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A New Method for Specific Emitter Identification

With Results on Real Radar Measurements
Gokhan Gok , Yasar Kemal Alp, and Orhan Arikan , Member, IEEE

Abstract— Specific Emitter Identification (SEI) is the process of
specifically identifying mobile transmitters by extracting unique
features from the precise measurements of their emitted signals.
A novel signal processing scheme with two stages is proposed
for the identification of specific radar emitters. In the first
stage, the received radar pulses are accurately time aligned
and coherently integrated in order to increase the Signal-to-
Noise (SNR) ratio. Using this technique, measurements with
SNR improvements of more than 25 dB are obtained, enabling
detection of subtle differences between different emitters. In the
second step, Variational Mode Decomposition (VMD) is used to
decompose both the envelope and the instantaneous frequency of
the received signal into a set of modes. Then, these mod signals
are characterized by using a group of features for identification.
We demonstrate highly successful identification performance with
the proposed method on real radar datasets.

Index Terms— Radar specific emitter identification, uninten-
tional modulation on pulse, variational mode decomposition,
classification, time-frequency domain features.

I. INTRODUCTION

I
N conventional Electronic Warfare (EW), radar signals

are classified using classical parameters or features such

as the Pulse Width (PW), Pulse Repetition Interval (PRI),

Radio Frequency (RF), Antenna Scan Type/Period (AST/ASP)

and the Intentional Modulation on Pulse (IMOP). However,

classification of radars using conventional techniques becomes

a more and more challenging task in modern EW systems,

as the number of emitters and their sophistication in a typical

EW scenario grows significantly. Moreover, advances in digital

technology allow designers to implement different counter-

measures in order to degrade detection and classification per-

formance of EW systems. Hence, detailed intra-pulse analysis

of the received Intermediate Frequency (IF) signals becomes

even more critical [1].

Radar Specific Emitter Identification (SEI) is an important

Electronic Intelligence (ELINT) activity that aims to recognize

individual emitters using features related to the so-called
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Unintentional Modulation On Pulse (UMOP) [2]. This goal

is accomplished by precisely measuring the unintentional

modulations on radar signals due to manufacturing differences

of the transmitter hardware, including the power amplifiers and

radar casing. In other words, UMOP is like a fingerprint of an

emitter and can be used to even identify transmitters from the

same manufacturing line.

In the literature, there are several proposed techniques for

extracting radar fingerprints. In [3] and [4], the spectra of

intercepted radar signals are used to generate features for

the fingerprint analysis. In [5], non linear effects of power

amplifiers are modelled and analyzed for the SEI. In [6],

a complete SEI architecture is proposed where features are

generated using higher order cumulants of radar signals and

then k-Nearest Neighbor (kNN) classifier is then used to

assign emitters to specific classes. In [7], basic SEI features

related to characteristics of a square wave including the rise

time, fall time and overshoot are discussed and, results for

a dataset consisting of two real radar signals are given.

However, the details of feature extraction are not presented.

Another approach employing Empirical Model Decomposition

(EMD) [8] is introduced in [9]. Although the mod signals

shown for two different emitters indicate variations, no further

processing leading to automatic classification is presented.

A common issue in the literature on radar SEI is the very

limited use of real field data if not at all. Moreover, due to

concerns of confidentiality, some critical steps of the proposed

techniques are left out.

As stated in [2], SEI is not limited to identification of radar

emitters. For example, in [10], effects related to oscillator

phase noise of wireless devices are analyzed and used for clas-

sification. In [11]–[15], unintentional modulations related to

the power amplifiers of communication systems are modelled

using methods such as the Taylor series expansion, and results

of the proposed algorithms are demonstrated in different

communication scenarios and channels by using synthetically

generated data. A new approach where the Hilbert spectrum

of the received signal is fed into a deep residual network

is introduced in [16] and results on single-hop and relay-

ing communication scenarios are presented. Another machine

learning based approach where the compressed bispectrum of

the measured data is fed into a convolutional neural network is

proposed in [17]. Yet again, these studies also lack results with

real field data or do not provide any proof about the validity

of the data generation models.

In this work, we propose a novel and complete scheme for

radar SEI. Preliminary results were presented in [18]. Here,
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we introduce a detailed description and extensive test results

with real field data. The proposed method consists of two main

stages. In the first stage, preprocessing of the acquired radar

pulses is performed to reveal underlying unintentional modula-

tions, which are very subtle for state of the art radar emitters of

the same kind. For these emitters, pulse shapes of transmitters

are usually very similar and differences could only be observed

in a high Signal-to-Noise Ratio (SNR) regime that is not com-

mon in most practical EW scenarios. As a result, we propose

a preprocessing scheme to integrate the pulses emitted by the

same radar with the same carrier or radio frequency (RF). For

successful integration, it is crucial to align collected pulses

accurately in time and compensate for their phase offsets.

In the proposed method, the collected samples of the acquired

pulses are modelled as the discrete samples of a piece-wise

continuous function [19]. Then, by choosing a reference pulse

(typically the one with the highest SNR), the relative time

delays between the reference pulse and all the remaining ones,

which are far below the sampling interval of the receiver, are

estimated by solving an optimization problem. Note that, since

the pulses are modelled as a continuous function, the estimated

time alignment delays are on a continuum rather than a fixed

discrete grid, i.e., the estimation resolution is beyond the

limit set by the sampling frequency of the Electronic Support

Measures (ESM) receiver. The time aligned pulses are then

coherently integrated to obtain a single pulse with improved

SNR. In the second stage, SEI features are obtained by using

Variational Mode Decomposition (VMD) [20]. The proposed

feature extraction technique decomposes the envelope and

instantaneous frequency of the radar pulses into components

that have compact support in the frequency domain. A set of

features characterizing these compact signals is then obtained

and used for identification.

This paper is organized as follows. In Sec. II, a detailed for-

mulation of the pulse alignment technique is given. In Sec. III,

we present the results obtained by applying the pulse align-

ment technique on both synthetically generated and real radar

signals. In Sec. IV, the VMD based feature extraction method

is introduced. In Sec. V, a computational complexity analysis

of the proposed technique is given. In Sec. VI, the performance

of the proposed technique is shown on a dataset that consists

of real radar signals. The manuscript is concluded in Sec. VII.

II. TIME ALIGNMENT OF PULSES

Let gp(t), 1 ≤ p ≤ P , represent P pulse signals emitted by

the same radar with the same carrier frequency. The complex

Inphase-Quadrature (IQ) samples of the pth pulse measured by

a digital ESM receiver with sampling rate Fs can be written as:

gp(tn) = ap(tn)e
jφp(tn) + z p(n) , 1 ≤ n ≤ Np, (1)

where tn is the sampling instance of the nth sample, Np

is the number of collected samples, z p(n) is a sample of

circularly symmetric complex white Gaussian noise with

standard deviation σz . Here, φp(tn) and ap(tn) represent the

instantaneous phase and the envelope of the pulse, respectively.

For illustration, the envelopes and instantaneous frequencies of

P = 383 real radar pulses are shown in Fig. 1. Note that the

Fig. 1. Envelopes (above) and instantaneous frequencies (below) of 383 real
radar pulses.

instantaneous frequency can be approximated as:

f p(tn) = (φp(tn) − φp(tn−1))Fs/(2π). (2)

As observed in Fig. 1 although these pulses are roughly

aligned by the digital receiver according to their times of

arrival (TOA), their instantaneous frequency curves appear to

spread along the frequency axis at each tn , which indicates

imprecision in their alignment.

Consider the following model for each pulse:

gp(tn) = cpgr (tn −τp)+z p(n). (3)

Here gr (tn) is the reference pulse for the time alignment

and amplitude/phase-offset correction procedures that will be

implemented on the remaining pulses; τp is the time delay, and

cp is the complex coefficient controlling the amplitude/phase-

offset. After estimating the cp and τp parameters for each

pulse, the integrated pulse with higher SNR can be formed as:

ĝ(tn)=
1

P

P
∑

p=1

gp(tn +τ̂p)e
− j � ĉp , (4)

where � (.) is the operator which returns the phase of its

argument in radians. If all the cp and τp parameters are

estimated correctly, the standard deviation of the noise in the

integrated pulse will be σz/
√

P . As a result, we can bound

the effective SNR after the integration operation as:

SNRmin + 10 log10(P) ≤ SNReff ≤ SNRmax + 10 log10(P),

(5)
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Fig. 2. Envelopes (above) and instantaneous frequencies (below) of the
aligned pulses, whose original versions are shown in Fig. 1.

where SNRmin and SNRmax denote the SNR of the pulses with

the highest and lowest SNR respectively. Hence, assuming that

the amplitudes of all the pulses are about the same, the SNR

increase would be 10 log10(P) dB.

Assuming that r , 1 ≤ r ≤ P , is the index of the reference

pulse, and that the first K samples are used in alignment,

define:

yk,K = [gr(tk), gr (tk+1), .., gr (tk+K−1)]T , (6)

xk,K = [gp(tk), gp(tk+1), .., gp(tk+K−1)]T , (7)

where yk,K and xk,K denote the vector of K complex samples

of the reference pulse gr (tn) and the pth pulse gp(tn), respec-

tively. The relative time delay and complex scaling factor that

compensates for the phase and amplitude difference between

these two pulses can be obtained as:

[τ ∗, c∗] = arg min
[τ,c]

‖yk,K −cxk,K (τ )‖2
l2
, (8)

where xk,K (τ )=[gp(tk+τ ), gp(tk+1+τ ), .., gp(tk+K−1+τ )]T ,

and ‖.‖l2 denotes the l2 norm operator. For a given τ , the

optimal value of c can be found as:

c(τ ) = xk,K (τ )H yk,K /‖xk,K (τ )‖2
l2
. (9)

Hence, the required two-dimensional optimization in (8)

reduces to a 1-dimensional optimization problem:

t∗ = arg min
τ

‖yk,K −c(τ )xk,K (τ )‖2
l2

. (10)

Since the cost function in (10) is non-convex, its cost surface

might have multiple local minima. In terms of the sampling

interval, Ts = 1/Fs , where Fs is the sampling frequency, τ

can be written as:

τ = ζ Ts + γ Ts, (11)

where 0 < γ < 1 and ζ = ⌊τ/Ts⌋, where ⌊.⌋ denotes the

flooring operator. In this expression, ζ Ts is a coarse estimate

of τ whose resolution is limited by the sampling interval of

the receiver, and γ Ts is a fine resolution correction.

For the estimation of these two parameters, we propose

a two-stage algorithm that avoids getting trapped in a local

minimum of the cost function given in (10). In the first stage,

a coarse search is utilized for estimating ζ . In the second stage

a fine search is utilized for estimating γ . In the subsections

below, we detail these two stages.

A. Coarse Search: Estimation of ζ

Assuming that fine resolution correction term is γ = 0 in

(11), the cost function given in (10) can be written in terms

of the coarse estimate ζ as:

fζ (ζ ) ≡ −2Re{c(ζ )yH
k,K xk,K (ζ )}+|c(ζ )|2‖xk,K (ζ )‖2 (12)

where c(ζ ) is as in (9). Since ζ ∈ Z , xk,K (ζ ) becomes:

xk,K (ζ ) = xk+ζ,K

= [gp(tk+ζ ), gp(tk+1+ζ ), .., gp(tk+K−1+ζ )]T .

(13)

Since all the pulses are coarsely aligned according to their

TOA values by the receiver, the cost function in (12) can

be calculated over a limited interval −κ ≤ ζ ≤ κ , and the

minimum of the cost function ζ̄ can be found. Note that the

coarse alignment term ζ given in (11) is smaller than the actual

delay value τ , and that the fine resolution correction term γ

is always positive. As a result, the coarse estimate value is

computed as:

ζ̂ = λ(ζ̄ ) =
{

ζ̄ − 1 if fζ (ζ̄ − 1) ≤ fζ (ζ̄ + 1),

ζ̄ if fζ (ζ̄ − 1) > fζ (ζ̄ + 1).
(14)

B. Fine Search: Estimation of γ

In the coarse estimation stage of ζ , the time offset whose

resolution is limited by the sampling interval is estimated.

In the fine search stage, the coarsely-estimated time delay

is updated in order to precisely align pulses beyond the

sampling frequency, by minimizing the following simplified

cost function:

fγ (γ )=−2Re{c(γ )yH
k,K x

k̂,K
(γ )}+|c(γ )|2‖x

k̂,K
(γ )‖2 . (15)

Here c(γ ) is as in (9), k̂ =k + ζ̂ and x
k̂,K

(γ ) is defined as:

x
k̂,K

(γ )=[gp(tk̂ + γ ), gp(tk̂+1
+ γ ), ··, gp(tk̂+K−1

+ γ )]T .

(16)

To obtain x
k̂,K

(γ ), a cubic spline interpolator on the available

samples can be used [21]. To simplify the notation, let us
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Algorithm 1 Proposed Two Stage Method

1: //Input: {gr (tn), gp(tn); n = 1, 2, .., Ns}, k, K

2: //Output: τ̂ , ζ̂ , γ̂

3: //Constants: κ = 5, δǫ = 10−6, imax = 10

4: //Initializations: i = 0, ζ̄ = 0, γ̂ = 0.5, δ = 1

5: //Coarse Search

6: for ζ = −κ : κ do

7: if fζ (ζ ) < fζ (ζ ) then

8: ζ̄ = ζ

9: end if

10: end for

11: ζ̂ = λ(ζ̄ )

12: //Fine Search

13: while i ≤ imax and |δ| > δǫ do

14: δ = − f ′
γ (γ̂ )/ f ′′

γ (γ̂ )

15: if |δ| > 0.5 then

16: δ = 0.5sign(δ)/|δ|
17: end if

18: γ̂ = γ̂ + δi

19: i = i + 1

20: end while

21: τ̂ = ζ̂ + γ̂

define x̂� [gp(tk̂), gp(tk̂+1
), .., gp(tk̂+K

)]T , whose entries are

modeled as the discrete samples of the following continuous

function:

sx̂,n(γ ) = an + bnγ + cnγ
2 + dnγ

3, 1 ≤ n ≤ K , (17)

where γ ∈ [0, 1]. The spline parameters an, bn, cn, dn are

found by solving for h in the following linear system [21]:

Ah = v, (18)

where A ∈ R(K+1)×(K+1) and v ∈ CK+1 are defined as:

A=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 1 0 0 ·· 0

1 4 1 0 ·· 0

0 1 4 1 ·· 0

· · · · ·
0 ·· 0 1 4 1

0 ·· 0 0 2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, v=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3(x̂2 − x̂1)

3(x̂3 − x̂1)

3(x̂4 − x̂2)
...

3(x̂K+1 − x̂K−1)

3(x̂K+1 − x̂K )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(19)

Here x̂i represents the i th entry of x̂. Since the coefficient

matrix A is tridiagonal, the linear system in (18) can be solved

for h efficiently in O(K +1) complexity by using the Thomas

Algorithm [22]. Then the spline parameters for 1 ≤ n ≤ K

are obtained as [21]:

an = x̂n,

bn = hn,

cn = 3(x̂n+1 − x̂n) − 2hn − hn+1,

dn = 2(x̂n − x̂n+1) + hn + hn+1. (20)

Then, by using the following B
k̂,K

∈ CK×4 matrix

B
k̂,K

=

⎡

⎢

⎢

⎣

a1 b1 c1 d1

a2 b2 c2 d2

.

aK bK cK dK

⎤

⎥

⎥

⎦

, (21)

the vector x
k̂,K

(γ ) can be expressed as a third order piece-wise

continuous polynomial:

x
k̂,K

(γ ) = B
k̂,K

γ , (22)

where γ = [1, γ , γ 2, γ 3]T . By substituting (22) into (15), the

following cost function is obtained:

fγ (γ )= −2Re{c(γ )yH
k,K B

k̂,K
γ }+|c(γ )|2‖B

k̂,K
γ ‖2. (23)

To find the local minimum of fγ (γ ), the Newton-Raphson

algorithm can be used [22]. In the required iterations, the

first and second order derivatives of fγ (γ ) are required.

To compute these derivatives, let us rewrite fγ (γ ) as

fγ (γ ) = −2Re {c(γ )p(γ )} + g(γ )q(γ ), (24)

where p(γ ) = yH
k,K B

k̂,K
γ , q(γ ) = γ

T BH

k̂,K
B

k̂,K
γ and

g(γ ) = |c(γ )|2. Using these definitions, f ′
γ (γ ) and f ′′

γ (γ )

are computed as:

f ′
γ (γ ) = −2Re

{

c′(γ )p(γ ) + c(γ )p′(γ )
}

+ g′(γ )q(γ ) + g(γ )q ′(γ ), (25)

f ′′
γ (γ ) = −2Re

{

c′′(γ )p(γ ) + 2c′(γ )p′(γ ) + c(γ )p′′(γ )
}

+ g′′(γ )q(γ ) + 2g′(γ )q ′(γ ) + g(γ )q ′′(γ ), (26)

where the following closed form expressions for the deriva-

tives are used in the iterations:

p′(γ ) = yH
k,K B

k̂,K
Dγ , (27)

p′′(γ ) = yH
k,K B

k̂,K
D2

γ , (28)

q ′(γ ) = γ
T

(

DT BH

k̂,K
B

k̂,K
+ BH

k̂,K
B

k̂,K
D

)

γ , (29)

q ′′(γ ) = γ
T
( (

DT
)2

BH

k̂,K
B

k̂,K
+ 2DT BH

k̂,K
B

k̂,K
D

+ BH

k̂,K
B

k̂,K
D2

)

γ , (30)

where D is the matrix that obtains the derivative of vector

γ = [1, γ , γ 2, γ 3]T . Using p(γ ) and q(γ ), c(γ ) can be

written as c(γ ) = p∗(γ )/q(γ ). Then, the first and second

order derivatives of c(γ ) are obtained as:

c′(γ ) = p′∗(γ )

q(γ )
− q ′(γ )p∗(γ )

q(γ )2
, (31)

c′′(γ ) = p′′∗(γ )

q(γ )
− q ′(γ )p′∗(γ )

q(γ )2

− q ′′(γ )p∗(γ ) + p′∗(γ )q ′(γ )

q(γ )2

+ 2
(q ′(γ ))2 p∗(γ )

q(γ )3
. (32)

Finally, the derivatives of g(γ ) can be written in terms of c(γ )

and c′(γ ) as:

g′(γ ) = 2Re{c′(γ )c∗(γ )} (33)

g′′(γ ) = 2Re{c′′(γ )c∗(γ )} + |c′(γ )|2. (34)
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The above expressions for the derivatives lead to accurate

convergence in about 20 iterations.

Once γ̂ and ζ̂ are obtained, τ is estimated as:

τ̂ = (γ̂ + ζ̂ )/Fs , (35)

where ζ̂ and γ̂ are the minimizers of (12) and (23), respec-

tively. The overall algorithm is summarized in Alg-1. Once

the relative delays of all pulses with respect to the reference

pulse are estimated, all the pulses are coherently integrated

using (4). In the integration process, estimated delay values,

which are at a higher resolution than the sampling interval,

can be handled either by using the continuous function model

given in (17) or by using fractional-delay filters [21]. In the

next section, we present results obtained on both synthetic and

real data sets.

III. EXPERIMENTAL RESULTS ON PULSE ALIGNMENT

To investigate the performance of the proposed delay esti-

mation method, we performed experiments on the following

synthetically generated radar pulses:

g(t) = Aa(t)e jφ(t), (36)

where A is the amplitude, φ(t) is the instantaneous phase, and

a(t) is the envelope of the pulse defined as:

a(t) =

⎧

⎪

⎨

⎪

⎩

e−t2/σ 2
T R if t ≤ 0,

1 if 0 < t ≤ TPW ,

e(−t−TPW )2/σ 2
T F if t > TPW ,

(37)

where the pulse width TPW is chosen as 1 µs and both the

pulse rise time σT R and pulse fall time σT F are chosen as

0.01 µs. Each pulse is modulated by using the following

frequency modulation:

fg(t) = 0.5Bg cos(2π t/Tg), (38)

where Bg ∈ {1, 2, 4, 8, 16, 32} MHz and Tg = 1 µs are the

FM deviation (bandwidth) and the FM rate of the modulation.

The corresponding instantaneous phase of the pulse is:

φ(t) =
∫ t

−∞
fg(t̂)dt̂ + φ0, (39)

where φ0 denotes the frequency offset of the pulse. The

sampling frequency of the waveform is set to Fs = 100

MHz. Finally, circularly symmetric white Gaussian noise with

appropriately chosen standard deviation σz is added to set the

SNR to any desired value, given by SNR = 20 log 10(A/σz)

dB. At each SNR and modulation bandwidth Bg , 10000

Monte-Carlo runs were performed. In each run, a delayed

pulse g(t − τ/Fs) is generated where τ is chosen from

a uniform random distribution in the interval [−5, 5]. Its

phase offset φ0 is chosen from a uniform random distribu-

tion in the interval [−π, π). The standard deviation of the

estimation error as a function of SNR and Bg is shown in

Fig. 3. As observed, the proposed method performs better

with increasing SNR and achieves a minimum estimation

error of 10−5.4 samples at 105 dB. Beyond this point, there

is no performance improvement, since the modeling error

in representing the discrete measurements by cubic splines

Fig. 3. Standard deviation of the delay estimation error as a function of
SNR, for different values of Bg .

Fig. 4. Standard deviation of the delay estimation error and CRLB as a
function of SNR and bandwidth Bg .

becomes dominant. Similar behavior can also be seen in Fig. 4,

where the Cramer-Rao lower bound (CRLB) for estimating the

time delay between two measurements given in [23] is also

shown. Another important observation is that increasing the

BW of the pulse for a fixed FM rate improves the estimation

performance, which is in agreement with the CRLB. However,

beyond a value of 16 MHz, performance drops significantly.

This observation can be explained as follows. As the BW

increases, the non-regularity in the pulse increases, hence the

algorithm performs better. However, at very high BW, the

instantaneous frequency of the pulse gets closer to the Nyquist

limit (Fs/2), and the cubic splines become insufficient in

representing the available samples.

We also performed experiments on a real data set. The

pulses shown in Fig. 1 are aligned by using the proposed

technique and the results are shown in Fig. 2. As compared

to Fig. 1, the instantaneous frequency curves of the aligned

pulses are significantly closer to each other for every time

instant. This effect is more evident when there exist some

frequency modulations in the pulse.

To demonstrate the importance of pulse integration for

precise SEI analysis, a third experiment is conducted, where

the response of a T-module is measured, which is the basic

transmitting element in phased-array radars. We applied a 1 µs

pulse at a frequency of 8 GHz to the input of a T-module
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Fig. 5. Envelopes (above) and instantaneous frequencies (below) of the pulses
emitted by a T-module.

and collected 500 pulses from its output. The envelopes and

instantaneous frequencies of the pulses are shown in Fig. 5.

In each plot, the close-up inserts are also provided. First, avail-

able pulses are aligned by using the proposed method and then

integrated using (4). The resulting integrated pulse is shown

in Fig. 6. In the close-up insert region of the instantaneous

frequency graph, there appears to be some unintentional fre-

quency modulation with a bandwidth of a few kHz. Note that

this modulation is not visible prior to pulse integration.

IV. RADAR FINGERPRINT EXTRACTION

In this section we will provide details for radar fingerprint

extraction. To illustrate the result of each stage we will use

real measurements of four solid state radar power amplifiers

that are manufactured on the same production line. During

the experiments, 500 pulses are obtained from each power

amplifier, and input signals driving the amplifiers are set so

that the outputs of the amplifiers are saturated. In Fig. 7,

measurements obtained for two different amplifiers that will

be referred to as Amp-1 and Amp-2 are shown. Comparing the

experimental data we have obtained, unintentional modulations

on real data can be observed at the on-set of each pulse. As a

result, we used the time window with duration of 1 µs around

the point where the pulse detection first occurs. Considering

this fact, we take a closer look at the time window shown

in Fig.7 after subtracting an ideal square wave that fits the

Fig. 6. Envelope (above) and instantaneous frequency (below) of the pulse
obtained by integrating all the pulses shown in Fig. 5.

Fig. 7. Blue: Amplifier-1 amplitude; Green: Amplifier-2 amplitude; Red:
Reference ideal square wave signal that will be subtracted from the original
signals; Black: Time window for UMOP.

measurement data. Residual signals are shown in Fig. 8 and

Fig. 9, respectively.

In order to observe localized frequency characteristics of the

residual signal r [n], the Short Time Fourier Transform (STFT)

can be used [24]:

R(m, w) =
∞
∑

n=−∞
r [n]w[m − n]e− jwn (40)

where R(m, w) is the STFT of r [n] at time m and

w[n] is the window function. By using the Fast Fourier

Transform (FFT), the discrete STFT can be computed at

w = 2π
N

k, 0 ≤ k ≤ N − 1.
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Fig. 8. Residual Amp-1 signal after subtracting the square wave (top) and
its STFT (bottom).

Fig. 9. Residual Amp-2 signal after subtracting the square wave (top) and
its STFT (bottom).

In Fig. 8 and Fig. 9, the discrete STFTs of the residual

signals are shown for a Gaussian window function with

standard deviation of σ = 5. Although these two signals are

very similar in the time domain, more prominent differences

can be observed in their STFTs. Both signals have two

significant components with different time-frequency supports.

For example, in Fig. 8, the frequency support of each com-

ponent is more compact compared to the frequency support

of the corresponding components in Fig. 9. Also, the time

differences between these components are not the same for

Amp-1 and Amp-2. Therefore, features generated using these

components with compact frequency and time support have

the potential to serve as the fingerprint. This requires robust

estimation of these components from the original signal. For

this purpose, the Variational Mode Decomposition (VMD)

which as introduced in [20] can be used. In VMD, all modes

are estimated concurrently by using the Alternating Direction

Method of Multipliers (ADMM) optimization technique [25].

In the remainder of this section, we provide a brief review

of the VMD based on [20], and detail its use in fingerprint

extraction.

The goal of VMD is to decompose a real valued input

signal x(t) into a number of modes, uk(t), that have a compact

Fig. 10. Amp-2 signal after decomposing into mods using VMD.

support around a center frequency wk :

uk(t) = Ak(t)cos(φk(t)), (41)

where the modes uk(t) are identified as the solution to the

following optimization problem:

min
{uk (t)},{wk}

(

∑

k

∥

∥

∥

∥

∂t

[(

δ(t) + j

π t

)

∗ uk(t)

]

e− jwk t

∥

∥

∥

∥

2

2

)

s.t.
∑

k

uk(t) = x(t) . (42)

Here, {uk(t)} := {u1(t), u2(t), . . . , uk(t)} and {wk} :=
{w1, w2, . . . , wk} denotes the center frequency of each mode.

In order to address the constraint of the optimization prob-

lem given in (42), both the quadratic penalty term and the

Lagrange multipliers are used by the VMD. The quadratic

penalty term is used to boost the fidelity of the decomposition

in the presence of noise while the Lagrange multipliers forces

the constraint to be met. The augmented Lagrangian can be

written as:

L ({uk}, {wk}, λ) :=α
∑

k

∥

∥

∥

∥

∂t

[(

δ(t)+ j

π t

)

∗ uk(t)

]

e− jwk t

∥

∥

∥

∥

2

2

+
∥

∥

∥

∥

∥

f (t) −
∑

k

uk(t)

∥

∥

∥

∥

∥

2

2

+
〈

λ(t), f (t) −
∑

k

uk(t)

〉

. (43)

The solution of the optimization problem given in (43) can be

found as a saddle point of the augmented Lagrangian L in a

sequence of iterative sub-optimizations by using the ADMM

technique. Steps of the algorithm is given in Algorithm 2.

Detailed derivations of the VMD technique can be found

in [20].

There are two important points that should be emphasized

for VMD. In (44), similar to the expectation maximization

approach, the kth mod signal is updated by Wiener filtering

the residual signal that is obtained after removing the latest

updated versions of the remaining mod signals. This filtering

operation denoise the signal, and help us improve the SNR.
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TABLE I

FEATURES CALCULATED FOR EACH MOD SIGNAL

Algorithm 2 ADMM Optimization for VMD

1: Initialization: {û1
k}, {ŵ1

k }, λ̂1, n ← 0

2: repeat

3: n ← n + 1

4: for k = 1 : K do

5: Update mod signals:

ûn+1
k (w)←

x̂(w)−
∑

i<k ûn+1
i (w)−

∑

i>k ûn
i (w)+λ̂

2

1 + 2a(w − wk)2

(44)

6: Update mod frequencies:

wn+1
k ←

∫ ∞
0

w|ûn+1
k (w)|2dw

∫ ∞
0

|ûn+1
k (w)|2dw

(45)

7: end for

8: Dual Ascent for all w ≥ 0:

λ̂n+1(w) ← λ̂n(w) + τ

(

x̂(w) −
∑

k

ûn+1
k (w)

)

(46)

9: until convergence
∑

k ‖ûn+1
k − ûn

k‖2
2/‖ûn

k ‖2
2 < ǫ

Secondly, in (45), wk is chosen as the center of gravity of the

power spectrum of the kth mode.

The VMD technique can be used for the decomposition

of UMOP signals into mods with compact frequency supports

prior to feature extraction. An example of decomposed signals

following the VMD is shown in Fig. 10. In order to charac-

terize these mod signals, distribution of their energy in both

time and frequency domains can be used. For example, the

center of gravity of the mod signal in the time domain can be

used to characterize the position of the mod signal, whereas

in the frequency domain, the same approach would yield the

estimate of its center frequency. This idea can be extended

to generate the features given in Table. I, which are obtained

by normalizing the energy of the mod signals and considering

them as probability density functions (PDF).

Note that, all features except the time center of the mods

are time invariant, i.e., extracted features are not affected by

the time shift of the signal in the acquisition window. This is

actually a desired property that improves the robustness of the

feature extraction method, as the position of the pulse rise time

in the data acquisition window might change slightly between

different measurements. By using the mean time of the first

mod signal as a reference, this feature can also be transformed

to a time invariant feature as:

µ
tre f

k = µt
k − µt

0 , (47)

where µt
0 is the mean time of the first mod signal.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, the computational complexity of the pro-

posed method will be analysed. It will be assumed that N

pulses each having K samples are available. In the coarse

alignment step, O(K ) operations are performed for evaluat-

ing (12), hence κ ×O(K ) operations are required for finding

the coarse delay estimate ζ . In the fine alignment step, the

main complexity arises from solving the linear system of

equations given in (18) and the derivatives defined from (27)

to (30). Since A in (18) is tri-diagonal, it can be solved

in O(K + 1) operations using the Thomas Algorithm [22].

The consecutive derivatives of p(γ ) and q(γ ) can also be

evaluated with O(K ) operations. Hence, for N pulses, the total

complexity of the alignment procedure requires O(K × N)

operations.

In the VMD stage, O(K ) operations are required in (44)

and (45) in Algorithm 2. If M mods are extracted (in our

case M = 2) and T iterations are utilized (T is typically

around 50 in our experiments), the total number operations

required in the VMD stage is O(K × M ×T ). Note that, since

this stage is utilized for the integrated pulse, the complexity

of this stage is independent of the number of pulses. In the

feature extraction step, all the features are computed at O(K )

operations.

Overall, the main computational burden of the proposed

method arises from the pulse alignment procedure, which is

linear in the number of samples K and the number of pulses N .
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Fig. 11. Signal envelopes for 4 different amplifiers.

Fig. 12. Time and frequency center features.

Fig. 13. Normalized Euclidean Distance of features.

VI. RESULTS ON REAL FIELD DATA

To demonstrate the performance of the proposed SEI tech-

nique, three different data sets that consist of real mea-

surements are used. During the experiments, the signals are

decomposed into two components by VMD. The first set

Fig. 14. Time standard deviation feature.

Fig. 15. Frequency standard deviation feature.

of measurements were obtained from the same solid state

amplifiers whose data were analyzed in the previous section.

The amplifiers were in the saturation regime and the data is

obtained in a high SNR (SNR ≥ 50 dB) regime. For illustrative

purposes, a set of measurements is shown in Fig. 11. The

part of the signal where UMOP occurs is extracted by using

the same time window shown in Fig. 7. Then, extracted

signal is fed into the VMD feature extraction stage where

the features given in Table.I are obtained. Features obtained

from the envelope of the radar signals are shown in Fig. 12,

Fig. 14, and Fig. 15. As stated in [2], features should form

natural clusters in the feature space for reliable classification.

From the results we conclude that different emitters occupy

separate regions of the feature space, and the amplifiers can

be classified accurately by using a basic linear classifier.

In the second dataset, measurements obtained from an

ELINT system operating in the field were used. The data

set consist of 47 emitters. Some of these emitters were

productions of the same radar. For each radar, we randomly

generated 10 measurement sets of recorded pulses, where
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Fig. 16. Classification performance for 47 different radars.

Fig. 17. Number of pulses used during data integration for each radar, and
the corresponding SNR lower bound.

each set contains 200 pulses to be aligned and integrated.

As a result, 47 × 10 = 470 different measurement sets are

obtained. The Normalized Euclidean Distance of the extracted

features between each measurement is plotted in Fig. 13 on a

logarithmic scale. In this figure, every 10 by 10 sub-matrix

around the diagonal belongs to the same class. It can be

observed that in class distances are below -50 dB whereas

distance between classes are above -20 dB.

The classification performance of the proposed features is

evaluated using a simple majority voting classifier [26], since

we are mainly interested in the quality of the generated fea-

tures. During the classification process, the class index whose

corresponding feature has the closest distance is found from

the database for each computed feature. Once this operation

is utilized for all extracted features, the most frequently

appearing class index is selected as the classification result.

The second and third possible candidate classes are obtained

similarly. Although prior information oo radars that can be

obtained from classical parameters such as PW, PRI and RF

can be used by practical SEI systems, these parameters are

not used by the classifier. During the experiments, it is only

assumed that the test data of the classifier belongs to one of

the emitters in the database, i.e. it is not a new emitter.

During the classification experiments, we randomly generate

4 batches where each batch contains 400 pulses from 47

radars. As this dataset includes measurements of the same

emitter that are obtained at different times over several years,

we make sure that each batch consists of measurements that

are taken at the same time. For each batch, we coherently

integrate the pulses to obtain a high SNR measurement. One

of these four signals for each radar is placed in a database

as prior information and 3 other pulses are used for testing

purposes. We therefore performed 47 × 3 = 141 classification

tests. Obtained classification results are shown in Fig. 16. Our

results show that the proposed technique can obtain 100%

accuracy in this dataset.

Finally, we evaluate the performance of the SEI algorithm

for different SNR levels and compare it with the EM2 tech-

nique given in [11]. This analysis has a few very important

aspects. First of all, it provides an opportunity to fairly com-

pare our technique with the available methods in the literature

using our real radar dataset. Another important points is that it

enables us to determine the number of pulses to be integrated

that is required for successful SEI classification. Moreover,

important system level requirements, such as antenna gain, can

be derived so that the designed SEI system can capture the data

at a sufficiently high SNR for SEI purposes. Unfortunately,

obtaining the classification performance at different SNR

levels using real radar data is not straight forward, due to

the fact that data acquisition over multiple radars is a long

term process, during which we have no direct control over the

SNR of the received signal. But using our pulse alignment

technique, we can generate measurements at a very high SNR

(ideally at infinite SNR), and we can then obtain the SNR

performance of our SEI technique by adding AWGN syntheti-

cally to test the performance at a desired SNR. To accomplish

this task, we filtered the data so that each individual pulse had

at least 30 dB SNR. During the SNR calculation, the pulse

amplitude is calculated at the center of the pulse, so that the

rise and fall times of the pulses which include some transient

effects can be avoided. Assuming that we can perfectly align

and integrate pulses, the effective SNR for N pulses can be

calculated in dB as:

SNRmin = 30 + 10 log10 N. (48)
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Fig. 18. Classification performance with respect to SNR.

Fig. 19. Probability of correct classification of the proposed technique for
each radar with respect to SNR.

In Fig. 17, the number of pulses for each radar and the

corresponding effective SNR bounds are shown. Note that this

bound shows the minimum SNR level, assuming that the SNR

of each pulse is at least 30 dB. As there are pulses with higher

SNR, effective SNR for each radar is actually greater than the

given bound. Also note that, the SNR calculation is conducted

at the center of the pulse where no transient effects are present.

As a result, the proposed SEI technique is actually working

with samples that have much lower SNR which is different

for each radar depending on their individual waveforms.

In Fig. 18, the overall classification performance that is

obtained by using Monte Carlo simulations for SNR values

between 30 to 60 dB is shown. Our results demonstrate

that the effective SNR value should be around 47 dB to

obtain a correct classification probability larger then 0.9.

The performance of the proposed technique is also compared

with the EM2 method given in [11]. It can be observed

Fig. 20. Complex samples of radar index 22. (Amplitude on the top,
instantaneous frequency on the bottom.)

Fig. 21. Complex samples of radar index 49. (Amplitude on the top,
instantaneous frequency on the bottom.)

that proposed technique outperforms EM2 and has an SNR

advantage of 4 dB for a 0.9 probability of correct classification.

Furthermore, considering that EW systems typically observe

their targets at a SNR of around 30 dB, we can conclude

that we should integrate at least 100 pulses to achieve this

level of performance. In Fig. 19, the SNR performance of

each radar in the dataset is shown. It can be observed that

classification performance is highly dependent on the radar

type. For example, radar index 22 is easily distinguished

from other emitters, whereas radar index 49 has a slightly

lower classification performance compared to other radars.

In Fig. 20, and Fig. 21, the envelopes of radar number 22 and

49 are given respectively. We can see that UMOP on radar 22

is very distinct, whereas the envelope of radar 49 is almost

identical to an ideal square wave which is the main reason

for the performance difference between these two emitters.
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VII. CONCLUSION

In this work, we proposed a novel scheme for radar SEI. The

proposed technique accurately perform time alignment and

coherent integration of the collected radar pulses to boost the

SNR so that UMOP on the signals can be reliably identified.

Then, features related to UMOP are extracted using a VMD-

based technique. The proposed technique is demonstrated

successfully on real radar data sets that are significantly larger

and more challenging than previously reported SEI results

in the literature. Simulation results show the that proposed

technique outperforms the state of the art EM2 method.
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