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ABSTRACT

This paper points out that the turbine performance computation

method used widely at present in solving the performance of gas turbine

engines is a numerically instable algorithm. So a new method, namely

inverse algorithm, is proposed.

This paper then further proposes a new mathematical model of solv-

ing the stable performance of gas turbine engines. It has the features of

not only being suitable for inverse algorithm for turbine performance,

but also having less dimensions than existing models. So it has the ad-

vantages of high accuracy, rapid convergence, good stability, less com-

putations, and so forth. It has been fully proven that the accuracy of the

new model is much greater than that of the common model for gas tur-

bine engines. Additionally, the time consumed for solving the new model

is approximately 1 / 4— 1 / 10 of that for the common model. Therefore,

it is valuable in practice.

MOMENCLATURE

be	fuel rate

Cp constant pressure specific heat

D	mean diameter at inlet of first stage rotor blade of turbine

IE	residual values, vector of order (nxl)

E	residual value

f	fuel—air ratio, or correction factor

G	mass flow quantity

G	reduced flow quantity

k	adiabatic exponent

N	rotational speed

P	Power output, or pressure

R	gas constant

T	initial temperature

X	independent variables, vector of order (nxl)

x	independent variable

n	adiabatic efficiency

tlm mechanical efficiency

?1. 1 mechanical efficiency of low pressure rotor

1m2 mechanical efficiency of high pressure rotor

d„	corrected rotational speed in dimensionless form

rz	expansion ratio of turbine, or compression ratio of compressor

or	recovery factor of total pressure

r(i)	temperature ratio, t(A) < I

w	relaxation factor

Subscripts

B	combustion chamber

C	compressor

Cr	critical value

e	effective

ex exit

g	gas

H high pressure

in	inlet

L	low pressure, or load

M intermediate pressure

T turbine, or intermediate transition sector

o	design condition

I	inlet of low pressure compressor

2	inlet of high presure compressor

3	inlet of combustion chamber

4	inlet of high pressure turbine

5	inlet of intermediate pressure turbine

6	inlet of low pressure turbine

7	exit of low pressure turbine

Superscripts

•	stagnation

k	(k)th iteration

k+l	(k+l)th iteration

INTRODUCTION

In the calculation of the gas turbine engine performance, it is re-

quired to solve the following set of nonlinear equations

(x)=0,	XEDCR" , 1ER"
	

(1)

Although the methods of solving Eqs. (1) have been published ear-

lier in literature, calculation practice shows that one of the most effective

methods is the iterative calculation of the following formula of

Newton— Raphson

Xk +1 = Xk — J(E ,X) ;. k I V
	

(2)
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where J(E,X) is Jacobian matrix of the residual values IE, of order (n x

n), i. e.,

	aE1 aE 1	aE1

ax1 
aX2 ... ax„

	J(  X) = aE Z aEz	... aE2	 (3)
	axI axe	ax„

	aE„ aE„	aE„

	ax1 axe 	ax.

When the performance of gas turbine engines is solved with the help of

N—R method, it has been found that there exist the following problems

which have not been solved satisfactorily to date.

1. When a gas turbine engine works at part load, the surge of

compressor and the over—temperature of turbine have great influences

upon the work of the gas turbine engine. It can greatly decrease the work

range of the engine and make the local convergence region narrower. It

follows that the intial approximate solution has to be chosen close to the

correct solution, but that is hard to do. Thus, the iteration in the

computational process sometimes fails to converge.

2. Experience from computation tells us: When the dimensions of the

Jocobian Matrix in Newton—Raphson iteration formula (2) is greater

than or equal to 3, its inverted matrix is liable to become ill—conditioned.

3. The mathematical model (1) cannot be expressed by an analytic

formula. Therefore, the Jacobian matrix in formula (2) can be deter-

mined only by finite difference method. If X is a vector of the order (n x

1), then using the forward or backward difference, the time required for

calculating J(E,X) is n times that for calculating E(x). Thus, the amount

of work for computation is great.

4. In a variety of current algorithms, computation of performance of

turbine in the gas turbine engine is conducted in the sequence of high

pressure, intermediate pressure, and low pressure turbine. The i value

of every turbine is obtained from the given Ger, according to the char-

acteristic curves of every turbine. This algorithm will be called

"sequential algorithm" in this paper. It has been found through research

that the sequential algorithm is a numerically instable alghorithm. It will

result in significant errors on turbine performance and overall perform-

ance under certain conditions (see the next section).

This paper will discuss why the sequential algorithm resulted in er-

ror and a new method, that is, the inverse algorithm will be proposed.

Then, a new model for solving the performance of gas turbine engines

will be recommended to obtain a more rapidly converging and more ac-

curate solution.

THE ANALYSIS AND STUDY OF TURBINE PERFORM-
ANCE

While solving the set of equations (1), the computation of turbine

performance will be involved. The reason leading to error in the se-

quence algorithm, which is used widely at present, may be analysed as

follows.

With respect to the flow characteristic curve at a certain value of

1, in a conventional turbine characteristic diagram, we have the follow-

ing differential equation

dG	(n". —ni)
dir =1^	 (4)

where f is the correction factor when the flow characteristic curve at a

certain value of Au does not coincide with the ellipse rule completely. By

re—arranging Eq. (4) we have

bn f = k, 6G	 (5)

- dG
where operator b is the relative error,	for example, 6G =	, 6n r

= d7rr and so on. K l is the propagation factor of error and it is given
XT

by

G2
Ki =p.(:)
	 (6)

It is seen in Eq. (5) that when a. is obtained from G by the

sequential algorithm and the G at the inlet of a turbine has a deviation

of 6G because of round— off error and interpolation error, the value of

67r is surely K i times SG. The relationship between K i and n. for a

conventional turbine, by the use of equation (6), is shown in Fig.l. It is

shown in the figure that K, increases with the increase of 7t; . When

nT approaches its critical value n,, , Ki—► on , theoretically.

Therefore, when the turbine works at high load, a significant error may

result.

K^;

Fig. I Variations of K, and K 2 with n; in a certain turbine

To reduce errors, a new computation method for predicting turbine

performance, which is called inverse algorithm, is proposed here. By in-

verse algorithm it is meant that by the use of the i of the last turbine

the G of every preceding turbine can be found according to the turbine

characteristics curves. Re—arranging equation (5), we have

6G = k 2 brz¢	 (7)

where k2 is the propagation factor of error and it is given by

K== 1 = f'nr(it —ni)
K-	G2	

(8 )

It is shown in Eq. (7) that when G is obtained from n; by inverse

algorithm, the 6G is surely K 2 times the Sit. . Fig.1 also shows the re-

lationship between K 2 and nr for conventional turbine by the use of

Eq. (8). It is shown in the figure that K 2 decreases with the increase of

nT , when rzr approaches its critical value n; , K 2—"- 0 theoretically.

Thus, high load of turbine will result in a smaller propagated error. The

situation of nT = 1 and K Z--.- on, is impossible to occur in a gas turbine.

This is because the expansion ratio of all turbines is always larger than I

even if in idle running.

In order to further analyse the differences between the two

algorithms, we cite an example for explanation. The high pressure, in-

termediate pressure, and low pressure turbines of a certain  marine gas

turbine engine operate in series connection. The 1r. and G of every

turbine and the total expansion ratio it. 	are calculated by the

sequential algorithm and inverse algorithm respectively, assuming

the 2um. values, the 2UMT values, the A uLT values, and the Gxr values
are the same. The relative error is also calculated to be

Sn • = (nT )sequential — (7a 2 )inverse

( r )sequentiaal

SG =
 (G)sequential — (G)inverse

(G)sequential

The calculated results are shown in Fig. 2. It is known from the figure

that:
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nis nor	
iIte inverse alsayiUm

7lnr
	n  i	— — the segeential algorithw,.

15 2.5

0L 

1 2230	 22355	 224.0	Gnr

Fig. 2 Variations of rc , xMT , aLT , and ir	with G,

1. When GHT increases, the difference between two rzT obtained

respectively from two algorithms increases gradually, while the differ-

ence between two a. increases more rapidly. On the other hand, the

difference between two it decreases gradually with the decrease of load

	

and so does the difference between two a	. The differences almost

vanish at low load. It shows that the calculated results of these two

algorithms are almost the same when the turbine works at low load.

2. The high pressure turbine has the smallest bzzHT , but low pressure

turbine has the largest bnLT under the same G XT .

3. Increase of the number of turbines will result in a larger cumulative

error. The turbines downstream on the expansion line have more notable

calculating errors than those upstream. Take the design point as an ex-

ample,bitHT =-0.02%; brcMT = 1.57%; bnLT =14.79%; brz; _

16.11%.

4. GHT is assumed to have no error in our example. In common

computation for gas turbines, the G Hr is obtained through interpola-

tion of compressor characteristics and other calculations, Thus, it surely

has an error bG Xr . It is obvious that calculating the turbine perform-

ance on the SGHT basis via sequantial algorithm will result in more sig-

nificant errors.

As has been said before, the round-off errors and the interpolation

errors have a great influence upon the computational results of the

sequential algorithm under some conditions. It is called a numerically

instable algorithm in mathematics. When the sequential algorithm is

used to compute turbine performance, it will result in errors in turbine

performance and overall performance.

To sum up, it is necessary to apply the inverse algorithm in solving

the performance of gas turbine engines in order to raise the accuracy of

the computation.

A NEW MATHEMATICAL MODEL FOR STEADY
STATE PERFORMANCE OF GAS TURBINE ENGINES

Following is the derivation of a new mathematical model for a typi-

cal form of marine gas turbine engine which has three turbines and two

compressors (HT drives HC, MT drives LC, and LT drives load).

Listed below are the flow continuity equations and power balance

equations of high pressure rotor and low pressure rotor, and the coup-

ling equations of the two rotors.

GHC''[i _ GHT'fT agn/C
 (9)

Pz P; 'J Tj (1 + f){z

TZ =a , R, jT 1 +1 10Ti [( Lc) 1x^c - 
]n LC ( )

[('H/C) RKnc ' — 1]--
'1HC

	=(1+nC,T; CPXT
 -T•(i)Xrin^2	 (11)

Tz CPXC

[(c)
KLC

n ic — 1] 1
n LC

CPMT	Tt T'
=C1C2C3(1

+f)CPCC T•('1)Hr7.= T̂  (1- T • (A)Mrin,1 (12)

G LC	 G HC'T T i
	 (13)P1	-	Pi	7.z >ric(t	 (13

RHT • IMT • lLT =>IAC • aic • as • a, x • a8 • aT	 (14)

where 1 = G	Ga	GUT—HC	 C4 = GLr
=	 In order to

	GLC 
^zG

HC
, ^a=GHT' and	

GMT

simplity the solving of the equations, the aerodynamic parameters of

compressors can be expressed as a function of the gas parameters in tur-

bines obtained by the inverse algorithm. Substitution of Eq. (9) in Eq.

(11) gives

(GHC'̂ T 2 ) z [(nt'^C) Fxxc - l]--
 1

FL	 '1;,C ( 7tkC) 2

a1	CPHT
 Il —T' (A)HTl(G

HTT 4 ) 2
?1.2	(15)(1+2 CPHC	 P;

Similarly, from Eqs. (10), (12), (13) and (14)

((.Lc) RR ac - 1] 1 (G LC	- )z

/	nLe	Pi

=	C3 /	CPMT  T
 • (A)HT

( 1 +f1 iCz CPLC

•^1 —T (^)MTlrl w(G
HT `^ , 4 )2(1L/TnfT 7[LT )2	

(16)

Eq. (16) and Eq. (15) can be written as

Ei=I(nLc) xx.0 -11 1 (GLc,^) z -C1=0	 (17)
tLe	Pi

E2=[(n/c )—i;--1	
(G HC 'I7z' )z 1

n	
-C2=0	(18 )

 FL	(ltJC)z	 )

Where

C1 (1+//yly2 
CPC T• (A)HT[1—T•(A)MT]

•'i ml(G
HTY l 4 )2(R/T1MTI T )2

P;	a MOT

C 2 =	Or	CPHT
 ^ 1 —T' (^)Xrl(G

HT- 1 4 )I,l^nz
(1 +n{z CPHC	 P;

C i and C2 include only aerodynamic parameters of turbines. They

can be obtained when the performance computation of turbines in series

is done by inverse algorithm, assuming a certain 1LT . In fact, the

aLT here is the parameter representing a certain part load of gas tur-

bine engine. Some coefficients in the expressions can be assumed to be

the same as design values when lacking data. CPHT , CPMT , CPLT
CpHC , C,, , and f can also be corrected in successive iterations.

Eqs. (17) and (18) may be expressed in vector form (1), wherein
IE = (E 1 , Ez)T . The IE here is a hybrid residual expressing power, flow

rate, pressure ratio and so forth. Therefore, Eqs. (17) and (18) can also

be called hybrid residual equations. The hybrid residual equations in-

volve six unknown quantities: it , ryL , GLC 'f {  / P i

, XHC P?1Hc and G He' T / FL.  Therefore, we still need four sup-

plementary equations to slove equations (17) and (18) , two of which are

coupling equations of high and low pressure rotors. Incorporating and

re-arranging Eqs. (17), (10) and (13), we have

(GLC'TT
 ) z = C(GXc'IT

) z (nLc) z - Ci	 (19)
Pi	P2

Eq. (14) can be rewritten as

RHC • 7rLC = C3	 (20)

Where C3=aec ,rkTRLr/(aua.:asar

The other two equations are the characteristic equations of high
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and low pressure compressors.

GLC`ri
'ILC J( Pi	rtic)	 (21)

G mc'T'
nec = A P	, Irkc)	 (22)

i

By simultaneously solving the six equations, that is Eqs. (17), (18), (19),

(20), (21) and (22), we can determine the values of the six unknowns and

obtain a set of unique solutions. Of the six unknowns,

• 
and C'—HPHC>>1'LC, ^c HC	 2	are all functions of nL andrI 

GLC`TTl
 If we put x — n' and x 

GLCJ'
P1
	p	1 — Lc	2=	P ,	, Eqs (17) and

1
(18) can be written as

El =fl(xl, X2)=0

E2=f2(xl, X2)=0	 (23)

By Newton—Raphson's iteration method, we obtain the solution of
Eqs. (23) to be

Xk+l = Xk _ mk J_1(E ,X) ,_ !'k	k=0,1,•-•	 (24)

where cwk represents the relaxing factor of (k)th iteraion, and J(E, X)

represents Jacobian matrix (2 x 2 dimensions) with respect to residuals.

The hybrid residual equations (23) do not satisfy the rotational speed

equality equation. Therefore, it is necessory to use a rotational speed

iterative equation to do the correction of rotational speed. The general

expression of rotational speed iterative equation can be expressed as fol-
lows

xk+l = /
, (x k )	 (k=0,1,2,...)	 (25)

Where x corresponds to N HT , or NMT , or NLT ; '(x) represents the

process which is used to calculate rotational speeds of compressors or a

propeller from the given rotational speed of the turbine. i(x) may be cal-

led an iterative function, while {x k} is called an iterative sequence or

iterative format. In the first iteration, x may be selected as the design

value of N. , or NMT , or Ni°T . Then the rotational speed is corrected
in terms of two different situations.

The determination of corredted rotational speed of the high and inter-

mediate pressure turbines

NHC and N can be determined from characteristic curves of high

or low pressure compressors respectively after solving Eqs. (23). If NHc
N Ĥ°11 or N# , we put NHS = NHT or N NMT . The cor-

rection formulas of reduced rotational speeds of high or low pressure

turbines can be expressed as follows:

,iNT= 
"D HTN 97	

(26)
60 k 2+1 RTC

or

A&T = iDMTNVT
	(27)

60 k 2+ 1 IZT S

The determination of corrected rotational speed of the low pressure tur-

bine (or power turbine)

The power output of a gas turbine engine P( l) can be obtained after

solving Eqs. (23). Assume the design power output of a gas turbine en-
gine is P(.°l and design rotational speed of the load is Ni°l Since the pro-
peller is driven by the low pressure turbine, we take approximatively

PSI	NT
Po) =(N-T) )

i.e.	NT = NT ) P ^

If N	NiT , we put NLI) = N(1T . Then, the reduced rotational

speed of low pressure turbine may be corrected with following equation

^ r =
 lDLTN2N'

	(28)

60 
k+1RT°

To sum up, by successively iterating Eqs. (26), (27), and (28) we can

obtain three sequences of approximate solutions: xUHT , •• , A (k)iJ1{T g• • ,

2UMT , ...  UMT ,
^ ... ; .ZULT , ... I a .ULT , ... until Nhct' ) — N%^

<el ; IN^`ct l) — N[ r I <e 2 ; IN?+l ) — N'} l <c 3 . In the next sec-

tion we will explain roughly that this iterative equation has a good

convergence.

DISCUSSION

The features of the new mathematical model

In the last section we proposed a new mathematical model in which

the problem of solving three—dimensional residual equations is reduced

to a mixed problem of solving two—dimensional residual equations to-

gether with extracting a root of a one—dimensional non—linear eauation.

Such compound model has the following features.

1. This model is suitable for the use of these algorithms which has good

accuracy and numerical stability to obtain the performance of turbines

and compressors.

2. The dimensions of hybrid residual equations (23) is less than that of

the model used widely at present. Therefore, it is easy to converge in

iteration and needs less computation.

3. When the inverse algorithm is used in the computation of turbine

performance, it is very effective to correct rotational speed with the

iterative method. Besides, it also has rapid convergence and good stabili-
ty.

As to the last feature mentioned above, whether the iteration of

rotational speed will surely converge is a problem of common interest.

Here we explain it briefly as follows:

In higher mathematics, the following convergence principle about

iteration is given: If the equation x=>V(x) satisfies the conditions: i(x)

remains continuous on [a, b] and if to any x [a, b], there exists 14 "(x)I

L < 1, then the iteration process x"+l = /i(xk) (k = 0, 1, --•) will con-

verge with any initial approximate x0 [a, b], and lim x k = x
k»m

The '(x) in this paper is only an algorithm and therefore has no

concrete analytical expression in the course of solving of gas turbine en-

gine performance. Thus, it is difficult to derive >G" (x). But it is shown in

the example calculation that the iterations of rotational speed will con-

verge rapidly when the inverse algorithm i used to calculate turbine per-

formance.

It is mainly because the inverse algorithm is numerically more stable

and the round—off error only slightly affects the calculated accuracy.

Thus, ly(x) is a continuous function (see Fig. 3). It is also shown in the

example calculation that when the load of the gas turbine engine is high,

fr (x) is much less than 1. Thus, the iterative sequence x" +l =1(x") (k = 0,

1, •••) will rapidly converge to the solution of the original equation ac-

cording to the principle of convergence. But since the sequential

algorithm is numerically instable, it results in the accumulation and en-

largement of the error. Besides, it also leads to a fluctuation and jump of

the *(x), so it can not guarantee I "(x)I <1 everywhere. Thus, the

iteration of rotational speed is not only slow but also frequently can not

converge (see Fig.4).

The accuracy and computation time of the new type of mathematical
model

Because this model is on the basis of simultaneously solving conti-

nuity equations, power balance equations, pressure ratio equality equa-

tion and rotational speed equality equation, there is no doubt that it is

theoretically correct. In practice this method has been used for the com-

putation of the performance of a marine gas turbine engine and has ob-
tained satisfactory results.
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"^` 5tuo	5920	6000	 N1,T(r/n,;„)

NNc
( r/mn)

9450

9350

9250

9150

9150	9250	9350	9450/VNr(r/m ^)

Fig. 3 Relation between n HC (or nLc) and nH.^ (or nMT) under the con-

dition of the inverse algorithm, with Ne / Ne o = 0.64 and I n fit l — n'Nr

<l(r/min); or Int —n1rrI<l(r/min).

w	g1
(r/,nln) Cr/,,l

8720 4690 

8680 4650	 5^/	/	 NHc= W ^1

4><`

^	3
X40 4610	2

(// 4c'l

8600 4570

8560 4533
4570	41O /'Mr(4650	4690	r/m;,,

8560	860n	8640	9680	8720 NHr(r/mr.)

Fig. 4 Relation between nLc (or n Hc) and nxr (or nMT) under the con-

dition of the sequential algorithm, with Ne / Ne o = 0.23 and

In t l — n rr I <50(r / min)orini. 1 — nirr I <50(r / min)

In order to explain clearly the advantages of this method, the

sequential algorithm and the inverse algorithm are respectively used to

compute turbine performance under the conditions of the same type of

gas turbine engine and the same form of mathematical model (23). The

computational results are shown in Fig.5. It can be seen from Fig.5 that

the computational results of the two algorithms almost coincide at low

load, but the calculating error from these two algorithms increases grad-

ually with the increase of load. When the inverse algorithm is used in

new model (23), the difference of absolute rotation between turbine and

compressor, that is, the accuracy a of iterated rotational speed can be

taken as 1 (r/ min) at different part load. When the sequential algorithm

is used in the new model (23), the value of c has to increase with the in-

crease of load, otherwise the computation fails to converge. This is be-

cause that the numerical instability of the sequential algorithm will be

larger with the increase of load. For the example above, the values of a

under two different algorithms are shown in table 1.

No
(Kw)

(0000

5000

0	5Gt7	 two	 0

the sequential algorithm	P*

----- the inverse algorithm

G'
Fig. 5 Variations of Pc and be with P ^	in a certain gas turbine

engine under two different algorithms

Table I. The values of s under two different algorithms

C'11 442.71 583.60 980.79 1319.8
Pi

s
sequential
algorithm 1 5 50 175

(r / min)
afgon rim 1 1 I 1

It may be seen from this table that, with the increase of the values of

e, the sequential algorithm will doubtlessly result in remarkable errors

under the conditions of the higher load of the gas turbine engine.

The new model (23) involved in the inverse algorithm will rapidly

converge with high accuracy under the condition of any part load of gas

turbine engine, because the values of accuracy a may be taken to be a

small and constant quantity with the variation of load. Besides, it also

involves less computation. Listed below are the CPU times consumed for

the computation under the conditions of different part loads with DPS 8

computer.

Table 2. The CPU times comsumed for the computation under the

different part loads

Ne / Neo 0.057 0.130 0.284 0.642 1.0

CPUtime lmin 19sec lmin 18see 46sec 40sec 36sec

It can be seen in the table that larger loads result in less time con-

sumed for the same accuracy. The time comsumed for this method is

approximately 4 - 10 less than that for common methods.

CONCLUSIONS

5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
9
0
/7

9
0
5
4
/V

0
0
2
T

0
2
A

0
3
1
/2

3
9
9
1
6
5
/v

0
0
2
t0

2
a
0
3
1
-9

0
-g

t-3
3
7

.p
d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1. It is proposed in this paper to use the compound model composed of

two—dimensional hybrid residual equations and a one—dimensional

non—linear equation as the new model for calculation of steady state

performance of marine gas turbine engines. It has the advantages of high

accuracy, rapid convergence, good stability, and less computation. The

model is also apropriate for land gas turbine engines and aero—gas tur-

bine engines.

2. The inverse algorithm, a new method proposed in this paper for the

computation of the performance of turbines in series connection, has

good numerical stability. It also has a good effect on reducing the accu-

mulation and propagation of round—off errors and interpolation errors.

Using this algorithm to solve the performance of gas turbine engines, the

accuracy and stability of computation can be greatly improved.

3. The use of two—dimensional hybrid residual equations proposed in

this paper will avoid the equations to become ill—conditioned. It has a

rapid convergence due to the application of the inverse algorithm. It has

not been found that the inversion of the Jacobian Matrix has ever failed.

4. This paper proposes to use one—dimensional non—linear equation

for solving the rotational speed by use of iteration method. Because, in

this method, the performance of series turbines is obtained by inverse

algorithm, it can well satisfy the convergence principle of iteration. The

example computation shows that it is not difficult to limit the difference

between rotational speeds of turbines and that of compressors in less

than I (r /min).
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