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Summary. A new method is proposed for the geopotential field computation 
and gravitational attraction modelling. The usual method is to use a uniform 
density discrete numerical integration to represent either the gravitational 
potential or the gravitational attraction from a given density configuration. In 
this paper, an interpolation scheme is explained, using a piecewise continuous 
basis function to represent the arbitrarily varying density configuration in 
one, two and three dimensions. This new approach greatly simplifies the 
potential integrations and, in certain cases where symmetry exists, analytical 
evaluation of the integrals is also possible. Numerical tests and examples are 
given for a hypothetical salt dome, a vertical dyke with varying density 
structure and the hydrostatic ellipticity of earth model 1066B. The numerical 
error in this method is limited to the analytical approximation and interpola- 
tion errors in each case. This new approach can also be used as efficiently for 
other potential field studies. 

1 Introduction 

Analytical methods for computing or approximating the Earth’s gravity potential have been 
studied by many people and clearly summarized in Jeffreys (1970). The applied methods of 
potential field theory are also studied extensively and illustrated well in several applied 
geophysics textbooks. In most of these studies it is assumed that the density contrast of the 
model is constant uniformly or constant in a stepwise sense throughout the body. The 
continuously varying density distribution is in most cases approximated by rectangular 
blocks of uniform density. In this paper a general formalism is described to include an 
arbitrarily varying density distribution in the gravitational potential field computation and 
modelling. 

In the following sections, numerical examples are given for a cylindrically symmetric 
configuration, a general two-dimensional modelling case and a whole Earth problem. The 
basic formula we have to solve in these examples includes a potential field integral or an 
equivalent integral with the density of the constituent material in its integrand. In a simple 
geopotential integral, the integrand of the volume integral is density multiplied by the well- 
known Green function. When the density is constant throughout the body the integration is 
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736 W. Moon 

very simple. In realistic problems, however, the density varies with coordinate variables and 
an analytical solution is possible only for extremely simple cases. It has been customary 
practice to use a discrete numerical method for more complex density distribution. 

In this research an interpolation scheme is proposed to represent the density function or 
integrand itself, in some cases, using polynomial basis functions. The interpolation method 
using piecewise continuous functions has been a popular tool in many branches of numerical 
mathematics. It has been particularly effective in the finite element method and variational 
problem solution in mathematical physics. As demonstrated in the following three examples, 
if we interpolate the density term using a piecewise continuous basis function, we can 
evaluate the whole integral analytically between the nodal or data points, and we can 
increase not only the accuracy of the solution but also the numerical efficiency greatly. Even 
when the density function has a finite number of jump discontinuities, the accuracy of the 
solution is in the accuracy of the density interpolation and is higher than any other conven- 
tional methods. The basic interpolation scheme is explained in detail by Schultz (1973) and 
Moon (1979). The piecewise continuous basis functions used in the following examples are 
cubic Hermite polynomials defined in terms of the input data points. 

2 Cylindrically symmetrical bodies 

Even until very recently, the attempts to obtain an analytical solution for the gravitational 
attraction from a cylindrical body have been limited to the cases where the density is 
uniform throughout the body. The gravitational attraction by a circular lamina or a right 
cylindrical body has been studied analytically many times in the past, as well as by analytical 
and numerical methods. The gravitational attractions of salt domes, granitic batholiths, igneous 
plugs, mine shafts etc. can be approximated by bodies with a cylindrically symmetrical 
shape and consequently the simplified solution method attracted practical applications. 
Recently an exact closed form expression for the gravitational attraction of a vertical right 
cylinder was obtained by Nabihigan (1962) and Singh (1977a,b). However, the density of 
the model configuration has always been constant. 

We will now look at  a case where the density of a cylindrical configuration varies with the 
radius. In fact it can vary with depth as well. The general approach in this example will 
follow Parasnis (1961) but it will be more general in the scientific context. The anomaly at 
P ( p )  due to a circular lamina is (see Fig. 1) 

*n o(r)rdr  dq5 

Gj:s, s3 
where 

S = ( r 2 ’ - 2 r p  cosy + p 3 ) ” * .  

The denominator in this equation, which is Green’s function satisfying the Laplace equation, 
can be written in terms of the Legendre functions (Morse & Feshbach 1953, pp. 589, 748) 

or 

1 1 r  P 
- = -[-PA (cosy) +Pi (cosy) + -P: (cosy) + . . . s3 r3 p r 
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Figure 1. Cylindrical coordinate system for examples of cylindrically symmetrical objects. 

where Pi  (cos 7) are the derivatives of the Legendre functions. At this point we can see that 
the gravitational potential (or attraction) computation has to be treated in two regions: 
p 2 a and p G a where r =  a = R is the radius of the circular lamina. Then the gravitational 
attraction from the points of p > a has the general term 

A g n = - j Q ~ 2 n r 2 n i 1  Gz P;,+,drd@. 

P2n + 0 0  

Using the series expansion of the Legendre function 

n 1, 3 ,  . . . , (4n - 2k + 2n - 2k 
PL(u)= c (-l)k cos ___ 

k = O  z k k ! ( 2 n - 2 k ) !  P2* - 2 k  

a general term of gravitational attraction becomes 

and the total attraction will be 

n = O  k = O  

From equation (2) we see that the density can have any type of functional value 
analytical evaluation u(r) has to be a smooth and simple continuous function. However, as 
mentioned in Section 2 ,  the density function, u(r), can have any kind of jump discon- 
tinuities at r = ri, as long as its gradient is smooth. A piecewise continuous basis function can 
be used to represent u(r). In that case equation (2)  would look like 

where 

SIG(r) = u(r)rZn+' .  
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738 W. Moon 

In this case SIG(r) is a simple polynomial and the integration along the radius can be 
analytically evaluated in (rr, rr+l) and summed over I = 0, 1 ,  . . . , N -  1. The integration 
through azimuthal angle q5 is a simple one for any value of k.  

Now we seek a scheme summing the series in equations (3) and (4). In this example, the 
case with p a only will be solved but the case with p G a can also be solved with exactly the 
same approach, For k = n,  the gravitational attraction Ag only involves x o ;  let Ago represent 
Ago = Ag,,,. Then after the integration with respect to the azimuth and some simplification 
we have 

m 1 , 3 ,  ...,( 2n t 1 )  1 
A g o = 2 n G z  (-1)" 

n = O  Y n !  

I = O  J r ,  

This integral is a simple one and can be evaluated analytically (Gradshteyn & Ryzhik 1965). 
For k = n - 1, similarly from equations (2) and (3) 

Ag2 = o(r)r3(p' + r2)-7'2 dr 
2 l = O  

and for k = n - 2, 

In these equations the summation over k = 0, 1, 2, . . . , n approximates the Legendre poly- 
nomial and equations (5), (6) and (7) are only the first three terms for k = n,  n - 1, n - 2 
from equation (3). The other terms defined in equation (3) for k = n - 3, n - 4, . . . , 0 can 
be obtained similarly. The integrals in equation (9, (6) and (7) can be evaluated analytically 
(Gradshteyn & Ryzhik 1965; 2.263, 2.264, etc.) and summed for the given N - 1  model 
intervals (see Appendix). 

Now for a cylindrical model, replace u(r) of the lamina by p(r, z )  and integrate with 
respect to z for the length of the cylindrical configuration from z 1  to z 2 ,  the vertical 
distances to the upper and lower faces of the anomalous body. If the density depends only 
on the radius, p(r,z) will be a simple polynomial of r and Ago, Ag,, Ag,, . . . are all 
analytically evaluated as before. However, if the density is also a function of depth as well 
as the radius, p ( r ,  z )  becomes a polynomial in r and z in the interval (ri, ri+ ; z i ,  zi+ ,)- Again 
the integrations involved in Ago, Ag,, Ag,, . . . can be obtained analytically. The expression 
for Ago, k2, Ag4, . . . will be, in a general form, 

p ( r ,  z ) r ( p 2  + rZ)-32zdzdr 
1 = 0  

and so on. 
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Figure 2. (a) Gravity anomaly produced by a cylindrically symmetrical hypothetical salt dome. (b) 
Density contrast profile as a function of depth. (c) General shape of hypothetical salt dome and its 
density contrast surface plot. 
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740 W. Moon 

A numerical example is shown in Fig. 2. The density model is plotted at the bottom and 
the gravity anomaly produced from the anomalous body below is plotted in the upper 
diagram. In this example the density function is interpolated by a cubic spline. The 
gravitational attraction computed in this example is theoretically exact. However, in 
practice there are two types of errors involved. The interpolation error for p(r ,  z )  is the 
first one. This error depends on the choice of the piecewise continuous basis function as well 
as the number of points in the input model. For most practical cases this type of error is 
very small or can be minimized to the required accuracy in many practical problems. The 
second type of error is the truncation error. In the above example the infinite series for n = 
0, 1,  2, . . . , is represented as a binomial expansion sum and is exact. But the sum over k = n ,  
n ~ 1, . . . , 0 is truncated at an appropriate length. This truncation error can be reduced 
simply by adding more terms. Of course this will increase the computing time and the 
modelling process becomes expensive. However, if we have a close look at the integrands in 
equation (8) we find that the series of terms Ago, Ag,, Ag,, . . , converges very fast for 
r G a G p as tested numerically. 

3 Two-dimensional body with an arbitrary shape 

The computational theory of potential fields from a two-dimensional body is well illustrated 
by Kellog (1953), and Kogbetliantz (1945) and Hubbert (1948) devised a line integral 
approach which was used by Talwani, Worzel & Landisman (1959) in their computer 
algorithm. The method developed by Hubbert (1948) and Talwani ef al. (1959) is only for a 
two-dimensional body of an arbitrary shape with uniform density. However, the program is 
general enough and the density variation may be represented by numerous discrete 
homogeneous cells which, as a whole, form an n-sided polygon. A similar approach was later 
proposed by Bhattacharyya & Chan (1977) to use small rectangular blocks of uniform 
density, but this type of approach is very inefficient in actual modelling process. A very 
general example of two-dimensional crustal gravity modelling is given below. 

The two-dimensional potential may be written as 

and the vertical gravitational attraction would be 

p ( x ,  z )  In R d x  d z  

where 

In this example, the body is infinitely long in the y-axis. As mentioned above, the density 
function p ( x ,  z )  can first be interpolated and then integrated to obtain the gravity effect. 
However, in some cases, the integrand is evaluated at each model point and the integration is 
performed using bicubic basis functions, in which case the integration inside each rectangular 
cell ( x i ,  x i + l ;  zi, z i + , )  is evaluated analytically. In such cases, the potential function 
integrand rather than the density function is smoothly interpolated. In any case, the density 
function p ( x ,  z )  or the potential function integrand can be interpolated smoothly in any 
cross-section x - z  plane and it may even have discontinuities of simple nature. The example 
given in Fig. 3 shows two-dimensional modelling of a simple geological structure and its 
computed gravity effects for the uniform and varying density contrast cases. For the given 
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Figure 3. (a) Gravitational attraction from a hypothetical vertical dyke with varying density contrast as 
shown in (b). (b) The density contrast plot of a hypothetical vertical dyke. 

model, the accuracy of the method is tested using a conventional scheme and the accuracy 
for the uniform density model is better than 0.1 per cent at all points. For the continuously 
varying density model, the accuracy of the method is tested using the available block model 
method and it is again better than 0.1 per cent at  all points. Besides the above-mentioned 
accuracy of the method, this new method is much more efficient computationally and 
simple to use. However, if the anomalous body becomes exposed near the surface one has to 
be careful. When the top of the anomalous body comes close to the surface, the integrand of 
the potential field integral or the gravitational attraction integral may become nearly singular 
and consequently some of the gravitational attractions computed may become very erratic. 
In such cases, extra care has to  be taken in the numerical procedure to accommodate the 
situation. 

4 First-order hydrostatic ellipticity 

The computation of first-order hydrostatic ellipticity of the Earth is a classical exercise in 
geophysics. However, as the earthquake seismology and whole Earth geophysics require 
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a reasonably accurate approximation of the Earth's ellipticity, it  is frequently desired to 
compute the first-order hydrostatic ellipticity for a given earth model. The potential at an 
internal point of a massive body may be further developed to obtain the famous Clairaut 
differential equation (Jeffreys 1970). 

dr r 

After a Darwin-de Sitter-Radau transformation, we obtain, to a first order 

where r' is the mean spherical radius, p the mean density inside the radius r' and 

I 1 1  
F(v)  = (1 + r))2 1 + - r )  - - q2 t . . . . i 2 10 

Then the first-order ellipticity may be obtained by solving 

r ) = r - -  
I l d ~ .  

Edr' . 

The value of F(r)) is very nearly constant around 1 .O and has a minimum for r )  = 0 and a 
maximum for r )  = Y3. Bullard (1948) and Jeffreys (1963) numerically integrated the above 
relations to obtain the approximate values of ellipticity inside a given earth model. Jeffreys 
(1963) also computed correction terms for his results. In this example, the interpolation 
scheme described in Moon (1979) is used for earth model 1066B. Then the mean density 

is set up to be computed by the method described in Section 3. Equation (12) can be 
written as 

and the ellipticity term, from equation (13), is 

where the surface ellipticity is 

and 

3 n2 
4 7rGp 

m = - -  

As described in previous sections, the integrals involved in equations (14), (15) and (16) can 
be analytically evaluated in any interval (ri, ri+l)  of a given earth model. The resulting 
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(a) (b) 
Figure 4. (a) Earth model 1066B. (b) First-order hydrostatic ellipticity of the Earth as shown above. 

ellipticity is absolutely accurate except for the theoretical approximations in the derivation 
up to equation (16) and the interpolation error included in p ( v ) .  Earth model 1066B and the 
first-order hydrostatic ellipticity are shown in Fig. 4. A further computer algorithm is briefly 
explained in Moon (1980). The theoretical and analytical correction terms are explained in 
Jeffreys (1 963). 

5 Conclusion 

The geopotential field theory and its applications in geophysics have been important for our 
understanding of our whole Earth as well as near surface small-scale geological effects. In 
this paper, a general scheme is proposed to compute geopotentials and attractions of an 
object with continuously varying density distributions. Jump discontinuities such as the 
core-mantle boundary in an earth model or a fault plane in the Earth’s crust can also be 
included adequately in this approach. As shown in the detailed examples, the interpolation 
of the density function, with an appropriate piecewise continuous polynomial basis 
function, enables us to simplify the field integrals, in most cases, and we can accommodate a 
continuous density variation inside the given object as well as reasonable jump discontinui- 
ties associated within the body. This often makes it possible to evaluate the field integrals 
analytically and to increase the numerical efficiency. The basis functions of interpolation 
schemes, explained and used in the above sections and examples, are all cubic polynomials. 
However, in simple examples, a linear relation may be adequate in which case the problem 
will be even further simplified. In fact, for the problems with a higher density gradient than 
normal examples, a linear basis function is preferred to avoid overshooting of the cubic 
functions. Of course this problem may also be avoided easily with cubic basis functions by 
allocating data points at appropriate points in the respective models. This scheme can also 
be applied to magnetic potential field theory as well (Moon & Hall 1981). As shown in the 
examples, this method can be applied in exploration geophysics, crustal geophysics and more 
complicated whole Earth problems. 
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Appendix 

The integrations given in equations (9, (6) and (7) are integrated (Gradshteyn & Ryzhik 
1965) and, after some algebra, can be written as 

N - 1  1 p2r 3 

I = 0  z Jp2 t r 2  2 
Ago = 27rGz 1 [ A [ - r d p v  t -=- - p 2  In(r t dp2 + r 2 ) )  
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where A ,  B ,  C and D are the interpolation coefficients for u ( r )  in each interval ( rL ,  r I+ , ) .  
When these equations for a circular lamina are extended for a right vertical cylinder, the 
expansions for Ago,  Ag,, Ag,, . . . will be in exactly the same form as above except that 
there will be an integration fromz, , the top of the cylinder, to z 2 ,  the bottom interface. How- 
ever, if the density also depends on z the interpolation constants A ,  B,  C and D will be 
polynomials of z 

A = a l z 3  + b,z' + c l z  + d ,  

B = a2z3 + b,z' + c2z  + d ,  
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for any type of bicubic interpolation. Then we have 

and the final form will be of form 

( I C ,  + .  . . 1 5x2 2835x4 

32 

This integration is, of course, an elementary one. 
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