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Abstract

Background: Experimental methods for the identification of essential proteins are always costly, time-consuming, and
laborious. It is a challenging task to find protein essentiality only through experiments. With the development of high
throughput technologies, a vast amount of protein-protein interactions are available, which enable the identification of
essential proteins from the network level. Many computational methods for such task have been proposed based on the
topological properties of protein-protein interaction (PPI) networks. However, the currently available PPI networks for each
species are not complete, i.e. false negatives, and very noisy, i.e. high false positives, network topology-based centrality
measures are often very sensitive to such noise. Therefore, exploring robust methods for identifying essential proteins
would be of great value.

Method: In this paper, a new essential protein discovery method, named CoEWC (Co-Expression Weighted by Clustering
coefficient), has been proposed. CoEWC is based on the integration of the topological properties of PPI network and the co-
expression of interacting proteins. The aim of CoEWC is to capture the common features of essential proteins in both date
hubs and party hubs. The performance of CoEWC is validated based on the PPI network of Saccharomyces cerevisiae.
Experimental results show that CoEWC significantly outperforms the classical centrality measures, and that it also
outperforms PeC, a newly proposed essential protein discovery method which outperforms 15 other centrality measures on
the PPI network of Saccharomyces cerevisiae. Especially, when predicting no more than 500 proteins, even more than 50%
improvements are obtained by CoEWC over degree centrality (DC), a better centrality measure for identifying protein
essentiality.

Conclusions: We demonstrate that more robust essential protein discovery method can be developed by integrating the
topological properties of PPI network and the co-expression of interacting proteins. The proposed centrality measure,
CoEWC, is effective for the discovery of essential proteins.

Citation: Zhang X, Xu J, Xiao W-x (2013) A New Method for the Discovery of Essential Proteins. PLoS ONE 8(3): e58763. doi:10.1371/journal.pone.0058763

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received December 25, 2012; Accepted February 6, 2013; Published March 21, 2013

Copyright: � 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partially supported by the Key project of National Natural Science Fund (No. 61133010 and No. 61127005) and the National Natural
Science Foundation of China (No. 50708085 and No. 50978127). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lindajia03@126.com

Introduction

Genome-wide gene deletion studies show that a small fraction of

genes in a genome are indispensable to the survival or

reproduction of an organism [1,2]. These genes are referred as

essential genes, and essential proteins are just the products of

essential genes. The deletion of such essential proteins will result in

lethality or infertility. The identification of essential proteins is very

important not only for understanding the minimal requirements

for survival of an organism, but also for finding human disease

genes [3] and new drug targets. The genome-wide identification of

essential genes is valuable for rational drug design [4]. Essential

proteins in pathogenic organisms can be taken as the potential

targets for new antibiotics [5].

Several experimental methods for the discovery of essential

proteins have been conducted, such as single gene knockouts [6],

RNA interference [7] and conditional knockouts [8]. However,

these experimental methods are very time-consuming and

laborious, and they often require large amounts of resources.

With the advances of high-throughput experimental technolo-

gies, such as Y2H and mass spectrometry, large amounts of

protein-protein interaction (PPI) data have been produced, which

make it possible to study proteins in network level. In order to

break through experimental constraints, recently researchers have

been paid more attention to computational methods based on

network topological characteristics. The correlations between

network topological features and protein essentiality have been

explored by many researchers. It has been observed in several

species, such as Saccharomyces cerevisiae, Caenorhabditis elegans

and Drosophila melanogaster [9,10], that hub proteins in PPI

network, which highly connecting with other proteins, are more

likely to be essential than those of low connections [11]. This is the

so-called centrality-lethality rule [11]. Several researchers have tried

to explain such correlation from different hypotheses [12–15].

Although some controversies exist among these explanations, most

researchers have confirmed the correlation between topological

centrality and protein essentiality [10,16–18].

Computational methods could be seen as useful preprocessing

techniques which could help experimental methods to quickly find
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essential proteins. Many centrality measures have been proposed

to capture the correlation between network topological properties

and protein essentiality. Local network features based centrality

measures include degree centrality (DC) [11],sum of edge

clustering (SoECC) [18], local average connectivity (LAC) [19],

and density of maximum neighborhood component (DMNC) [20].

Global network characteristics based centrality measures include

betweenness centrality (BC) [21], and closeness centrality (CC)

[22]. Other previously proposed centrality measures include

subgraph centrality [23], eigenvector centrality [24], information

centrality [25], bottle neck [26,27], and the method by integrating

network topology and gene expression data (PeC) [28]. Compar-

ative studies on the two kinds of measures show that local features

based measures are more effective for identifying essential proteins

[28–29].

Since the currently available PPI networks for each species are

not complete, i.e. false negatives, and very noisy, i.e. high false

positives, especially for those obtained by high-throughput

technologies, the identification of essential proteins based on

network topology is still very challenging. Most centrality measures

are sensitive to such noise of PPI network. In addition, it is well

known that both false negatives and false positives in PPI networks

are hard to be cleaned out. Therefore, robust centrality measures

for the discovery of essential proteins would be of great value.

Biological information has been integrated with network topology

to improve the precision of essential protein discovery methods

[28,30]. In [28], the authors proposed PeC method by integrating

edge clustering coefficient and gene co-expression. In [30],

essential proteins were explored based on the integration of

network topological features and two types of GO annotations:

cellular localization and biological process.

As reported in [13], essential proteins tend to form highly

connected clusters rather than function independently. Some

researchers began to pay attention to the relationship between

protein essentiality and their cluster property [18,31]. According

to [32], hubs in the yeast interactome network can be classified

into date and party hubs on the basis of their partners’ expression

profiles. This distinction suggests a model of organized modularity

for the yeast proteome. Modules are connected through the date

hubs which act as regulators, mediators or adaptors, while party

hubs represent integral elements within the modules and tend to

function at a lower level of the organization of proteome. That is,

party hubs are well co-clustered with their neighbors in PPI

network while date hubs are not. In addition, party hubs and date

hubs have the similar probability to be essential [32]. Cluster-

based centrality measures, such as clustering coefficient and sum of

edge clustering coefficient, would be not effective for identifying

essential proteins from date hubs.

With respect to these various difficulties and progresses, we

propose a new centrality measure, named CoEWC, by integrating

PPI data and gene expression data. CoEWC determines a

protein’s essentiality based on whether it has a high probability

to be co-expressed with its neighbors and whether each of its

neighbors takes part in densely connected clusters. Different from

SoECC and PeC, which all emphasize co-clustering relationship

between a protein and its neighbors, CoEWC pay more attention

to the clustering property of the protein’s neighbors rather than

the protein itself. As we know, proteins within a cluster tend to

share some similar biological functions with its neighbors and

proteins with similar functions tend to be co-expressed. Therefore,

we think that the co-expression of a protein with its interacting

neighbors in PPI network can capture the co-clustering relation-

ship between the protein and its neighbors to some extent.

Moreover, CoEWC takes clustering properties of a protein’s

neighbors into consideration. As a result, CoEWC is expected to

identify essential proteins from date hubs and party hubs well. The

performance of CoEWC was tested on the well studied species of

Saccharomyces cerevisiae. Compared to several previous centrality

measures which have better predicting precision, CoEWC

achieves higher predicting precision for the identification of

essential proteins. The experimental results demonstrate that

centrality measures, which based on the appropriate integration of

network topological properties and gene expression, are more

robust and effective, than those only based on network topological

features, for the discovery of essential proteins, and that CoEWC is

a good example for such integration.

Methods

Motivations
As reported in [32], hubs in the yeast interactome network can

be classified into date and party hubs on the basis of their partners’

expression profiles, and moreover, party hubs and date hubs have

the similar probability to be essential. Therefore, exploring the co-

expression between a protein and its interacting neighbors in PPI

network to identify the protein’s essentiality is reasonable.

If we use Pearson Correlation Coefficient (PCC) to capture the

co-expression, we found in yeast interactome that some non-

essential hubs tend to co-express with their neighbors with PCC

values in a very large range from negative to positive. We take the

protein YJR091C as an example to illustrate the phenomenon.

YJR091C is a non-essential hub protein in yeast proteome. It

has the maximal degree, 280, in the yeast PPI network. YJR091C

ranges the first according to DC and SoECC mainly due to its

large degree. Now let us see its co-expression with its neighbors.

Figure 1 shows the pearson correlation coefficients of YJR091C

with its 280 neighbors. The PCC values ranges from 20.846 to

0.802. The sum of the PCC values is about 3.37, and YJR091C

gets 451th place according to sum of PCC. This tells us that PCC is

more suitable to discriminate such non-essential proteins like

YJR091C than DC and SoECC.

Another motivation of the proposed centrality measure,

CoEWC, can be demonstrated from the toy network in figure 2.

Since edge clustering coefficient (ECC) measures whether two

interacting nodes have a high probability to be co-clustered,

according to the definition of SoECC [18,28], edges AC and BC

put more weight on determining node C’s essentiality, than edges

CD1, CE1 and CF1. However, this goes against our intuition. By

intuition, edges CD1, CE1 and CF1 should put more weight on

determining node C’s essentiality. That is, on the basis of co-

expression, it would be reasonable to take the clustering properties

of a node’s neighbors into consideration rather than the clustering

property of the node itself.

By further observing the topological properties of date hubs and

party hubs, we can know that essential proteins in these two kinds

of hubs have very different clustering property themselves, but

their neighbors tend to be of some common features, i.e. clustering

property. Moreover, it is cheerful that such clustering property can

also discriminate non-essential hubs to some extent. Centrality

measures based on this idea will be more effective to find essential

proteins from date hubs than those based on ECC. Clustering

coefficient (CC) measures how well a node’s neighbors are

connected with each other, thus it can be used to capture a

node’s clustering property. According to CC, edges CD1, CE1

and CF1 put more weight on determining node C’s essentiality

than edges AC and BC in the toy network.

Method for the Discovery of Essential Proteins
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New centrality measure: CoEWC
In this paper, a new centrality measure, CoEWC, is proposed

based on the integration of PPI network and gene expression data.

The basic ideas behind CoEWC are as follows: (1) A highly

connected protein is more likely to be essential than a low

connected one; (2) Essential proteins tend to form densely

connected clusters; (3) Essential Proteins in the same cluster have

a more chance to be co-expressed; (4) Party hubs and date hubs

have the similar probability to be essential while they have very

different clustering property. In CoEWC, a protein’s essentiality is

determined by the number of the protein’s neighbors and the

probability that the protein is co-expressed with its neighbors as

well as its neighbors’ clustering properties.

To describe the method simply and clearly, we give the

following definitions and descriptions. The PPI network is

represented by an undirected graph G(V, E), where a node vMV

represents a protein and an edge e(u,v)ME denotes an interaction

between two proteins u and v. Gene expression is the process by

which information from a gene is used in the synthesis of a

functional gene product. We only consider the gene expressions

for proteins while some functional RNAs from non-protein coding

genes may exist. For a protein u, its gene expressions with s

different times are denoted as Ge(u) = {g(u,1),g(u,2),…,g(u,s)}. The

probability that two proteins are co-expressed is evaluated based

on the pearson correlation coefficient (PCC). The clustering

property of a protein is evaluated based on the clustering

coefficient (CC).

Pearson correlation coefficient. Pearson correlation coef-

ficient (PCC) is a measure of the correlation between two

variables, giving a value between +1 and -1 inclusive. It is widely

used in the sciences as a measure of the strength of linear

dependence between two variables. The PCC of a pair of genes (X

and Y), which encode the corresponding paired proteins (u and v)

interacting in the PPI network, is defined as:

PCC(X ,Y )~
1

s{1

Xs

i~1

g(X ,i){g(X )

s(X )

� �

: g(Y ,i){g(Y )

s(Y )

� �

ð1Þ

Where s is the number of samples of the gene expression data;

g(X,i) (or g(Y,i)) is the expression level of gene X (or Y) in the sample

i under a specific condition; g(X ) (or g(Y )) represents the mean

expression level of gene X (or Y) and s(X ) (or s(Y )) represents the

standard deviation of expression level of gene X (or Y).

The pearson correlation coefficient of a pair of proteins (u and v)

is defined as the same as the PCC of their corresponding paired

genes (X and Y), that is PCC(u,v) = PCC(X,Y). If PCC(u,v) has a

positive value, there is a positive linear correlation between u and

v.

As we know, co-clustered proteins tend to share some similar

functions and proteins with similar functions tend to be co-

expressed. That is, two proteins u and v with a larger value of

PCC(u,v) are more likely to be in the same cluster and to function

similarly.

Figure 1. PCCs of YJR091C with its neighbors.
doi:10.1371/journal.pone.0058763.g001

Figure 2. A toy network. A, A1, B, B1 and C are nodes of the toy
network. D, E, and F are three complete sub-networks with size 20, 30,
and 40. Node C connects with one node of D, E, and F respectively, say
D1, E1 and F1.
doi:10.1371/journal.pone.0058763.g002

Method for the Discovery of Essential Proteins

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58763



Clustering coefficient. In graph theory, a clustering coeffi-

cient is a measure of degree to which nodes in a graph tend to

cluster together. Evidence suggests that in most real-world

networks, and in particular social network, create tightly knit

groups characterized by a relatively high density of ties [33,34].

Yeast PPI network is also a small world network. Two versions of

this measure exist: the global and the local. The global version was

designed to give an overall indication of the clustering in the

network, whereas the local gives an indication of the embedded-

ness of single nodes. Here, we refer to the local clustering

coefficient.

The local clustering coefficient of a node in a graph quantifies

how close its neighbors are to being a clique (complete graph).

Watts and Strogatz introduced the measure in 1998 to determine

whether a graph is a small world network [34]. The local

clustering coefficient for a protein u in PPI network can be defined

as

CC(u)~

P

v[Nu
e(u,v)De(u,v)[E

ku| ku{1ð Þ=2
: ð2Þ

Where Nu is the set of neighbors of protein u and ku denotes the

number of immediately connected neighbors of u.

CC(u) is a local variable which characterizes the clustering

property of a protein u. A protein u with a larger value of CC(u) is

expected to put more impact on its neighbors, which has

demonstrated in section 2.

CoEWC method. It has been proved that there exist a

number of protein complexes which play a key role in carrying out

biological functionality [35] and essential proteins tend to form

protein complexes [36]. In addition, essential proteins in the same

cluster tend to be co-expressed. It seems that centrality measures

by exploring the co-clustering and co-expression properties for a

protein will work well for the task of identifying essential proteins,

just like PeC does. PeC outperforms many previous centrality

measures indeed. However, as reported in [32], hubs can be

divided into date hubs and party hubs, and these two kinds of hubs

tend to be essential with similar probability. PeC mainly

emphasizes the co-clustering and co-expression properties of a

protein with its neighbors, so it would be not effective to identify

essential proteins from date hubs which are not well co-clustered

with its neighbors. According to the analysis on a toy network in

the section of motivations, SoECC may capture the wrong features

Figure 3. Comparison of the number of essential proteins detected by CoEWC and other four previously proposed centrality
measures.
doi:10.1371/journal.pone.0058763.g003
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for date hubs, which make it not effective for identifying essential

proteins from date hubs.

Although date hubs and party hubs have very different co-

clustering property, each of their neighbors may have the similar

co-clustering property. For a party hub, each of its neighbors is

generally also a member of the same densely connected module

that the hub involves in. So by exploring the clustering property of

each of the hub’s neighbors, we can capture the hub’s high degree

property. For date hubs, they often mediate different densely

connected modules. Generally each neighbor of a date hub

involves in a densely connected cluster, though the clusters its

neighbors involve in are often different. By exploring each of its

neighbors’ own clustering property, we can also capture the high

degree property of a date hub, and filter hubs whose neighbors are

seldom connected with other proteins. Hubs with large number of

disconnected neighbors tend to be non-essential.

In order to capture the characteristics of essential proteins based

on the above standpoints, we propose a new centrality measure

which is named as CoEWC. We use PCC to capture the co-

clustering and co-expression properties of a protein with its

neighbors, and use local clustering coefficient to capture the high

connectivity of a protein and also each of its neighbors’ clustering

property.

For a protein u, its CoEWC(u) is defined as the sum of the PCC

between u and each of its neighbors weighted by the corresponding

neighbor’s clustering coefficient. The definition is given in

equation (3).

CoEWC(u)~
X

v[Nu
PCC(u,v)|CC(v) ð3Þ

Where Nu denotes the set of all immediately connected

neighbors of node u in PPI network.

From the above analysis and the definition of CoEWC,

CoEWC can identify essential proteins from both party hubs

and date hubs, and can discriminate those non-essential hubs

whose neighbors are mainly disconnected single proteins.

Results and Discussion

Test data
To evaluate the performance of the proposed new centrality

measure, CoEWC, the PPI network and gene expression data of

Saccharomyces cerevisiae was used, as it has been well characterized by

knockout experiments and widely used in the evaluation of

methods for essential proteins discovery. The test data used in this

paper come from [28]. We describe them briefly as follows.

The PPI data of Saccharomyces cerevisiae was downloaded from

DIP database [37]. There are 24,743 interactions among 5093

proteins in total after the self-interactions and the repeated

interactions were filtered. The PPI network consists of 21

components. The largest component consists of 5052 proteins.

Essential proteins of Saccharomyces cerevisiae were collected from

several databases, such as MIPS, SGD, DEG and SGDP. Out of

all the 5093 proteins in the PPI network, 1167 proteins are

essential among which 1165 proteins are in the largest component

of the PPI network.

The gene expression data of Saccharomyces cerevisiae was retrieved

from [38], containing 6,777 gene products and 36 samples in total.

There are 4,981 proteins have the corresponding gene expression

data while other 112 proteins have no corresponding gene

expression data among which 6 proteins are essential. For proteins

which have no corresponding gene expression data, we simply set

them with zero values.

Compare CoEWC with other centrality measures
In order to validate the performance of the proposed new

centrality measure, CoEWC, we carry out a comparison between

it and several state-of-the-art centrality measures: Degree Cen-

trality (DC) [11], Sum of Edge Clustering Coefficient (SoECC)

[18], PeC [28] and Clustering Coefficient (CC) [34].

The reasons that we choose these four centrality measures to

compare are as follows. DC has been proved to be a good

indicator for protein essentiality by many researchers [11,28], and

by comparing with it, we want to show the ability of CoEWC to

identify essential proteins from hub proteins. SoECC is a better

Figure 4. Comparison results by a jackknife methodology.
doi:10.1371/journal.pone.0058763.g004
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method for the discovery of essential proteins among the centrality

measures only based on network topological property [18,28]. PeC

is a centrality measure also based on the integration of PPI data

and gene expression data and outperforms 15 previous centrality

measures in yeast PPI network: Betweenness Centrality (BC),

Closeness Centrality, Subgraph Centrality (SC), Eigenvector

Centrality (EC), Information Centrality (IC), Bottle Neck (BN),

Density of Maximum Neighborhood Component (DMNC), Local

Average Connectivity-based method (LAC), Sum of ECC

(SoECC), Range-Limited Centrality (RL), L-index (LI), Leader

Rank (LR), Normalized a-Centrality (NC), and Moduland-

Centrality (MC). Therefore, we only compare CoEWC with

PeC, but don’t compare with many mainstream centrality

measures outperformed by PeC in the yeast PPI network for

identifying essential proteins. PeC aims to capture the co-

clustering property of a protein with its neighbors from both a

topological view and a biological view. However, CoEWC aims to

capture the properties of both date hubs and party hubs while the

two hubs have very different clustering property. CC is used to

show how many improvements can be obtained by properly

integrating it with gene expression data, just like CoEWC does.

Figure 3 gives the comparison of the number of essential

proteins detected by CoEWC and other four previously proposed

centrality measures. Proteins are ranked according to their values

calculated by each centrality measure. For each centrality

measure, a certain number of top proteins are selected as

candidates for essential proteins, out of which the number of true

essential proteins is determined.

From figure 3 we can see that CoEWC significantly outperforms

the centrality measures only based on network topological features

(DC, CC and SoECC) for predicting essential proteins from yeast

PPI network. CoEWC also outperforms PeC for predicting more

essential proteins than PeC does. Especially, CoEWC obtains

more than 50% improvement over DC and CC for predicting 500

proteins, and obtains about 20% improvement over SoECC.

There is more than 4% improvement of CoEWC over PeC for

predicting 600 proteins.

Validated by jackknife methodology
Now we use jackknife methodology [39] to test the comparison

between the proposed centrality measure CoEWC and other four

previously proposed centrality measures (DC, CC, SoECC and

PeC). The comparison results are shown in figure 4. In figure 4,

proteins are ordered from the highest value to the lowest value for

each centrality measure and the cumulative counts of essential

proteins are plotted. The areas under the curve (AUC) for

CoEWC and other centrality measures are compared. In addition,

ten random assortments are also plotted for comparison.

As shown in figure 4, it is clear that the sorted curve of CoEWC

appears to be much better than three centrality measures: DC, CC

and SoECC. For top 180 ranked proteins, CoEWC ties with PeC.

Then the sorted curve of CoEWC is increasingly better than that

of PeC with the increase of the number of top ranked proteins. All

the results of the five centrality measures are better than those of

randomized sortings. In figure 4, the AUC of CoEWC is

Table 1. The relationships between CoEWC and four centrality measures for predicting the top 200 proteins.

Centrality measures (Mi) |CoEWC > Mi| |Mi - CoEWC|

Non-essential
proteins in
{Mi -CoEWC}

Non-essential
proteins in
{CoEWC - Mi }

Percentage of non-essential
proteins in {Mi - CoEWC} with low
CoEWC

Degree Centrality (DC) 60 140 95 33 49.5%

Clustering Coefficient (CC) 19 181 123 50 69.9%

Sum of ECC (SoECC) 78 122 70 27 52.9%

PeC 155 45 19 12 21.1%

doi:10.1371/journal.pone.0058763.t001

Figure 5. Comparison of the percentage of essential proteins out of all the different proteins between CoEWC and other four
centrality measures: DC, CC, SoECC and PeC.
doi:10.1371/journal.pone.0058763.g005
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4.3174e+005, and the AUC of PeC is 4.0450e+005. This tells us

that CoEWC is more effective than PeC for the task of identifying

essential proteins. Therefore, our idea that capturing the

properties of both date hubs and party hubs by using the co-

expression of a protein with its neighbors weighted by the

corresponding neighbor’s clustering coefficient is better than that

only capturing the co-clustering property of a protein with its

neighbors.

Analysis of the differences between CoEWC and the
compared centrality measures
To further analyze why and how CoEWC performs well on the

identification of essential proteins, we study the relationship and

difference between it and other compared centrality measures

(DC, CC, SoECC, and PeC) by predicting a small fraction of

proteins. The top 200 proteins are selected for each centrality

measure.

Firstly, we compare CoEWC with the other four centrality

measures (DC, CC, SoECC and PeC) by investigating how many

proteins are both predicted by CoEWC and by anyone of the

other four centrality measures. The number of overlaps between

CoEWC and one of the other centrality measures is shown in

table 1. |CoEWC > Mi| denotes the number of common proteins

detected by CoEWC and by a centrality measure Mi. {Mi -

CoEWC} (or {CoEWC -Mi}) denotes the set of proteins identified

by Mi (or CoEWC) not by CoEWC or (Mi), and |Mi - CoEWC| is

the number of proteins identified by Mi not by CoEWC.

From table 1, we can see that the common proteins identified by

CoEWC and DC, CC are not more than 30%, that common

proteins predicted by CoEWC and SoECC are less than 40%, and

that common proteins both predicted by CoEWC and PeC are less

than 80%. The small overlap between the predicted proteins of

CoEWC and DC, CC shows that CoEWC is a special centrality

measure which is much different from classical centrality

measures. In addition, we investigated the non-essential proteins

predicted by other centrality measures, and found that about 50%

of these non-essential proteins predicted by three network

topology-based centrality measures (DC, CC and SoECC) are

with very low values of CoEWC (less than 0.128) and there are

21.1% of the non-essential proteins predicted by PeC are with very

low values of CoEWC (less than 0.128).

Secondly, we evaluate the different proteins identified by

CoEWC and those by other centrality measures. Figure 5 gives

the number of proteins which are predicted out of all the different

proteins identified by CoEWC and those identified by DC, CC,

SoECC and PeC. As shown in figure 5, the percentage of essential

proteins identified by CoEWC is consistently higher than that

identified by each other centrality measures for the different

proteins between them. Take CC as an example, which has the

largest different number of proteins from CoEWC. Out of all the

top 200 proteins, 181 proteins are differently identified by CC and

Table 2. List of 26 proteins predicted by CoEWC but are
ignored by other four centrality measures DC, CC, SoECC, and
PeC when predicting the top 200 proteins.

Rank Protein Name Degree CoEWC Essentiality

104 YDR365C 23 1.698583 essential

124 YDL232W 18 1.503577 essential

127 YJL033W 19 1.49437 essential

128 YGL099W 14 1.492625 essential

130 YBR234C 23 1.473234 essential

131 YIL075C 32 1.472131 essential

139 YLR200W 10 1.435959 non-essential

145 YDL087C 23 1.401966 essential

147 YKL095W 38 1.390057 essential

151 YHR081W 5 1.358778 non-essential

152 YPR088C 14 1.351337 essential

154 YOL094C 37 1.327599 essential

156 YHL030W 21 1.310346 non-essential

158 YOR259C 28 1.282556 essential

161 YBL041W 9 1.275247 essential

163 YNL182C 21 1.268987 essential

170 YMR314W 16 1.246819 essential

178 YBR126C 29 1.219773 non-essential

179 YOL142W 6 1.219508 essential

181 YBL023C 14 1.211368 essential

187 YNL290W 34 1.176549 essential

190 YFL008W 24 1.156859 essential

191 YPL012W 20 1.153688 essential

193 YER025W 26 1.140787 essential

194 YOR210W 16 1.138906 essential

199 YKL068W 35 1.119936 non-essential

doi:10.1371/journal.pone.0058763.t002

Figure 6. YOL142W and its interacting neighbors.
doi:10.1371/journal.pone.0058763.g006

Table 3. Information of the neighbors of YOL142W.

Proteins PCC CC Essentiality

YDR280W 0.8046 0.3399 essential

YER025W 0.639 0.1354 essential

YNL265C 20.357 0.1648 non-essential

YGR195W 0.771 0.4083 essential

YGR095C 0.7414 0.3897 essential

YOL021C 0.8391 0.375 essential

doi:10.1371/journal.pone.0058763.t003
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by CoEWC, respectively. Out of these 181 proteins of CoEWC,

72.4% proteins are essential, while only 32% proteins out of the

181 proteins by CC are essential. Then take PeC as an example,

which has the smallest difference from CoEWC. There are 45

different proteins identified by CoEWC and by PeC. Out of 45

different proteins, CoEWC identified more than 73.3% essential

proteins while PeC only identified less than 57.8% essential

proteins. The similar results can be obtained from the DC and

SoECC.

There are 26 proteins which are predicted by CoEWC but not

included in any of the top 200 proteins of the other four centrality

measures. These 26 proteins are shown in table 2. In table 2, we

show the following information of the 26 proteins: the rank in

CoEWC, protein name, degree, value in CoEWC and essentiality.

As shown in table 2, out of the 26 proteins 80.8% are essential.

Take YOL142W as an example. YOL142W is an essential

protein whose degree is only 6. The interactions between

YOL142W and its neighbors are shown in figure 6. To further

study the characteristic of YOL142W and its neighbors, we show

the following information of its neighbors: PCC value, CC value,

and essentiality in table 3. From table 3, we can see that its 5

neighbors out of all 6 neighbors are also essential proteins, and

that YOL142W is well co-expressed with its 5 neighbors which are

also essential. All the CC values of its neighbors are significantly

larger than the average CC value of the whole PPI network which

is 0.097. Table 3 also tells us that co-clustered essential proteins

tend to be co-expressed and that CoEWC can capture this

property well.

Take another non-essential protein, YLR295C, as an example.

YLR295C has 125 neighbors, out of which only 24 are essential.

YLR295C gets its rank of 16, 2388, and 8 according to DC, CC,

and SoECC, respectively. According to the definition of DC, CC

and SoECC and the corresponding ranks of YLR295C according

to these three centrality measures, we can conclude that YLR295C

is a hub protein and is well co-clustered with some of its neighbors,

and that there are very few connections between its neighbors (its

CC value is only 0.0017). It is obvious that YLR295C cannot be

discriminated by DC and SoECC.

In addition, in order to further compare CoEWC with PeC, we

also compute the sum of PCC (SoPCC) between a protein and all

its neighbors in PPI network, and rank all proteins according to

SoPCC. YLR295C gets its rank of 121 according to SoPCC and

gets the rank of 123 according to PeC. Figure 7 gives the

properties of YLR295C and its 125 neighbors captured by PCC,

CC and ECC. In figure 7, the neighbor proteins with first 24

neighbor IDs are essential, and the other proteins are non-

essential.

From the distributions of PCC, CC and ECC in figure 7, we can

see that about a quarter of its neighbors are well co-clustered with

YLR295C (with ECC value equals to 1), but only very few

neighbors have large CC values. Almost all ECC values of the

neighbors are larger than zero, but about half of the neighbors’

CC values are zero. Among YLR295C’s interacting proteins,

essential proteins tend to have non-zero CC values, which accords

with the assumption that essential proteins tend to be co-clustered

with some of its neighbors. According to the definition of SoECC,

which is the sum of ECC, YLR295C’s SoECC value is large due

to its high degree. According to the definition of PeC, which is the

sum of the product of ECC and PCC, the PeC value of YLR295C

is considerably smaller than that of SoECC due to the negative

values of PCC. Moreover, according to the definition of CoEWC,

which is the sum of the product of PCC and CC, the CoEWC

value of YLR295C is smaller than those of SoECC and PeC, due

to both negative PCC values and smaller CC values. From figure 7,

we can further understand why CoEWC can discriminate

YLR295C as non-essential while DC, SoECC and PeC cannot.

Table 4 shows a list of non-essential proteins which have a high

degree but with a low value of CoEWC. In order to compare with

other centrality measures, we also give their values of DC, CC,

SoECC and PeC. Since the values predicted by different centrality

measures are not comparable directly, here we take the 1110th

proteins’ values, which are sorted in descending order according to

each centrality measure, as reference values. The reference values

for DC, CoEWC, CC, SoECC and PeC are 12, 0.127, 0.1428,

3.057 and 0.55, respectively. From table 4, we can see that these

non-essential proteins cannot be discriminated by DC and

SoECC. By considering the co-expression properties between a

protein and its interacting proteins, both CoEWC and PeC have

an improved discrimination ability over these non-essential

proteins. As shown in table 4, all these non-essential proteins with

Figure 7. Properties of 125 neighbors of YLR295C.
doi:10.1371/journal.pone.0058763.g007
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a high degree consistently have a very low value of CoEWC. From

the above analysis, we can see that CoEWC can help filter the false

predictions of other centrality measures. So the integration of PCC

and CC is effective for the prediction of essential proteins.

Conclusions

With the large amount of PPI data available for some species,

the discovery of essential proteins from network level is becoming a

hot topic. Many network topology-based centrality measures for

the discovery of essential proteins have been proposed. However,

the currently available PPI networks for each species are

incomplete (false negatives) and very noisy (high false positives).

At the same time, most of the network topology-based methods

depend on the reliability of the available protein-protein interac-

tions and thus are very sensitive to the network. Moreover,

essential proteins may be of distinct clustering properties, i.e. date

hubs and party hubs, at the same time essential and non-essential

proteins are often of some common features, i.e. high degree for

hub proteins. It is very challenging to well capture the true distinct

features for essential proteins to distinguish them from non-

essential proteins.

To tackle the above difficulties, we propose a new centrality

measure, named CoEWC, based on the integration of PPI data

and gene expression data. CoEWC aims to capture the common

features of essential proteins in both date hubs and party hubs by

integrating PCC with CC together. CoEWC is applied to the PPI

network of Saccharomyces cerevisiae. The experimental results show

that CoEWC significantly outperforms the network topology-

based centrality measures: DC, CC and SoECC, and that

CoEWC also outperforms PeC, a currently proposed centrality

measure which also based on the integration of PPI data and gene

expression data.

Although CoEWC performs well on the discovery of essential

proteins, there should be still a space to improve the prediction

precision. First, the integration of PCC and CC is very simple in

this paper, and there may exist more abstruse relationship between

PCC and CC. Second, there should exist some more excellent

method to well capture the distinct properties between essential

Table 4. List of non-essential proteins which have a high degree but with a low value of CoEWC.

Protein Name Essentiality DC CoEWC CC SoECC PeC

YCL018W non-essential 156 0.0723 0.0244 21.2481 0.1766

YBR127C non-essential 113 0.0502 0.0207 11.7541 20.2884

YMR106C non-essential 110 -0.2571 0.0283 18.9553 20.543

YLR288C non-essential 99 20.1364 0.0033 31.4151 3.3742

YLR191W non-essential 97 21.5164 0.0215 24.9253 21.6514

YLR447C non-essential 95 20.0429 0.0035 26.2248 2.4992

YOL055C non-essential 93 0.0942 0.0140 8.1786 20.3599

YHR135C non-essential 84 20.2160 0.0203 13.849 20.3505

YGR040W non-essential 79 0.1058 0.0207 8.6171 0.3374

YLR453C non-essential 78 0.0411 0.003 23.4248 0.3608

YER118C non-essential 72 20.2675 0.0274 14.6054 20.2627

YDL059C non-essential 67 0.1163 0.0407 7.3506 20.0661

YCL027W non-essential 67 0.0730 0.009 18.7385 4.1962

YBL085W non-essential 67 20.2364 0.0212 13.4245 20.8018

YGR254W non-essential 67 20.0167 0.0298 7.08 20.0244

YAR014C non-essential 65 20.20841 0.016346 13.29514 22.5911

YDR171W non-essential 61 20.28158 0.023497 4.637564 0.0205

YHR140W non-essential 60 20.55414 0.249718 30.04586 22.13

YML048W non-essential 60 20.44267 0.136723 18.25437 20.4479

YGR262C non-essential 60 20.09723 0.029379 7.759587 0.4257

YJL098W non-essential 59 20.26835 0.04851 10.58723 20.5065

YLR096W non-essential 58 20.27887 0.047792 11.02443 20.6211

YJL095W non-essential 58 20.03866 0.050817 13.54987 0.7098

YGL237C non-essential 57 20.39525 0.025063 10.00474 0.8943

YNL135C non-essential 57 0.046016 0.022556 8.115793 0.1006

YDR386W non-essential 57 20.65712 0.030702 6.746308 21.4038

YCL040W non-essential 55 20.11312 0.020875 5.221536 0.0757

YDL101C non-essential 55 0.069512 0.041077 9.862956 20.4066

YGL173C non-essential 52 20.80869 0.032428 5.137779 20.8367

YER179W non-essential 50 20.14783 0.04 6.687021 20.357

YKL065C non-essential 50 20.3737 0.173061 15.15515 20.7295

doi:10.1371/journal.pone.0058763.t004

Method for the Discovery of Essential Proteins

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e58763



proteins and non-essential proteins. Finally, besides the gene

expression data, some other protein related data, such as biological

process, domain information, and localization, should be also

valuable for the task of identifying essential proteins.
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