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ABSTRACT
The presence of optical turbulence in video acquired by cam-
eras viewing scenes at long distances can contribute signifi-
cantly to degradation. This problem arises routinely, for ex-
ample, in astronomy where objects of interest reside beyond
the earth’s atmosphere. Optical turbulence introduces time-
varying perturbations in the images as well as blurring. In
this paper, we introduce a method for suppressing the effects
of this turbulence to enhance the quality of the observed ob-
jects and scenes. The proposed method is based on a new
form of adaptive control grid interpolation in which com-
puted motion vectors are used as the basis for turbulence esti-
mation and suppression. In particular, the quasi-periodicities
of the turbulent motion are exploited in the algorithm, which
allow them to be suppressed while true motion (such as pan-
ning and zooming) is preserved.

1. INTRODUCTION

Atmospheric turbulence in the air can often result in opti-
cal distortions that are visible in video acquired by cameras
viewing scenes at long distances [1]. This phenomenon can
be observed, for example, by looking at the cosmos through
a telescope. The viewer observes planetary and stellar ob-
jects that appear to waiver. Another example of turbulence
effects is the rippling wavy distortion that arises when ob-
serving a plane on a heated tarmac at the airport during a
hot day. This turbulence has been studied by a number of
authors [1, 2, 3, 4, 5, 6]. It is caused primarily by refrac-
tion index fluctuations from hot moving air currents, which
perturb the incident wave fronts of reflected light. The dy-
namics surrounding these air currents are multifaceted and
involve wind velocity, temperature, elevation, and sun inten-
sity to mention a few. Optical turbulence suppression has
been considered from the viewpoint of modeling the physi-
cal processes that produce the distortion and then employing
the physical model to mitigate optical distortions. However,
this is not is practical in many situations, since local atmo-
spheric condition data are often not available. Clearly, there
is value in an approach that addresses this problem without
the need for atmospheric measurements. The approach taken
here is to exploit the property that turbulent motion is spatio-
temporally quasi-periodic and that the magnitude of the mo-
tion variation is modest.

We start by assuming that the turbulence-degraded video
g can be modeled approximately as:

g(i, j, t) = D[x(i, j, t)∗h(i, j, t), t]+ h (i, j, t), (1)

where * denotes two-dimensional convolution, h denotes
time-varying additive noise, D denotes the turbulence in-
duced time-varying geometric distortion, h is dispersive dis-

tortion component of the atmospheric turbulence, g is the ob-
served degraded video, and x is the original video. When t is
fixed at a time when D(x) = x (i.e. no geometric distortion),
the above model reduces to the familiar degradation model:

g(i, j) = x(i, j)∗h(i, j)+ h (i, j). (2)

Much of the previous work in turbulence-degraded im-
age restoration has focused on still images and thus has only
treated time invariant distortion [1, 2, 4]. Few have consid-
ered addressing the geometric distortion component D. Since
the optical distortion is not known exactly because of the
random nature of the turbulence, the problem was treated
as a blind image deconvolution problem in [4]. A few au-
thors have considered methods based on image registration
and warping techniques [5, 6] in which the time varying na-
ture of turbulence is addressed explicitly. For example, a
hierarchically-windowed cross-correlation technique is used
in [5] to register each pixel in each image in a time sequence
to a corresponding point in a prototype image, to sub-pixel
accuracy. The prototype is formed initially by simple averag-
ing of the image sequence. Then it is updated by the averag-
ing of the processed image sequence. Another example is the
adaptive control grid interpolation used in [6] for image reg-
istration. This method was shown to work quite well when in
the absence of real motion. Not only did the restored video
have higher resolution, but the video was stabilized and the
turbulence-induced distortion was suppressed. The notable
shortcoming of these methods is that it can not handle the sit-
uation in which both turbulence and real motion are present.
While using time-averaged frames as reference frames can
address turbulence, such an approach destroys any true mo-
tion that might be present. These approaches are thus unable
to handle situations involving panning, zooming, or object
movement. The new method presented in this paper is able
to handle all of the above.

In this paper, we present an algorithm to compensate
for the time-varying distortion D by exploiting the quasi-
periodicities in the motion field. Control grid interpolation
[6, 11] is used to produce the motion field between im-
ages. Trajectories of the pixels are computed from the mo-
tion fields. Within this domain, the turbulent and real motion
trajectories can be separated as detailed in next section.

The reminder of the paper is organized as follows. In
Section 2, the details of the algorithm are given. In Section
3, the implementations and the experimental results of our
approach are reported, followed by conclusions in Section 4.

2. THE SUPPRESSION ALGORITHM

The proposed algorithm can be viewed as having three dis-
tinct components: compensation of the dispersive distortion



h; modeling of the motion; and compensation of the motion-
induced distortion.

2.1 Compensation of h

Given g, our first step is to compensate for h at each frame.
The optical transfer function (OTF) of atmospheric turbu-
lence can be modeled as

H(u,v) = e−l (u2+v2)5/6
, (3)

where l controls the severity of the blur [7]. The severity
of the OTF increases as l increases. With this model of
the OTF, estimation of h reduces to determining the param-
eter l . A number of approaches can be used to estimate l .
Two notable examples include maximum likelihood [9] and
generalized cross validations [8]. Both of those use an auto-
regressive moving average (ARMA) model, in which the im-
age is modeled as an autoregressive process and the OTF is
modeled as a moving average process. In this work, we ob-
tain l by minimizing the Kurtosis [10]. Kurtosis can be used
as a measurement of the quality of the deblurred image. For
each l in the given search space W l , H can be obtained by
the equation (3) and the compensated still frames gt can be
computed via the Wiener filter:

Gt(u,v) =
H∗(u,v)X(u,v)

|H(u,v)|2 +Ph (u,v)/Px(u,v)
, (4)

where Px and Ph are the power spectral density of the signal
and noise, respectively. Since x is not available, Px is approx-
imated by Pg. Ph is estimated in the frequency domain.

The kurtosis of the restored image is computed and used
as a measurement of the fitness of the l . Then the l with
the minimal kurtosis is selected as the estimation of the pa-
rameter and the corresponding restored image is used as the
estimation of x. Each frame is deblurred separately in the
video.

Thus in this step, we have compensated for the disper-
sive distortion, resulting in a new video sequence. To sup-
press noise which is often present in the resulted new video
sequence, the average is taken of the current frame, the previ-
ous warped to the current frame, and the next frame warped
to the current frame.

2.2 Modeling of the motion

The remaining step is to compensate for the geometric dis-
tortion D. For this component, we use a modified control
grid interpolation (CGI) representation [6]. The motion field
is obtained by segmenting the image into small contiguous
square regions. The corners of these regions form control
points, which are used as the anchors from which the inter-
mediate motion vectors are derived using bilinear interpola-
tion. CGI is attractive for this application because it allows
for the representation of complex non- translational motion
and in that regard is significantly different from the conven-
tional block matching algorithm. We use a high resolution
CGI algorithm with embedded optical flow equations for cal-
culating the motion of the control points, leading to an accu-
rate dense motion field representation. Figure 1 shows an
example of the motion field in a region of turbulence, where
the magnitudes have been scaled for visualization purposes.

Within each region, the relationship between pixels in
images I0 and I1 is described by Equation (5). In Equation
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Figure 1: Example of a turbulent motion field.

(5) d1[i, j] is the horizontal component of the displacement
vector at spatial location (i, j) and d2[i, j] is its vertical com-
ponent. This is equivalent to finding the optimal motion vec-
tors at each of the control points on the border of the region.

I1[i, j] = I0[i+d1[i, j], j +d2[i, j]]

d1[i, j] = a 1 + a 2i+ a 3 j + a 4i j = a T q [i, j]

d2[i, j] = b 1 + b 2i+ b 3 j + b 4i j = b T q [i, j] (5)

A quadtree is used to segment the image into rectangular re-
gions R . The bilinear parameters a , b are found in each
region R by minimizing the quantity

å
[i, j]∈R

(I0[i, j]− I1[i+ a T q [i, j], j + b T q [i, j]])2 (6)

By using a first-order Taylor series approximation in which
all higher order terms have been discarded, the error function
in Equation (6) reduces to

å
[i, j]∈R

(I0[i, j]− I1[i, j]− ¶ I1[i, j]
¶ i

a T q [i, j]− ¶ I1[i, j]
¶ j

b T q [i, j])2

(7)
The accuracy of the estimates is increased by changing the
location of the Taylor series approximation from (i, j) to
(i + a T q [i, j], j + b T q [i, j]) and updating the parameter es-
timates. This process usually converges in fewer than five
iterations.

2.2.1 Trajectory estimation

The motion computation is based on previous frame so that
the system is causal. To compute the motion trajectories,
we denote the motion between frame t and frame t − 1 as
vt,t−1(i, j). Once the motion between the frames has been
computed, the trajectory for each pixel can be obtained.
There are two methods that can be used to build the trajectory
T (i, j, t0 : t0− n), where t0 denotes the location of the start-
ing frame. T (i, j,k) represents the location of the start frame
It0 pixel in frame k. Therefore, we have T (i, j, t0 : t0− n) =
{T (i, j, t0),T (i, j, t0−1), . . . ,T (i, j, t0−n)}.

Given the transitional matrix of motion fields
{vt0,t0−1(i, j),vt0−1,t0−2(i, j), . . . ,vt0−n+1,t0−n(i, j)},
T (i, j, t0 : t0−n) can be computed iteratively as follows:

T (i, j, t0) = (i, j)



T (i, j, t0−1) = T (i, j, t0)+ vt0,t0−1(T (i, j, t0))
...

T (i, j, t0−n) = T (i, j, t0−n+1)
+ vt0−n+1,t0−n(T (i, j, t0−n+1))

(8)

The advantage of this approach is its computational effi-
ciency. All of the motion fields except for the farthest one
from the current frame (It0 ), vt0−n+1,t0−n(i, j), can be used
again when the current frame moves to the next frame It0+1
in the video. At each frame time, only one motion field
needs to be computed to construct the new motion trajectory
T (i, j, t0 +1 : t0−n+1).

However, if noise is present the above approach will
propagate errors, i.e. the error from T (i, j, t0 + k) is passed
to T (i, j, t0 + k−1). As an alternative, we take the following
approach. The transitional matrix is instead made up of mo-
tion fields {vt0,t0−1(i, j),vt0,t0−2(i, j), . . . ,vt0,t0−n(i, j)}. With
this choice, when the motion is computed, the source image
remains fixed, while the target image is changed.

T (i, j, t0 : t0−n) is computed by the equations:

T (i, j, t0) = (i, j)
T (i, j, t0−1) = (i, j)+ vt0,t0−1(i, j)

...
T (i, j, t0−n) = (i, j)+ vt0,t0−n(i, j)

(9)

Although the error-propagation problem is prevented, the
computation is greatly increased since the source frame shifts
and each motion field needs to be recomputed when the cur-
rent frame advances to the next one.

2.2.2 Compensation of motion induced distortion

For turbulence, which is quasi-periodic, the net displacement
over the duration of a period is approximately zero. For real
motion, this will not be the case. Consequently, we can sup-
press the turbulence by using the centroid of the trajectory
taken over a period.

T̂ (i, j) =
1

n+1 å
t0−n≤k≤t0

T (i, j,k) (10)

T̂ (i, j) approximates the locations of the pixel in frame t0
without the turbulence distortion. We then warp the pixels in
frame t0 from its original location toward the estimated loca-
tion. The quasi-periodicities of the turbulence are suppressed
by this process while other motion characteristics are pre-
served. When no real motion is present, it is advantageous to
increase n so that more turbulence motion will be smoothed.
However, when real motion exists, as you increase n, the mo-
tion between the frames will be large and it will be difficult to
reliably compute the motion. Thus the trajectory will contain
lots of error and the overall performance is decreased.

3. EXPERIMENT

3.1 Real turbulence-degraded video

A number of naturally acquired videos were tested that con-
tained real atmospheric turbulence. Figure 2 shows an ex-
ample of a frame taken from a video sequence of the moon

acquired through a telescope. The sequence contains a fair
amount of jitter, time-varying geometric distortion, and blur-
ring. Visual inspection of the processed video shows notice-
able reduction in the distortion. The jitter and geometric dis-
tortions are no longer visible, and the image is noticeably
sharper. The only pixel variations one observes is random
pixel intensity fluctuations. Ideally, one would expect that
each frame would be identical. Because of noise and com-
pensation errors, the ideal is not quite achieved, although re-
sults look very good. The mean-square-error between suc-
cessive frames is shown in Figure 3 for both the original tur-
bulent sequence and the enhanced sequence. While the plots
reveal both sequences contain frame differences, the varia-
tions in these differences are dramatically reduced for the
processed sequence.

3.2 Simulated turbulence-degraded video

It is important for evaluation purposes to have optical tur-
bulence examples with ground truth. Thus, we generated a
number of simulated optical turbulence examples that also
included real motion. To create the simulated examples, we
use the OTF in equation (3) to simulate h in equation (1). D is
simulated by the motion fields {vt−1,t(i, j) : t ∈ [2, l]} (l is the
length of the video) computed from the real turbulence video
sequences. The noise h is assumed to be white. Since turbu-
lence blurring is time varying, l s were chosen by compari-
son with the real turbulence-degraded images. We adjusted
the l on a frame by frame basis to match the distortion ob-
served in the real data. Noise variances were chosen from
the set {0.0010,0.0015,0.0020,0.0025,0.0030} to simulate
time varying Gaussian noise of the type encountered in our
real data sets. We applied the degradations to a video se-
quence taken at a parking lot while a car was exiting in front
of a building.

Kurtosis minimization was used to estimate l in the de-
blurring phase of the process. Then, the images were de-
blurred using equation (4). Noise in the deblurred images are
removed as described in section 2.1. The geometric distor-
tion was suppressed using equations (9) and (10) as described
in section 2.

Since the true video is available, we can compute the
PSNR to measure the restoration performance. For com-
parison, we also implemented the time-averaging reference
frame approach used in [5, 6]. That is, the video is filtered
by a moving averaging filter of length 5 to form the reference
sequence. Then the frames are registered to the reference
frames. Since there is a moving object in the video, the time-
averaged reference frames led to poor results, as shown in
Fig. 4. The proposed method performs noticeably better than
the time averaged reference approaches both subjectively and
in terms of PSNR.

A visual example of the geometric distortion suppression
is highlighted in Fig. 5. The horizontal line of the window
frame are clearly distorted in the original, but corrected in the
enhanced version.

4. CONCLUSIONS AND REMARKS

The new algorithm attempts to address both the geometric
and dispersive components of atmospheric distortion. The
visual improvement obtained is dramatic. A key issue we are
currently investigating is modeling the quasi periodicities of
the turbulence. These geometric fluctuations are localized



with different periods. Further improvement should be pos-
sible by linking the centroid calculations to model estimates
of the local turbulent periodicities. The new algorithm has
the distinct advantage of being able to handle natural motion,
including panning and zooming. Thus, we envision this ap-
proach to be potentially useful in astronomy and for a variety
of long distance surveillance applications.

(a) (b)

Figure 2: (a) Real atmospheric turbulence blurred image and
(b) the processed one.
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Figure 3: Mean-square-error between consecutive frames in
the original video and processed video.
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