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A New Method of Imposing Boundary Conditions in
Pseudospectral Approximations of Hyperbolic Equations*

By D. Funaro and D. Gottlieb

Abstract. A new method to impose boundary conditions for pseudospectral approxi-
mations to hyperbolic equations is suggested. This method involves the collocation of
the equation at the boundary nodes as well as satisfying boundary conditions. Stability
and convergence results are proven for the Chebyshev approximation of linear scalar
hyperbolic equations. The eigenvalues of this method applied to parabolic equations are
shown to be real and negative.

Introduction. The common practice in applying pseudospectral methods to
partial differential equations is to satisfy the equation at the interior nodes and to
impose the boundary condition at the boundary. This procedure does not take into
consideration that the differential equation is satisfied at points arbitrarily close to
the boundary. In [4], one of the authors discussed the advantages of imposing a
combination of boundary conditions and the equation itself at the boundary nodes,
for Chebyshev approximations of the Laplace equation with Neumann conditions.
Here we analyze the same idea applied to the linear hyperbolic equation

ut = ux, \x\ < 1, t > 0,

u(x,0) = f(x),
{ u(l,t) = g(t).

We assume that the collocation points are the Gauss-Lobatto Chebyshev quadrature
nodes, namely: x¡ = cos(kj/N), 0 < j < N. The stability of the method, with the
commonly used boundary treatment, i.e., imposing un(1,í) = g(t), was analyzed in
[10]. Here we show the convergence of the method for the new boundary treatment,
namely

^(l,t)-^(l,t) + a(uN(l,t)-g(t)) = 0,

where a is positive and large enough. A preliminary theoretical discussion in Sec-
tion 1 and numerical experiments in the last section show the effectiveness of the
method. In Section 3 we use the results obtained for the hyperbolic equations to
show that for the heat equation the second-derivative matrices, corresponding to
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600 D. FUNARO AND D. GOTTLIEB

the Neumann conditions with the new approach, have real and negative eigenval-
ues. The analogous result for the classical way to impose boundary conditions was
previously proven in [8].

The results reported here are only the first step in the implementation of this
new method to systems of equations.

1. Description of the New Method. In order to illustrate the new method of
imposing boundary conditions and to explain what can be gained by this technique,
we first treat the following time-independent problem

(i.i) {"• = '•     M*1'

where / G Cs([-l, 1]) is given (s > 0).
In the standard pseudospectral Chebyshev method (see for instance [6]), we seek

a polynomial of degree N, say ujv, such that

(1.2) |(a)   iFto) = '<*').     ' = 1--*
I (b)   Mi) = o,

where x3 = cos(ttj/N), j = 0,1,..., N, are the Gauss-Lobatto Chebyshev nodes in
[—1,1]. In order to determine v^ from (1.2), vm(x) is expressed by its unknown
point values vn(xj) using the Lagrange interpolation polynomial

N
vn(x) = ^2vN(xk)gk(x),

fe=0

where
-(-l)k(l-x2)T'N(x)

9k(x) =
ckN2(x-xk)

with Tn(x) = cosiV0,cos0 = x, so that

sin»
Here, Tjs is the TVth-degree Chebyshev polynomial and c0• = 1 if 1 < j < N — 1,
while Co = Civ = 2. Therefore,

-^■(xj) = ^2vff(xk)-^{xj),        j = l,...,N.
k=0

Upon substituting the above relations in (1.2), we get a linear system of equations
for the point values VN(xk). We note that in (1.1) the differential equation holds
in any arbitrary neighborhood of the boundary, whereas in (1.2) we did not require
that the equation also was satisfied at xq = 1. We propose now another procedure
that takes into account the differential equation at the boundary as well as the
boundary condition.

In our new method, we seek an ./Vth-degree polynomial uyv such that

(1.3)
(a) llrteWte)'       3 = l,---,N;
(b) ^(1)-<*«„(!) = /(l),
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BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 601

where a > 0 is a suitable constant depending on N, to be determined later.  By
writing the equality (1.3)(b) as

du ¡si¿c-/     (l) = «jv(l),dx
we note that (1.2) is obtained from (1.3) by letting a —► +00. We remark that the
solution of (1.3) satisfies neither the boundary condition nor the equation at x = 1;
if the method converges both will be satisfied as N —» +00.

To show the advantage of the new procedure, we give in Figure 1.1 the plot of
the error

. ll2

(1.4) E = E(a)= [£¿>-«Ar)a(*i)f
V       3 = 1 J

multiplied by 105 versus a, for f(x) = sin(:r — 1) and N = 8. The point Jn is not
taken into consideration in the sum because the exact solution is known there. It
is clear from the figure that E(a) is not monotone in a and there exists a = amin
which minimizes E. In particular we have E(am\n) < £(+00). Further experiments
indicate that, in terms of N, am¡n increases like N2.

"mm TOO a

Figure 1.1
Behavior of the error versus a.

We would like to explain why the procedure (1.3) should be, in general, better
than (1.2). We start by noting that if / is a polynomial of degree N — 1 at most,
then both (1.2)(a) and (1.3)(a) hold, not only at the grid points Xj, but for every
x since both sides of the equations are polynomials of degree N — 1. In particular
(dux/dx)(l) = f(l), thus by (1.3)(b) we get tijv(l) = 0, leading to the conclusion
that un(x) = Vff(x), Vx. Suppose now that / is a polynomial of degree N. We can
assume, because of the linearity, that

(1.5) m = íi±«.
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602 D. FUNARO AND D. GOTTLIEB

Hence, f(xj) = 0, j = 1,... ,7V, and /(l) = 1. Any other polynomial, up to a
constant factor, can be obtained from (1.5) by adding some suitable polynomial of
lower degree. In this case it is easily verified that the solution U of (1.1) is given
by

(1.6)   U(x) =
2N2

1    iV   m      , .     m  . ,     1    N   „      , ,     2/V2-l■TN+i(x) +TN(x) + -^—TN-i(x)2N + 1     + v ' w     2JV-1 v ;      7V2-1

It is clear that the solution of (1.2) is

(1.7) vN(x) = 0,    Vx.

On the other hand, the solution of (1.3)(a) is a constant and from (1.3)(b) we get

(1.8) uN(x) = —,    Vx.
a

With I/o = ß, the error is given by

^£(L/(xJ) + /3)2i
3 = 1 3

To minimize E one has to choose ß as the negative mean of U, namely

N i/^i N 1/^1

N ¿—   K "c,7 N , = 1 ^3j=l " j=l    J j=0 Jl     j=l    J

and an easy calculation shows that

i o/V2 — N
(i.io) omin = — = ^m^2 -1} ~ N •

This explains the behavior of am¡n as a function of TV.
In Table 1.1, we summarize the results of another experiment. This time we

chose f(x) = -|(1 - x)1/2, with the boundary condition (7(1) = 1, so that the
solution was U(x) = (1 - x)3/2 + 1. We have tried the two different ways of
imposing boundary conditions, i.e.,

(lu) Mi) = i,
(1.12)   -j^-Q!min(wAr(l)-l) =/(l)        (where omin is given by (1.10)),

and we varied the number of grid points A^.

TABLE 1.1
Comparison of the errors between the two ways of imposing boundary conditions.

N Condition (1.11) Condition (1.12)
2 0.281837 0.243315
4 0.338991E-01 0.183894E-01
6 0.995738E-02 0.478991E-02
8 0.418410E 02 0.190129E-02

2. The Time-Dependent Problem. In this section we show how to apply
the new procedure of setting the boundary conditions, described in the previous
section, to a scalar hyperbolic equation. In a future paper, we will discuss the case
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BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 603

of a system of hyperbolic equations. An analysis of the convergence of this method
will be carried out for Chebyshev approximations.

Consider the equation

' Ut = Ux, \x\ < 1, t > 0,
(2.1) | U(l,t) = g(t),

. f/(x,0) = /(x).
The pseudospectral semidiscrete approximation to (2.1) suggested in this paper
involves seeking a polynomial ujv of degree at most TV such that

dupf      ditjv

(2-2)

atx = Xj, j = l,...,N, Vi>0,

'iN.(l,t) = ^(l,t)-a(uN(l,t)-g(t)),dt dx
{ un(xj,o) = f(xj),     y = o,...,TV.

The choice of the nodes {xj} determines the particular spectral method. For ex-
ample, the points

(2.3) x,=cos^,        i = 0,1,..., TV,

determine the usual pseudospectral Chebyshev method, whereas the points

(2.4) Xj=cos^_,        y = 0,1,..., TV,

determine a different version (see [7]). The pseudospectral Legendre method is
defined by choosing Xj to be the extrema of the TVth-degree Legendre polynomial.

We would like to show here the convergence of the solution ux(x,t) of (2.2)
to U(x,t) defined in (2.1) when TV —> +00, in the case of the Chebyshev method
defined by (2.3). The stability proof for the Chebyshev method (2.2) and (2.3)
for a = 00 is discussed in [10]. We use the same basic ideas to get directly a
convergence proof, for a ^ 00. The proof here is presented in detail since it will
serve as a reference for our future work discussing systems. We start with the
following preliminary results.

LEMMA 2.1. Let u¡\¡(x,t) be the solution of (2.2) when Xj are given by (2.3);
then

duN _ duN       (l + x)TN(x)
(2-5) ~W~~dx~+T       2TV2"        '
where t = -a(u¡s¡(í,t) — g(t)).

Proof. It is sufficient to note that (2.5) exactly coincides with (2.2), when eval-
uated at the collocation nodes.    D

We define now PmU as the polynomial interpolating U at the points cos(nj/M),
j = 0,1,...,M. Note in particular that (PmU)(1,t) = U(l, t), for any M. We are
ready to write the error equation.

LEMMA 2.2.   Let EN(x,t) = us(x,t) - PN-3U(x,t); then
( deN     deN     _(l + x)TN{x)_       ,\.nu*\(2.6) -df = ^x--a-2TV^-^(l,t) + Q(x,t),
[ eN(x,0) = PNf-PN-3f,
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604 D. FUNARO AND D. GOTTLIEB

where Q(x, t) is a polynomial of degree TV — 3 in x, given by

Q(x,t) = ¡-x(PN-3U)-PN-3(lu

Proof. We apply PN-3 to (2.1) to get

,0„,  d(PN-3U)      d(PN-3U)                                                    ,^(1 + x)T'N(x)
(2-7) -g-t-=-yx-Q(x, t) - a[(PN-3U)(l,t) - g(t)}-^f-,

with the initial condition [PN-3U]t=o = Pn-3/- In fact, note that, since
(P/v_3Í/)(l,í) = g(t), the last term that was introduced in (2.7) is zero. Hence,
(2.6) follows from (2.7) and (2.5).    D

Next we will show that ejv(z, i) tends to zero as TV increases. The proof will
be based on a careful energy estimate for (2.6). For this, we need the following
lemmas.

LEMMA 2.3.   Let w(x) = E^o-1 bkTk(x); then

,~ „N T V-» w(x,)       f1     w(x)(2.8) -ç-Lii.y ^fL^+rf»,.
3=0        J

where Co = c^ = 2 and ck = 1 for 0 < k < TV.

Proof. We test (2.8) for Tk, k = 0,.. .,4TV - 1. If 0 < k < 2TV - 1, (2.8)
is a well-known quadrature formula (see [9, p. 50]); if k = 2TV, it is a trivial
result by noticing that T2n(xj) = 1; if 2TV + 1 < k < 4TV - 1, then by writing
T2N+m — 2T^Tm - T2N-m, (2.8) follows easily from the orthogonality of the
Chebyshev polynomials.    D

LEMMA 2.4.   Let v(x) = Ylk=oakTk(x); then

N
— £ —(1 + Xj){\ - ßXj)v{Xj)vx(Xj)

(2.9)        3=0  3
f1   (l + x)(l-ßx)wx 7T

7-1     v/r^2 2
for any ß real.

2TV — 1
1 - /^TVcr^ - ß———aNaN-i

Proof. The result is an application of the previous lemma (see also [10]).    D

LEMMA 2.5.   Let ex(x,t) be defined by (2.6). Suppose that
N

eN(x,t) = £afcTfc(x);
fc=0

then

(2.10) TA2aN - aN-i)2 = -*N(2a2N - aNaN-i).
at

Proof. We can argue as in [10] using (2.6) and the fact that Q(x, t) is a polynomial
of degree TV - 3.    D
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BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 605

LEMMA 2.6.   Letetf(x,t) be defined by (2.6); then

tf£— (i + Xj){l-ßxj)eN(xj,t)-^-(xj,t)
3=0    3

(2.11) f1 (1+ 30(1-/3»).   deN .2TV-1 d 2
= l_i     v'i-x2    £N^x-dx-*ß-l6rTdt{2aN-aN-l]

-§tf(v-l-|).&.
Proo/. Combine the results of Lemma 2.4 and Lemma 2.5.    G

Theorem 2.1. Define

(2.12)
2TV-1,„ ^2

+ ?r   16TV   (2QN-aN-i) ,

and let
1- zm + z,

K    . ,2
_ _1_  V^   1 ~ ^m" 2K ¿-       1 -7/f

m=l

w/iere 2m are £/ie .zeros o/T«- and Ä" is chosen such that K > TV + 1. 77ien we /lave

2dV¥n\? + ^{^-ik) 4(1,0
(2-13) ri ,       IX2    , ._

<2/    (l + x)M--J   Q2(x,í)Vl-z2dz,    Vi > 0.

Proof. We evaluate the equation in (2.6) at the points Xj, then multiply by

■£-{l + Xj) (l--XjjeN(xj,t)

and sum up over j = 0,..., TV to get

— £— (l + Xj) i\ - -xA eN(x],t)—£N(xJ,t)
3=0    3 ^ '

(2.14) = ^£-(1 + ^) (l- iyXJ\eN(xj,t)--eN(x0,t)
3=0    3 \ /

N / 1      \
- ÎS£Ar(l. í) + ^r £ —(1 + x}) ( 1 - -Xj \ eN(Xj, t)Q{xj, t).

j=o i \        y

The right-hand side of (2.14) is composed of three terms. We start by estimating
the last term. First, we realize that the polynomial (l + x)(l - \x)enQ is of degree
2TV - 1 and therefore, by Lemma 2.3, we have

N
— £ -(1 + Xj) il - -Xjj eN(xj, t)Q(x3, t)

= j  (l + x)(l-^x\eN(x,t)Q(x,t)-~
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606 D. FUNARO AND D. GOTTLIEB

Upon using the Gauss quadrature formula based on zm, m= 1,... ,K, one gets

dx
vT

\j  (l + x)(l-^x)eNQ

— £(l + zm) (1- -zmj eN(zm,t)Q(zm,t)
m=l ^ '

S2K ^    2(1 -zm)  £N(Zm't}£i     2(1 -2m)

+
2(1 - Zr,

Zm t *m

2
1 - Zm + Z.

¿ET1. rJaU + oMi-^) ea(w)
m=

if

2^¿   2(1-*m)   £"(W)

+ f £(l-^m)(l + 2m)2(l-^m)    Q*(W)
m=l ^
K

-_L V   1      ^m + Zm   o / ^"2*^   2(1-*»)  £"(W)

+ 2 Í   (l + x)(l-^x\   Q2(x,tWl-x2dx.

For the first term in the right-hand side of (2.14) we use the result in Lemma 2.6
with ß = \. Therefore, by (2.12) and the previous estimate, we get

^||eKf<l£(l+I)(l-iI)A|4(M)-4(M)l^

K 2

+2/_'(1+"(1-HÎQ^"7CT-
Integration by parts for the first term in the right-hand side of (2.15) yields

dx

(2.15)

±J^l + x)(l-lx\£-[el(x,t)-e2N(l,t)}

1     f1    1-XH
2 7-1   2(1-

VT
+^-[e2N(x,t) - e%(l,t)}

dx
vT^x1

K
1   |   7T   ^   1 - Zm + Z2

where we noted that the last integrand is a polynomial of degree 2TV + 1 < 2K — 1
and therefore the Gauss quadrature formula is exact. Going back to (2.15), one
finally gets (2.13).    D
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BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 607

Remark 2.1. It can be shown that || ■ || defined in (2.12) is actually a norm. In
fact, it is possible to find a positive constant c, independent of TV, such that

dx
\\eN\\2>cje2N(l + x)-

vT-x^
for every polynomial sm of degree at most TV.    D

Finally, by integrating (2.13), we get the main result of this section.

THEOREM 2.2.   Let a be such that i:(a/N - in+i) > C*, where C* does not
depend on TV; then we have

\\eN(-,t)\\2 + C* f e2N(\,r)dr
Jo

(2.16) < \\PNf - PN-3f\\2

+ A I   Í  (1 + x) (l - |)2 Q2(x, t)Vi - x2 dx dr.

The previous theorem is a convergence result by noting that the right-hand side
of (2.16) goes to zero in a spectral way (see for instance [1]).

Remark 2.2. One can check that ir\+i/N converges to \ when TV goes to +00.
This means that, by taking a proportional to TV2, the hypothesis of Theorem 2.2 is
satisfied. This assumption is similar to that made for the time-independent problem
(see (1.10)).    D

3. Boundary Conditions for Elliptic Equations. A theoretical analysis
of the convergence for pseudospectral approximations of the solution of Neumann
problems, with a modified approach to treat the boundary conditions similar to that
examined in the previous sections, has been developed in [4]. Here we shall prove
that the matrices relative to such approximations have real and strictly negative
eigenvalues (note that, in the Chebyshev case, these matrices are not symmetric).
For this purpose, we consider the parabolic equation

(3.1) Ut = Uxx,        \x\ < 1,
with the Neumann boundary conditions

(3.2) Ux(±\) = 0.

The solution is determined up to a constant. The Chebyshev method with the
new boundary treatment involves seeking an TVth-degree polynomial u^ such that

(3'3) ~W = lS~   atx3 = cosC> y = i,...,Tv-i,
and

(3.4)

duN     d2uN        duN
-df-^x^ + a-dx- = 0     atX = 1'

d2uN_aduK = Q     rtx
dt        dx2 dx

where a is a positive constant to be determined later on. The eigenvalue problems
associated with (3.3)-(3.4) consist of finding a nonvanishing polynomial v, of degree
at most TV, such that

(3.5) Xv = vxx     at x = Xj, j = 1,..., TV — 1,
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608 D. FUNARO AND D. GOTTLIEB

and

(3.6)
Xv - vxx + avx = 0     at x = 1,

Xv — vxx — avx = 0     at x = — 1.

The problem (3.5) admits the trivial solution A = 0. We will show that the
other eigenvalues are real and strictly negative. We begin by noticing that one can
explicitly derive the characteristic polynomial of (3.5)-(3.6). In fact, (3.5) can be
written as follows:

(3.7)
where

\v = vxx + aR + bS,        a, o £ R,

_xT¡¿x) T'N(x)
« = HV^'        S(X)=    TV2

Therefore, following [8], we have the next result.

LEMMA 3.1.   The solution v of (3.7) is given by

(3.8) v(x) = ap(x,p) +bq(x,p),

where p = 1/A and
f oo

p(x,,z) = £/?(2fc)(x)/+1,

(3.9)
k=0

oc

o(x,M) = £5(2fc)(x)/+1.
fc=0

(3.10)

Proof. We first note that p and q are polynomials in x. Then, it is easily verified
that

j Xp- pxx = R     in R,

I Xq-qxx = S      in R,
and therefore v defined in (3.8) is the solution of (3.7). This completes the proof.    D

To get the characteristic polynomial of the second derivative operator, we need
to substitute (3.8) into (3.6) and make use of (3.10) to get

(3.11)
R(l)+a^(l,p)   +b

R(-l)-a^(-l,p)

S(l) + a||(M) 0.

+ b S(-l)-a-?-(-l,p)
ox

= 0.

From now on we suppose that TV is even (for TV odd, similar arguments can be
applied), so that we have R(l) = 5(1) = R(-l) = -S(-l) — 1 and p(x,p) =
p(—x,p), q(x,p) = —q(-x,p). Hence, we can state

THEOREM 3.1. The complex number X ^ 0 is an eigenvalue of (3.6) if and
only if p = 1/A satisfies

(3.12) l + o|(l,M) l + ag(l,,) = 0.

Proof.    The left-hand side of (3.12) is the determinant of (3.11). Since we are
looking for a nontrivial solution of (3.6), this determinant must vanish.    D
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BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 609

Now define

(3.13)
g(p) = l + a-£(l,p),

h(p) = l + a^(l,p).

It is not difficult to check that g and h are polynomials in p of degree TV/2. In
order to show that the roots of g(p) and h(p) are real negative and distinct, we use
the notion of a positive pair (see [5] and [8]). Two polynomials form a positive pair
if their roots are real negative and interlaced. We shall prove, for instance, that
g(p) and p(l,p)/p form a positive pair. To show that, we first need the following
result.

Lemma 3.2. Let

(3.14) f(p) = g(p2) + ap^ p?
where g is defined in (3.13) and p in (3.9).  Then f is a Hurwitz polynomial (i.e.,
all its roots lie in the left side of the imaginary axis) provided a is sufficiently large.

Proof. By the definitions (3.9) and (3.13), one easily gets

f(p) = 1 + a £ &2k+V (l)p2k+2 + ap £ RW (\)p2k
(3.15) fc=° k=0

= l + a£iü(m>(l)//n+1.
m=0

We show that / is the characteristic polynomial relative to the pseudospectral
approximation of a hyperbolic problem. In fact, define

oo

p(x,p)= £/?(-) (x)pm+l;
m=0

then it is readily verified that

(3.16) -p(x,p) = px(x,p) - ap(l,p)R(x),
P

and that the roots of f(p) = 1 + ap(l,p) = 0 give the corresponding eigenval-
ues. Now, (3.16) actually is the eigenvalue problem associated with the hyperbolic
equation

3.17 —— = —-awN(l,t)R(x).
at ox

With a proof similar to that of Theorem 2.1, where w^ plays the role of e^
with g = 0 and Q = 0, it is possible to show that, for some norm || ■ ||, we have
d\\w^r\\2/dt < 0 if a is suitably large. This implies that / is Hurwitz.    D

As an immediate result of Lemma 3.2, we have the next theorem.

THEOREM 3.2- If a is sufficiently large, then the roots p of the polynomial g
defined in (3.13) are real negative and distinct.

Proof. The theorem is a consequence of / being a Hurwitz polynomial. In fact,
this is a necessary and sufficient condition for g(p) and p(\, p)/p to form a positive
pair (see [5, p. 228]). In particular, the roots of g are real and negative.    G
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610 D. FUNARO AND D. GOTTLIEB

In the same way, we can also prove

THEOREM 3.3. If a is sufficiently large, then the roots p of the polynomial h
defined in (3.13) are real negative and distinct.

Proof. It can be verified that the polynomials h(p) and o(l, p)/p form a positive
pair by showing that h(p2) + ap[q(l, p2)/p2} is a Hurwitz polynomial.    D

Finally, by Theorems 3.1, 3.2, and 3.3, we can conclude with the following result.

THEOREM 3.4. If a is sufficiently large, then the eigenvalues X ^ 0 of the
second-derivative Chebyshev matrix with the boundary conditions (3.6) are real and
negative.    O

It is easily verified that a turns out to be proportional to TV2, as is also pointed
out in [4], where an explicit formula for a is given.

4. Analysis of the Eigenvalues and Numerical Experiments. In this
section we analyze the behavior of the eigenvalues of the (TV + 1) x (TV + 1) matrix
associated with the scheme (1.3). Applying the same proof of Theorem 2.1 in
Section 2 to the equation (2.5) with o = 0, we get d||t¿^||2/dí < 0.

N = 9

«=N2

+5

imX

re).

- another
eigenvalue
at  -47

Figure 4.1
Eigenvalues in the complex plane using scheme (1.3).
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This implies that all the eigenvalues have negative real parts. In Figure 4.1 they
are plotted for TV = 9 and a — TV2. The distribution in the complex plane is
similar to that of the eigenvalues corresponding to the TV x TV matrix associated
with the system (1.2). The extra eigenvalue coming from (1.3) is real negative and
its magnitude is proportional to TV2. If R^(X) is the TVth-degree characteristic
polynomial related to (1.2) (see [2] for the explicit expression of the coefficients), it
is easily verified that the eigenvalues of (1.3) are the TV + 1 roots of the equation

(4.1) XN+1 + aRN(X) = 0.

Following [6], it can be shown that the eigenfunction corresponding to the root A
of (4.1) (up to a normalizing constant) takes the following form

N
(4.2) u(x) = £/i^(x)A7V-fc,     where h(x) = T'N(x)(l +x).

fe=0

To discretize in time (2.2), we can use the second-order Runge-Kutta method. The
analysis of the stability of the method, based on the knowledge of the eigenvalues
of (1.3), gives an upper bound on the time step Ai. By choosing a proportional to
TV2, the restriction on Ai is given by the formula

(4-3) Ai ^-%^2-v     ' a- AN2

Therefore, by taking a = TV2, condition (4.3) says that Ai < 3.3/TV2. This restric-
tion is slightly more severe than that obtained by exactly imposing the boundary
condition in x = 1. Indeed, in this last case, we had Ai < 17/TV2 (see [2]). The
more restrictive condition on Ai is due to the presence of the real eigenvalue with
the largest magnitude. One could think that this result negatively influences time
discretization for scheme (2.2). Nevertheless, we argue that this is not the case.
In fact, consider problem (2.1), when the initial guess is f(x) = 1 - cos(x - 1)
and g = 0. We discretize the equation by collocation at the Chebyshev nodes Xj,
y = 1,..., TV. Two different conditions are tested in x = 1, namely

a) uN(l,t) = 0,

b) —(l,i) = —(1,0-01^(1, i).

We take TV = 8, a — TV2 and i € [0,T] with T = 1, and we evaluate the error E
as in (1.4) using both the schemes, respectively obtained by imposing conditions
a or b in (4.4). Second-order Runge-Kutta is used for time discretization. Figure
4.2 shows the behavior of the error versus Ai. As the analysis of the eigenvalues
pointed out, by increasing Ai using condition b, instability occurs earlier than using
condition a.

TABLE 4.1
Comparison of the errors for different  Ai and TV.

_At = .01_At = .001_At = .0001_
iV    Condition a     Condition b      Condition a     Condition b    Condition a     Condition b
8      .1649E-02        .1124E-02 .1644E-02        .1122E-02       .1644E-02        .1122E-02
16    .2076E-03        .2039E-03 .1996E-03        .1962E-03       .1995E-03        .1961E-03
32    .6837E-04      OVERFLOW      .3846E-04        .3653E-04       .3842E-04        .3649E-04
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EX 100

.054 .1 AI

Figure 4.2
Comparison of the errors versus At using different boundary conditions.

However, the error using method b is significantly smaller than that of method a.
Moreover, the choice of larger Ai for method a causes deterioration of the accuracy.

For the same example, Table 4.1 shows the error when T = 1 for various choices
of TV. Similarly, Table 4.2 shows the error when different values of T are used and
Ai = .001. In almost all the cases, the use of condition b is preferred, especially
when large values of T are considered. Similar results can be obtained when time-
dependent boundary conditions are considered.

TABLE 4.2

Comparison of the errors for different T and TV.

T = .5 10
N    Condition a     Condition b     Condition a     Condition b     Condition a     Condition b
8 .1107E-02
16 .2594E-03
32    .4168E-04

1200E-02
.2540E-03
.3904E-04

.8904E-03

.9567E-04

.1187E-04

.7875E-03

.8506E-04

.1174E-04

.2010E-07

.8312E-10

.2231E-14

.4098E-09

.2718E-13

.9872E-19

We conclude this section by discussing preconditioning for the matrix corre-
sponding to (1.3). For the matrix resulting from scheme (1.2) an efficient precondi-
tioner was proposed in [3]. Such preconditioner can be written as a product of two
TV x TV matrices Z and D, where D is the upwind finite-differences matrix at the
collocation nodes and Z is a shift in the space of polynomials of degree TV — 1, from
the values at the staggered grid points to the values at the initial grid. The eigen-
values after preconditioning are real positive and between 1 and 7r/2. An analogous
result holds for the (TV + 1) x (TV 4- 1) matrix corresponding to the scheme (1.3).
As preconditioner for this matrix we take ZD, where Z and D have respectively

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY CONDITIONS FOR HYPERBOLIC EQUATIONS 613

the form

Z =
/J
Vo

/     -a       0-0\

1

D xo -xi

0

V    o

D

The preconditioned eigenvalues can be explicitly computed also in this case. They
are

msm(ir/2N)A0 = l;        Am= v (,        m = l,...,TV.
sm(77i7r/2TV)

In particular, 1 < Am < n/2.  The corresponding eigenfunctions, up to a multi-
plicative constant, are

,2
um(x) = Tm(x) - 1

m m = 0,1,..., TV.
o(Am + l)'

The preconditioner presented above is particularly suggested when steady-state
solutions of problem (2.2) have to be computed.
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