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A New Method for Stabilization of Networked Control
Systems With Random Delays

Liqian Zhang, Yang Shi, Tongwen Chen, and Biao Huang

Abstract—We consider the stabilization problem for a class of net-
worked control systems in the discrete-time domain with random delays.
The sensor-to-controller and controller-to-actuator delays are modeled
as two Markov chains, and the resulting closed-loop systems are jump
linear systems with two modes. The necessary and sufficient conditions
on the existence of stabilizing controllers are established. It is shown
that state-feedback gains are mode-dependent. An iterative linear matrix
inequality (LMI) approach is employed to calculate the state-feedback
gains.

Index Terms—Discrete-time systems, linear matrix inequality (LMI),
Markov chains, networked control systems, network-induced delays.

I. INTRODUCTION

Networked control systems are feedback control loops closed
through a real time network. That is, in networked control systems,
communication networks are employed to exchange information and
control signals (reference input, plant output, control input, etc.)
between control system components (sensors, controllers, actuators,
etc.) [21]. The main advantages of networked control systems are
low cost, reduced weight, simple installation and maintenance, and
high reliability. As a result, networked control systems have great
potential in applications in manufacturing plants, vehicles, aircrafts,
and spacecrafts [15].

Despite the advantages and potentials, communication networks in
control loops make the analysis and design of a networked control
system complicate. One main issue is the network-induced delays
(sensor-to-controller and controller-to-actuator), which occur when
sensors, actuators, and controllers exchange data across the net-
work. The delays may be constant, time-varying, and in most cases,
random. It is known that the occurrence of delay degrades the sta-
bility and control performance of closed-loop control systems. Many
researchers have studied stability, controller design for stabilization
and performance of networked control systems in the presence of net-
work-induced delays. In [14], the stability analysis and control design
of networked control systems were studied when the network-induced
delay at each sampling instant (sensor-to-controller delay �k+ con-
troller-to-actuator delay dk) is random and less than one sampling
time. The controller given there depends on sensor-to-controller delay
�k . The results in [14] have recently been extended to the case with
longer delays in [9]. In [21], the stability of networked control systems
was analyzed by a hybrid system approach when the induced delay
is deterministic (constant or time-varying) and the controller gain is
constant; and in [13], a switched system approach was used to study
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the stability of networked control systems with constant controller
gain. In [9], the maximum of the network-induced delay preserving the
closed-loop stability for a given plant and controller was considered.
In [17], the network-induced delay is assumed to be time-varying and
less than one sampling time, and the stabilizing state-feedback gain
is constant. It is noticed that in all of the aforementioned papers, the
plant is in the continuous-time domain. For the discrete-time case, in
[12] and [16], the network-induced random delays were modeled as
Markov chains such that the closed-loop system is a jump linear system
with one mode. It is noticed that in [12], the state-feedback gain is
mode-independent, and in [16], the state-feedback gain only depends
on the delay from sensor to controller. Recently, the stabilization of
networked control systems with discrete-time plant was considered in
[19] and [18] for constant and time-varying network-induced delays,
respectively, and the state-feedback gains are constant.

In this note, we consider the stabilization problem of networked
control systems with a discrete-time plant. The two random delays
(sensor-to-controller and controller-to-sensor) are modeled as two dif-
ferent Markov chains, and the resulting closed-loop systems are jump
linear systems with two modes characterized by two Markov chains.
At each sampling time, the current states, the current sensor-to-con-
troller delay (�k), and previous controller-to-actuator delay (dk�1) are
known by, e.g., the time-stamping technique. Thus, our goal is to de-
sign a state-feedback controller whose gain depends on both �k and
dk�1. In this way, the conservativeness of the stabilization conditions
should be reduced. The necessary and sufficient conditions on the ex-
istence of stabilizing controllers are given, and an iterative linear ma-
trix inequality (LMI) approach is used to calculate the controllers. An
inverted pendulum example is considered to illustrate the proposed
method.

II. PROBLEM STATEMENT

Consider the networked control setup in Fig. 1, where the plant is a
linear time-invariant discrete-time system, �k � 0 is the random time
delay from the sensor to the controller, dk � 0 is the random time delay
from the controller to the actuator, and the controller is to be designed.

Here, it is assumed that both �k and dk are bounded, that is

0 � �k � �; 0 � dk � d:

In real communication systems, current time delays are usually cor-
related with the previous time delays. It is reasonable to model two
random delays �k and dk as two homogeneous Markov chains that take
values inM = f0; 1; . . . ; �g and N = f0; 1; . . . ; dg, and their tran-
sition probability matrices are � = [�ij ] and � = [�rs], respectively.
That is, �k and dk jump from mode i to j and from mode r to s, re-
spectively, with probabilities �ij and �rs, which are defined by

�ij = Pr(�k+1 = jj�k = i)

�rs = Pr(dk+1 = sjdk = r) (1)

where �ij ; �rs � 0 and

�

j=0;

�ij = 1

d

s=0

�rs = 1 (2)

for all i; j 2 M and r; s 2 N .
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Fig. 1. Networked control system.

Remark 1: It is noted in [16] that modeling of �k and dk as two
Markov chains is quite general, and the package loss can be included
naturally. It is usually assumed that the controller always uses the most
recent data. Thus, if at sampling time k; x(k � �k) is available, then
at sampling time k + 1, if there are delays longer than 1 or package
loss, we still have x(k � �k) to use. This means that the delay �k can
increase at most 1 at each step, or

Pr(�k+1 > �k + 1) = 0:

From (1), we can see that this means that

�ij = 0; if j > i+ 1:

For dk , we have similar comments. That is

�rs = 0; if s > r + 1:

Assume that the model of the plant is a linear time-invariant discrete-
time model as follows:

x(k + 1) = Ax(k) +Bu(k): (3)

It is noticed that when the control action is calculated, we do not know
the exact dk , but �k and dk�1 are available. Consequently, the con-
troller gain can be designed to be dependent on �k and dk�1, that is

u(k) = F (�k; dk�1)x(k� �k � dk)

x(t) = �(t); t 2 f�� � d; . . . ; 0g: (4)

Hence, the closed-loop system from (3) and (4) can be expressed as

x(k + 1) = Ax(k) +BF (�k; dk�1)x(k� �k � dk): (5)

It can be seen that the closed-loop system in (5) is a discrete-time jump
linear system with twomodes (�k and dk) and mode-dependent delays.
It is worth to be mentioned that the closed-loop system in (5) can not be
reduced to a jump linear system with one mode by simply combining
�k and dk as one Markov chain. The reason can be seen from the fact
that (5) depends not only on �k and dk, but also on dk�1.

In [1]–[3], stabilization and control design for discrete-time jump
linear systems with one mode and mode-dependent delays were
studied, and sufficient conditions for stochastic stability were given
based on LMIs. The results can be extended to deal with the two-mode

case. However, it is noticed that the sufficient conditions given in
[1]–[3] require that the plant must be stable. This means that the
sufficient conditions cannot be applied to stabilize the closed-loop
systems when the plant is unstable. In the following, through the
augmentation technique, necessary and sufficient conditions for the
stochastic stability of the closed-loop system in (5) will be established.

At sampling time k, if we augment the state-variable as

X(k) = [x(k) x(k � 1) . . . x(k � � � d) ] (6)

then the closed-loop system in (5) can be written as

X(k+ 1) = ( ~A+ ~BF (�k; dk�1) ~E(�k; dk))X(k)

X(0) = [�(0) �(�1) � � ��(�� � d) ] (7)

where

~A =

A 0 � � � 0 0

I 0 � � � 0 0

0 I � � � 0 0
...

...
. . .

...
...

0 0 � � � I 0

2 n(1+�+d)�n(1+�+d)

~B =

B

0

0
...
0

2 n(1+�+d)�p

~E(�k; dk) = [0 � � � 0 I � � � 0] 2 n�n(1+�+d)

and ~E(�k; dk) has all elements being zeros except for the (1 + �k +
dk)th block being identity. It can be seen that the closed-loop system
in (7) is a delay-free jump linear system with two modes modeled by
different homogeneous Markov chains. Throughout this note, we use
the following definition.

Definition 1: The system in (7) is stochastically stable if for every
finite X0 = X(0) and initial mode �0 = � (0) 2 M and d�1 =
d(�1) 2 N , there exists a finiteW > 0 such that the following holds:

E
1

k=0

kX(k)k2jX0; �0; d�1 < X0 WX0: (8)
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We have noted that the closed-loop system in (7) is a delay-free dis-
crete-time jump linear systemwith twomodes. In the literature, the sto-
chastic stability and stabilization for discrete-time jump linear systems
with one mode has been well studied, e.g., [4] and [11]. Besides the dif-
ference in the number of modes, the other difference of the closed-loop
system in (7) from the one-mode jump linear systems is that it depends
not only on the current mode dk , but also on the previous mode dk�1.
The objective in this note is to find the state-feedback gainF (�k; dk�1)
such that the closed-loop system in (7) is stochastically stable. In the
following, if we know that �k = i; dk�1 = r; F (�k; dk�1) is denoted
as F (i; r).

III. MAIN RESULTS

With Definition 1, the necessary and sufficient conditions on the sto-
chastic stability of closed-loop system in (7) can be obtained.

Theorem 1: The closed-loop system in (7) is stochastically stable
if and only if there exists P (i; r) > 0 such that the following matrix
inequality:

L(i; r) =

d

s=0

�rs( ~A+ ~BF (i; r) ~E(i; s)) �P (i; s)

�( ~A + ~BF (i; r) ~E(i; s))� P (i; r) < 0 (9)

holds for all i 2 M and r 2 N , where

�P (i; s) =

�

j=0

�ijP (j; s): (10)

Proof: Sufficiency: For the closed-loop system in (5), consider
the quadratic function which is given by

V (X(k); k) = X(k) P (�k; dk�1)X(k):

Noticing (10) and (7), we have

Ef�V (X(k); k)g

= EfX(k+ 1) P (�k+1; dk)X(k+ 1)jXk

�k = i; dk�1 = rg �X(k) P (i; r)X(k)

=

d

s=0

�

j=0

�rs(X(k) ( ~A+ ~BF (i; r) ~E(i; s)) )�ij

� P (j; s)(( ~A+ ~BF (i; r) ~E(i; s))X(k))

�X(k) P (i; r)X(k)

= X(k)

d

s=0

�rs( ~A+ ~BF (i; r) ~E(i; s)) �P (i; s)

�( ~A + ~BF (i; r) ~E(i; s))� P (i; r) X(k):

Thus, if L(i; r) < 0, then

Ef�V (X(k))g

= EfV (X(k+ 1); k + 1)jXk; �k = i; dk�1 = rg

� V (X(k); k)

� ��min(�L(i; r))X(k) X(k)

� ��X(k) X(k) = �� kX(k)k2

where � = inff�min(�L(i; r)); i 2 M; r 2 Ng > 0. From the
previous inequality, we can see that for any T � 1

EfV (X(T + 1); T + 1)g � EfV (X0; 0)g

� ��E
T

t=0

kX(t)k2

or

E
T

t=0

kX(t)k2

�
1

�
(EfV (X0; 0)� EfV (X(T + 1); T + 1)g)

�
1

�
EfV (X0; 0)g

which implies that

E
1

t=0

kX(t)k2 �
1

�
EfV (X0; 0)g =

1

�
X(0) P (�0; d�1)X(0):

From Definition 1, the stochastic stability is obtained.
Necessity: Assume that the closed-loop system in (7) is stochasti-

cally stable. That is, we have

E
1

k=0

kX(k)k2jX0; �0; d�1 < X0 WX0: (11)

Consider the following function:

X(t) ~P (T � t; �t; dt�1)X(t)

E
T

k=t

X(k) Q(�k; dk�1)X(k)jXt; �t; dt�1 (12)

withQ(�k; dk�1) > 0. Assume thatX(k) 6= 0. SinceQ(�k; dk�1) >
0, as T increases, either X(t) ~P (T � t; �t; dt�1)X(t) is monotoni-
cally increasing or it increases monotonically until

EfX(k) Q(�k; dk�1)X(k)jXt; �t; dt�1g = 0

for all k � k1 � t. From (11), it can be seen that X(t) ~P (T �
t; �t; dt�1)X(t) is bounded above and, thus, the limit shown in (13)

X(t) P (i; r)X(t)

lim
T!1

X(t) ~P (T � t; �t = i; dt�1 = r)X(t)

= lim
T!1

E
T

k=t

X(k) Q(�k; dk�1)X(k)jXt; �t = i; dt�1 = r :

(13)

Since this is valid for any X(t), we have

P (i; r) = lim
T!1

~P (T � t; �t = i; dt�1 = r): (14)

From (13), it can be seen that P (i; r) > 0 sinceQ(�k; dk�1) > 0. Let
us consider

EfX(t) ~P (T � t; �t; dt�1)X(t)�X(t+ 1)

~P (T � t� 1; �t+1; dt)X(t+ 1)jXt; �t = i; dt�1 = rg

= X(t) Q(i; r)X(t): (15)
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Notice that

EfX(t+ 1) ~P (T � t� 1; �t+1; dt)

X(t+ 1)jXt; �t = i; dt�1 = rg

= X(t)

�

j=0

d

s=0

�rs�ij( ~A+ ~BF (i; r) ~E(i; s))

� ~P (T � t� 1; j; s)( ~A+ ~BF (i; r) ~E(i; s))X(t):

This, together with (15), implies that for any X(t)

X(t) [ ~P (T � t; �t; dt�1)�
d

s=0

�rs( ~A+ ~BF (i; r)) ~E(i; s)

�
�

j=0

�ij ~P (T � t� 1; j; s)( ~A+ ~BF (i; r) ~E(i; s))]X(t)

= X(t) Q(i; r)X(t):

Letting T !1 and noticing that (14) and Q(i; r) > 0, we have

P (i; r)�
d

s=0

�rs( ~A+ ~BF (i; r) ~E(i; s))

�
�

j=0

�ijP (j; s)( ~A+ ~BF (i; r) ~E(i; s)) > 0:

Theorem 1 gives necessary and sufficient conditions on the existence
of the state-feedback stabilizing gain. However, since the given con-
ditions in (9) are nonlinear in the controller gains, we need to find a
method to solve them. To this end, in the following theorem, the equiv-
alent conditions to (9) are given.

Theorem 2: There exists a controller in (4) such that the closed-loop
system in (5) is stochastically stable if and only if there exist �X(i; s) >
0; P (i; r) > 0 and F (i; r) such that the following LMI:

�P (i; r) V (i; r)

V (i; r) �D(i)
< 0 (16)

with

V (i; r) = (�r0) ( ~A + ~BF (i; r) ~E(i; 0) � � �

(�rd) ( ~A+ ~BF (i; r) ~E(i; d)

D(i) = diagf �X(i; 0); . . . ; �X(i; d)g

holds for all i 2 M and r; s 2 N with the constraint of

�X(i; s) = �P (i; s)�1 (17)

where �P (i; s) = �

j=0
�ijP (j; s).

Proof: The proof is obtained by the Schur complement and let-
ting �X(i; s) = �P (i; s)�1.

The conditions stated in Theorem 2 are in fact a set of LMIs with
some matrix inversion constraints. Though they are nonconvex, there
are some existing methods to solve them, such as, the alternating pro-
jections method [8], the min–max algorithm [7], the XY-centering al-
gorithm [10], and the cone complementarity linearization (CCL) algo-
rithm (or product reduction (PR) algorithm) [5], [6]. Notice that the
XY-centering algorithm is very closely related to the min–max algo-
rithm. In [5], the four algorithms just mentioned were compared, and
numerical experiments showed that the CCL (PR) algorithm was the
best since it is simple and very efficient in numerical implementation,
and seldom fails to find a global optimum. Thus, in this note, it is
suggested to use the CCL (PR) algorithm, which is an iterative LMI
approach, to calculate F (i; r) from Theorem 2 (see [6] and [20] for
details).

Fig. 2. Cart and inverted pendulum.

IV. NUMERICAL EXAMPLE

Consider the cart and inverted pendulum problem in Fig. 2, [16],
where m1 is the cart mass, m2 is the pendulum mass, L is the length
from the point of rotation to the center of gravity of the pendulum, x is
the cart position, � is the pendulum angular position, and u is the input
force.

The state variables are x1 = x; x2 = _x; x3 = �, and x4 = _�.
Assume that m1 = 1 kg, m2 = 0:5 kg, L = 1 m, and the surface is
friction free. The sampling time is Ts = 0:1 second, and the random
delays exist in �k 2 f0; 1; 2g and dk 2 f0; 1g, and their transition
probability matrices are given by

� =

0:5 0:5 0

0:3 0:6 0:1

0:3 0:6 0:1

� =
0:2 0:8

0:5 0:5
:

The controllers are designed using the discretized model, linearized
when the pendulum is in the up-position (� = 0), with a state–space
model

x(k + 1) = Adx(k) +Bdu(k)

where

Ad =

1:0000 0:1000 �0:0166 �0:0005

0 1:0000 �0:3374 �0:0166

0 0 1:0996 0:1033

0 0 2:0247 1:0996

Bd =

0:0045

0:0896

�0:0068

�0:1377

:

SinceAd has eigenvalues at 1, 1, 1.5569, 0.6423, the discretized system
is unstable. In [16], this example was considered with the assumption
that dk = 0. With dk 2 f0; 1g, to stabilize the system, by Theorem 2,
we can obtain the controllers as follows:

F (0; 0) = [0:1690 0:8824 19:5824 4:3966]

F (0; 1) = [0:5625 0:6259 24:8814 5:1886]

F (1; 0) = [�0:3076 0:9370 12:0069 5:9910]

F (1; 1) = [�0:0097 0:7109 15:2518 7:3154]

F (2; 0) = [�0:3212 1:0528 11:9330 6:3809]

F (2; 1) = [0:0427 0:8640 16:0874 7:8361]:

The state trajectories of the closed-loop system caused by the dis-
cretized model and the obtained controller are shown in Fig. 3 when
x(�3) = x(�2) = x(�1) = x(0) = [0 0 0:1 0] . It can be seen that
the closed-loop system is stochastically stable.
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Fig. 3. States of the closed-loop system.

V. CONCLUSION

This note has presented a new method for the stabilization of a class
of networked control systems with random communication delays. By
modeling the delays as Markov chains, the closed-loop systems can be
expressed as jump linear systems with two modes. Necessary and suf-
ficient conditions of stochastic stability for the jump linear systems are
obtained in terms of a set of LMIs with matrix inversion constraints,
from which the state-feedback gain can be solved by an existing itera-
tive LMI algorithm. It is shown that the state-feedback gain depends on
the two modes. A numerical example has been considered to illustrate
the main results.
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