (2010) developed an
adaptive clustering approach to segment individual trees in
managed pine forests from the raw lidar 3D point data; the
method is similar to the concept of watershed segmentation,
but it requires sufficient training data for supervised learn-
ing, and its performance in complex forests has not been
tested.

In this study, we develop a new algorithm to segment
individual trees directly from the lidar point cloud. To
investigate the algorithm’s effectiveness in segmenting
individual trees, we apply our algorithm to isolate individ-
ual trees in a mixed conifer forest using small footprint,
discrete return, high-density airborne lidar data. Detailed
descriptions about the algorithm, evaluation of its perform-
ance, and discussion of the implications of the method are
provided in the following sections.

Methods
Study Site and Datasets
Our study area (118 km2) is located in the Sierra National
Forest, on the western slope of the central Sierra Nevada
Mountains of California (Figure 1) (37°26!N 119°35!W; 1,300
to 1,800 m above sea level). The area is characterized by
Sierra mixed conifer forest dominated by white fir (Abies
concolor), ponderosa pine (Pinus ponderosa), incense cedar
(Calocedrus decurrens), sugar pine (Pinus lambertiana), and
giant sequoia (Sequoiadendron giganteum) with black oak
(Quercus kelloggii) and canyon live oak (Quercus
chrysolepis) as the major hardwoods within the stands.

Lidar data were acquired between 13 September and
15 September 2007. We contracted with the National Center
for Airborne Laser Mapping (NCALM) who used an Optech
GEMINI Airborne Laser Terrain Mapper (ALTM) mounted in
a twin-engine Cessna Skymaster. The Optech ALTM sensor
recorded up to four echoes per pulse. The sensor operated at
100 kHz, with a scanning frequency of 40 Hz and the total
scan angle of " 24°. One hundred and three individual

flight lines were flown to cover the study area. The swath
width of a single pass averaged 509.56 m, with planned line
spacing at 168.15 m. Planned overlap was 341.4 m: all of
the ground area was covered with shots from three different
swaths, with four swaths in many cases. Average flight
speed was 61.7 m/s at a mean altitude of 700 m above
ground level. The target point density (#6 points/m2) was
met by using 67 percent overlap of adjacent flight lines and
line spacing of 168.15 m. The horizontal accuracy was
1:11,000 of the flying altitude and the vertical accuracy
was 5 to 10 cm.

In this study, we selected 20 circular plots (12.62 m
radius) that provided a range of tree densities over the study
site for accuracy assessment (Figure 1). All plot centers were
greater than 12.62 m from any landing or road surface. We
used the Trimble GeoXH GPS and TruPulse™ 360 to georefer-
ence the locations of plot centers and individual trees inside
the plots. The georeferenced trees were manually verified
and refined by comparing to the lidar point cloud with the
3D visualization in Esri ArcScene® software. Trees that were
not georeferenced in the field survey were manually marked
and delineated from the point cloud. We obtained 380
reference trees in total, and the number of trees within each
plot averaged 19 and varied from 9 to 35.

Individual Tree Segmentations
Preprocessing
TerraSolid’s TerraScan (http://terrasolid.fi) software was
used to classify the raw lidar point data into ground and
above-ground points. Ordinary kriging was used to interpo-
late the ground points and generate the digital elevation
model (DEM) at 1 m resolution (Guo et al., 2010). The above-
ground (vegetation) points were used for tree segmentation.
We normalized the vegetation point cloud values by sub-
tracting the ground points (DEM) from the lidar point cloud
(Lee et al., 2010). After normalization, the elevation value of
a point indicates the height from the ground to the point
(Figure 2). If the point is the tree top, its height value can be
considered as the tree height.

The Algorithm
Our method works by segmenting trees individually in
sequence from the point cloud by taking advantage of the
relative spacing between trees (Figure 3). In general, there
is horizontal spacing between trees and the spacing at the
top of a tree is larger than the spacing at the bottom as
show in Figure 3a. Although trees may overlap in dense
stands, there is still spacing between them at the higher
level, as show in Figure 3b. Hence, starting from a tree top,
we can identity and “grow” a target tree by including
nearby points and exclude points of other trees based on
their relative spacing. It becomes increasingly difficult to
classify points at the lower level because the spacing
between trees decreases, particularly for overlapping trees.
To overcome this challenge, the points are classified
sequentially, from the highest to the lowest. Points with
spacing larger than a specified threshold are excluded from
the target tree; points with spacing smaller than the
threshold are classified based on a minimum spacing rule.
For example, in Figure 4, point A is the highest and hence
considered as the top of tree #1 (target). Starting from the
seed point A, we classify other lower points sequentially.
First, point B is classified as tree #2 because the spacing
dAB is bigger than a specified threshold (e.g., 2 m). We then
consider point C whose spacing dAC is smaller than the
threshold. By comparing to points A and B, point C is
classified as tree #1 because dAC is smaller than dBC.
Sequentially, point D is classified as tree #2 by comparing
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Figure 1. Study area and testing plots.



to points B and C, and point E is classified as tree #2 by
comparing to points C and D.

By defining an appropriate spacing threshold, most of
the points can be correctly assigned to their corresponding
tree clusters. The threshold should be approximately equal
to the crown radius. If the threshold is too small, trees with
elongated branches may be over-segmented; if the threshold
is too large, nearby trees may be missed. Consider Figure 5
as an example. If the threshold dAB is used, point B is
correctly assigned to tree #1. Next, point C will be compared
to point B and falsely assigned to tree #1 because the
spacing dBC is smaller than the threshold dAB, resulting in
tree #2 not being segmented (under-segmentation). In
contrast, if the threshold dBC is used, point B is falsely
excluded from tree #1 (over-segmentation). Meanwhile, point
C is correctly excluded from tree #1 and hence tree #2 can
be detected and segmented later. To solve the problem, an
adaptive threshold can be used, assuming that taller trees
have larger crown diameters (Popescu and Wynne, 2004;
Chen et al., 2006).

Additionally, more classification rules can be added to
improve the accuracy of the segmentation. In Figure 6, point
A is identified as the top of tree #1 (target), and the next
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Figure 2. Lidar point clouds: (a) before normalization, and (b) after normalization.

(a) (b)

Figure 3. The spacing between trees at upper level (dAB) and lower level (dCD): (a) two
separate trees, and (b) two overlapping trees.

(a) (b)

Figure 4. The spacing between points on two trees.



point to be classified is B. The spacing dAB is larger than a
defined threshold, and B can be the top of an elongated
branch of tree #1 (Figure 6a), or the top of tree #2 (Figure
6b). If the points approximate to B are projected into a 2D
Euclidean space, the convex hull of these points is more
elongated for the branch (Figure 6a), and more compact for a
separate tree (Figure 6b). The shape of the convex hull can
be indicated by a shape index (SI):

(1)

where P is the perimeter, and A is the area of the convex
hull. Alternatively, we can also use a relative shape index
that corrects for the size problem on the simple perimeter-
area ratio (Guo et al., 2007). A higher value of the shape
index indicates a more elongated shape. Hence, a threshold

SI !  
P

4 * 1A

of the shape index can be used to differentiate between a
branch and a tree.

If a branch is detected, there are two possibilities: it
belongs either to the target tree or to a nearby tree. We can
differentiate these two cases according to the distribution of
the points. In Figure 7, point C is the top of an elongated
branch, and points D, E, and F are approximate to C within
a search radius. When projected into 2D Euclidean space,
most of the points fall into the left sector if the branch
belongs to tree #1 (Figure 7a). By contrast, most of the
points fall into the right sector if the branch belongs to tree
#2 (Figure 7b).

In summary, the trees are segmented based on a spacing
threshold (either fixed or adaptive thresholds), a minimum
spacing rule, and a horizontal profile of the tree shape.
Under-segmentations can be reduced by using a relatively
small threshold, and over-segmentations can be reduced
based on the shape and distribution of the points. In
addition, this algorithm is flexible and the classification
rules are object-oriented, which can be modified or
extended depending on the characteristics of the trees to be
segmented.

Implementation
The proposed segmentation algorithm isolates trees individ-
ually and sequentially from the point cloud, from the tallest
tree to the shortest. Let Ui denote a set of points to be
segmented, Pi denote a set of points that belong to tree i
(target), and Ni denote a set of points that do not belong to
tree i. For iteration i, we classify each point in Ui as Pi or Ni.
During each iteration, only one tree (target) is segmented,
and the points corresponding to this target tree are removed
from the point cloud. Therefore, for iteration i " 1, Ui"1 = Ui
– Pi. We start from the highest tree with i = 1 where U1 is
the original point cloud, and stop when Ui is empty. Figure 8
shows the flowchart of the algorithm.

During each iteration, we adopt a top-to-bottom
approach to classify the points, i.e., we classify the points in
Ui one by one, starting from the highest point to the lowest
one. First, we find the highest point t0 (global maximum) in
Ui, which is assumed to be the top of the tallest tree i in Ui.
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Figure 5. Under-segmentation with large threshold dAB
and over-segmentation with small threshold dBC.

Figure 6. Different shapes of the convex hulls of the points for (a) an elongated
branch, and (b) a separate tree.

(a) (b)



Obviously, t0 ∈Pi. At this point, Ni is empty. We then insert
a dummy point n0 that is far away (e.g., 100 m) from t0 into
Ni. The basic idea is to use t0 and n0 as the initial seeds,
and grow the clusters of Pi and Ni by finding their approxi-
mate points based on the rules mentioned previously. The
growing directions are from top to bottom, and from center
to boundary. Let u denote a point to be classified, and Zu
denote its height. Let dmin1 denote the minimum distance
from u to any point in Pi, and dmin2 denote the minimum
distance from u to any point in Ni. Note that here “distance”
refers to the 2D Euclidean distance. Within a search radius
R, the highest point is called local maximum, and any other
lower point is called non-maximum. Note that the segmenta-
tion result is not sensitive to the search radius, and R = 2 m
should be sufficient in most cases according to our test. We
classify u using the following rules.

1. If the point u is the local maximum, it can be the top of a
branch or the top of another tree. In this study we use the
spacing threshold and minimum spacing rules to classify u:

if dmin1 ! dt, u ∈Ni;
if dmin1 "= dt and dmin1 "= dmin2, u ∈Pi;
if dmin1 "= dt and dmin1 ! dmin2, u ∈Ni

where dt is an adaptive threshold:
dt = 2 m if Zu !15 m;
dt = 1.5 m if Zu "=15 m.

These parameters were determined by trial-and-error. It is
reasonable to assume that the crown diameter of a tree is
greater than 1 m, and that the tree spacing at the upper lever
is greater than 1 m. Therefore, the parameters in this study
can be used as the default, but users should tune them based
on the tree spacing in the study area.

2. If u is a non-maximum point, it is simply classified based on
the minimum spacing rule:

if dmin1 "= dmin2, u ∈Pi;
if dmin1 ! dmin2, u ∈Ni.

The algorithm iterates until all points are classified into
corresponding sets.

Accuracy Assessment
After running the tree segmentation algorithm, we compared
the segmented trees with the reference trees in 20 testing
plots. There are three types of tree segments and levels of
accuracy produced (Plate 1). If a tree is correctly segmented,
it is called true positive (TP); if a tree is not segmented but
assigned to a nearby tree, it is called false negative (FN) or
omission error; if a tree does not exist but is segmented from
the point cloud, it is called false positive (FP) or commis-
sion error. TP, FN, and FP indicate perfect segmentation,
under-segmentation, and over-segmentation, respectively. To
evaluate the accuracy, we calculated recall (r), precision (p),
and F-score using the following equations (Goutte and
Gaussier, 2005; Sokolova et al., 2006):

(2)

(3)

(4)F # 2 *  
r * p

r $ p

p #  
TP

TP $ FP

r #  
TP

TP $ FN
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Figure 7. Different distributions of the points on a 2D space for a branch: (a) the
branch belongs to tree #1, and (b) the branch belongs to tree #2.

(a) (b)

Figure 8. The flowchart of the tree segmen-
tation algorithm; “i ” refers to the iteration
number.



Recall indicates the tree detection rate, precision
indicates the correctness of the detected trees, and F-score is
the overall accuracy taking both commission and omission
errors into consideration. The values of r, p, and F vary
from 0 to 1. In order to obtain a higher F-score, both r and p
should be high. For example, if all of the trees are correctly
segmented (perfect segmentations), the values of r and p are
one, resulting in F being equal to one.

Results
Plate 2a and 2b shows the comparison between the original
and segmented point clouds for a 50 ! 50 m area. It is
apparent visually that most of the trees are correctly seg-
mented. The tree segmentation results in other areas in our
study are similar and hence are not shown here. Plate 2c
and 2d shows the segmentation results for two typical plots.
In the dense plot (Plate 2c), the tree spacing is small and
some of the trees are missed and not segmented; in the
sparse plot (Plate 2d), the tree spacing is large and most of
the trees can be detected and segmented correctly.

The accuracy assessments for trees in the 20 test plots
are shown in Table 1. The value of r varies from 0.71 to 1,
with the overall value of 0.86; the value of p varies from 0.8
to 1, with the overall value of 0.94. In dense plots, trees are
under-segmented and the value of r is relatively low.
For example, 8 of the 31 trees in plot #10, and 10 of the
35 trees in plot #15 are not detected by the algorithm.

The corresponding values of r are only 0.74 and 0.71,
respectively. However, the values of p in these two plots
are 1, without errors of commission (falsely segmented
trees). In contrast, the value of r in sparse plot is relatively
high, but the value of p may be lower. For example, in plot
#8, all of the 16 trees are correctly segmented, but there are
4 falsely detected trees. Consequently, the value of r is 1, but
the value of p is only 0.8. The F-score, which considers both
of these factors, varies from 0.83 to 0.95, with the overall
value from all the plots of 0.90.

The relationship between the number of reference trees
and the number of segmented trees per plot is shown in
Figure 9. The correlation is relatively strong, with the
correlation coefficient r = 0.91. In general, the number of
trees is under-estimated with our method. There are 380
trees in total in our test plots, but only 347 trees are seg-
mented. The algorithm missed 53 trees, and falsely detected
20 trees, with under-segmentation outweighing over-
segmentation.

Discussion
Since the late 1990s, lidar has shown promise in forest
science, for characterizing the structure of forests at landscape-
scale, stand-scale, and plot-scales (Dubayah and Drake, 2000;
Naesset and Bjerknes, 2001; Lim et al., 2003; Riaño et al.,
2003; Popescu and Wynne, 2004). These efforts in forest
quantification are currently driving improvements in fire
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Plate 1. Three types of tree segments: (a) correctly detected tree (true positive, TP),
(b) undetected tree (false negative, FN), and (c) falsely detected tree (false positive, FP).
The posts indicate ground truth trees; the color of points indicates individual tree
segments.

(a) (b) (c)



modeling (Mutlu et al., 2008; Wing et al., 2010), and forest
management (Wynne, 2006; Wulder et al., 2008). Yet, further
refinements in scale are still required for precise forest
modeling. The successful identification and characterization
of individual trees is critical in forest science, particularly
for individual tree growth modeling (Falkowski et al., 2010;
Vepakomma et al., 2011), linking with biometereological
models (Chen et al., 2008) and more precise measures of
biomass in forests (Popescu et al., 2003).

However, the accuracy of individual tree detection and
delineation using lidar data is relatively low in complex and
heterogeneous forests (Persson et al., 2002). In some studies,
only 40 to 80 percent of the trees are detected using lidar
data (Heurich et al., 2004; Tiede et al., 2005; Chen et al.,
2006; Korpela et al., 2007; Alexander, 2009). For example,
Persson et al. (2002) found 71 percent of trees in the forest
mainly consisting of spruce and pine; Kwak et al. (2007)
reported accuracies from 60 to 80 percent in coniferous and
deciduous forests; Yu et al. (2011) detected 69 percent trees

in a boreal forest area. Our algorithm, possibly in part
because it makes use of non-transformed, raw point cloud,
increases the accuracy of detected individual trees. Overall,
about 86 percent of the trees in our study area were detected
by the algorithm, and 94 percent of the segmented trees
were correct. Our new algorithm shows good potential to
delineate individual trees in mixed and complex coniferous
forests. However, its effectiveness in other forest types like
deciduous forests needs to be evaluated.

Our algorithm makes use of the 3D structure inherent in
the lidar point cloud. It makes use of the shape of trees in a
forest by taking advantage of the relative difference in
spacing between tree tops and tree bases, and it incorporates
a novel quantification of tree shape, as defined by the
horizontal profile of a tree. Misclassifications may happen
where the canopy is unequally sampled by the laser pulses,
but this problem can be reduced by increasing the lidar
point density. In our study the average lidar point density is
larger than 6 points/m2, and can reach up to 20 points/m2 in
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Plate 2. (a) original lidar point cloud, and (b) segmented point cloud in a 50 ! 50 m
area. Segmented trees at two typical plots: (c) dense, and (d) sparse. The color of
points indicates individual tree segments.

(a) (b)

(c) (d)



vegetated areas, which is sufficient to capture the 3D
structure of individual trees.

Similar to other tree segmentation methods, tree top
detection is the most important step in segmentation as it
significantly affects the resulting accuracy. In the past, local
maximum filtering techniques have been used to locate the
tops of trees, but the size of search window is difficult to
determine (Popescu and Wynne, 2004; Chen et al., 2006),
especially in dense and variable forest canopies. Our
algorithm avoids this common problem by finding the global
maximum, segmenting this target tree using classification
rules, and then removing the resulting tree from the point
cloud. Subsequently, the highest point in the remaining
point cloud can be used as the top of the second highest

tree, and so on. Trees are thus segmented individually, and
sequentially, from the highest to the lowest. This approach
also contributes to our high accuracy rates relative to past
efforts.

In our algorithm, the uncertainty in tree segmentations
mainly derives from the spacing threshold. In sparse forests
where the tree spacing is large, we can use a relatively large
threshold to isolate trees. However, the appropriate threshold
is difficult to determine in dense forests. A higher threshold
can result in under-segmentations whereas a smaller
threshold can result in over-segmentations. Over- and under-
segmentations can be reduced by using an adaptive threshold,
assuming that taller trees have larger crown diameters and
hence larger spacing at the upper level. Alternatively, we can
use a relatively small threshold to reduce under-segmentations,
and incorporate more classification rules (e.g., the shape and
distribution of the points) to reduce over-segmentations. We
show that this adaptive threshold approach is sufficient in
conifer forests in this study. In other forests, such as those
dominated by deciduous trees with larger and more complex
crowns and elongated branches, more object-oriented and
shape-related rules should be incorporated to improve the
accuracy. We plan to investigate this issue in future work.
Meanwhile, it is worth noting that the algorithm is computation-
intensive as the points are assigned to their corresponding
tree clusters one by one. Adding more rules will signifi-
cantly increase the computation time. Therefore, strategies
(e.g., parallel processing) to reduce the computation time
could be investigated.

Our algorithm is novel in that it works directly with the
raw lidar point cloud. Most other individual tree algorithms
make use of a gridded transformation of the point cloud:
usually the canopy height model (Chen et al., 2006). These
methods are challenged in two ways. First, the uncertainty
introduced by the interpolation method can affect the accura-
cies of both the segmentations and tree measurements (Guo
et al., 2010). Second, these tree objects do not take advantage
of the full 3D structure inherent in the lidar point cloud. With
this new method, once the trees are correctly segmented, we
can directly measure tree height, crown size, and other
important tree parameters from the points contained in that
tree. The advantage is obvious: tree segmentations and the
consequent measurements are not affected by the uncertainty

82 J a n ua r y  201 2 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 1. ACCURACY ASSESSMENTS FOR TREE SEGMENTATIONS ON THE TESTING PLOTS

Number Density Number of 
Plot ID of trees (trees/m2) segmented trees TP FP FN r p F

1 14 0.03 14 13 1 1 0.93 0.93 0.93
2 9 0.02 11 9 2 0 1.00 0.82 0.90
3 21 0.04 20 19 1 2 0.90 0.95 0.93
4 15 0.03 13 13 0 2 0.87 1.00 0.93
5 22 0.04 21 20 1 2 0.91 0.95 0.93
6 24 0.05 21 21 0 3 0.88 1.00 0.93
7 17 0.03 16 15 1 2 0.88 0.94 0.91
8 16 0.03 20 16 4 0 1.00 0.80 0.89
9 12 0.02 13 11 2 1 0.92 0.85 0.88

10 31 0.06 23 23 0 8 0.74 1.00 0.85
11 21 0.04 19 19 0 2 0.90 1.00 0.95
12 13 0.03 13 12 1 1 0.92 0.92 0.92
13 16 0.03 14 13 1 3 0.81 0.93 0.87
14 21 0.04 18 17 1 4 0.81 0.94 0.87
15 35 0.07 25 25 0 10 0.71 1.00 0.83
16 23 0.05 19 19 0 4 0.83 1.00 0.90
17 16 0.03 15 14 1 2 0.88 0.93 0.90
18 17 0.03 16 15 1 2 0.88 0.94 0.91
19 20 0.04 17 17 0 3 0.85 1.00 0.92
20 17 0.03 19 16 3 1 0.94 0.84 0.89
Overall 380 0.04 347 327 20 53 0.86 0.94 0.90

Figure 9. The relationship between the number of
reference trees and the number of segmented trees
within individual plots; “r ” refers to the correlation
coefficient.



of interpolation, and the important 3D forest parameters can be
extracted directly from the lidar returns that make up each
tree. In this study we focus on evaluating the accuracy of
individual tree segmentations, and we plan to comprehen-
sively evaluate the accuracy of tree measurements based on
different tree segmentation methods in future research.

The accuracy assessment methods also need further
investigation. In tree segmentation we aim to detect as many
trees as possible while minimizing the number of falsely
detected trees. There are two types of errors: commission
error (FP) and omission error (FN), which result from over-
segmentation and under-segmentation, respectively. In order
to evaluate how well an algorithm performs, it is necessary
to consider both types of errors in accuracy assessment.
Remember that our interest focuses on one class, i.e., tree
extraction (true positive), and true negative is not consid-
ered. Hence, traditional accuracy indices such as total
accuracy and kappa coefficient are not applicable. Here we
recommend the F-score, which is commonly used in
information retrieval (Goutte and Gaussier, 2005; Sokolova
et al., 2006). F-score is the harmonic mean of precision and
recall. Note that recall is inversely related to omission error,
and precision is inversely related to commission error.
Hence, a higher F-score indicates that both commission and
omission errors are lower. In future research, it is necessary
to comprehensively investigate the accuracy assessment
methods in tree segmentations and propose a standard that
can be applied consistently, which will facilitate accuracy
comparison across the literature.

Conclusions
In this study we develop a new algorithm to segment
individual trees from the lidar point cloud. The new
algorithm adopts a top-to-bottom region growing approach
that segments trees individually and sequentially from the
tallest to the shortest. The algorithm performs well at
segmenting trees from the lidar point cloud in complex
mixed conifer forests on rugged terrain. The accuracies, in
terms of recall, precision and F-score, are relatively high,
indicating that the new algorithm has good potential for use
in other forested areas.
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