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In recent years, obtaining RNA secondary structure information has played an important

role in RNA and gene function research. Although some RNA secondary structures

can be gained experimentally, in most cases, efficient, and accurate computational

methods are still needed to predict RNA secondary structure. Current RNA secondary

structure prediction methods are mainly based on the minimum free energy algorithm,

which finds the optimal folding state of RNA in vivo using an iterative method to meet

the minimum energy or other constraints. However, due to the complexity of biotic

environment, a true RNA structure always keeps the balance of biological potential

energy status, rather than the optimal folding status that meets the minimum energy.

For short sequence RNA its equilibrium energy status for the RNA folding organism is

close to the minimum free energy status; therefore, the minimum free energy algorithm

for predicting RNA secondary structure has higher accuracy. Nevertheless, in a longer

sequence RNA, constant folding causes its biopotential energy balance to deviate

far from the minimum free energy status. This deviation is because of its complex

structure and results in a serious decline in the prediction accuracy of its secondary

structure. In this paper, we propose a novel RNA secondary structure prediction algorithm

using a convolutional neural network model combined with a dynamic programming

method to improve the accuracy with large-scale RNA sequence and structure data.

We analyze current experimental RNA sequences and structure data to construct a

deep convolutional network model, and then we extract implicit features of an effective

classification from large-scale data to predict the pairing probability of each base in

an RNA sequence. For the obtained probabilities of RNA sequence base pairing, an

enhanced dynamic programmingmethod is applied to obtain the optimal RNA secondary

structure. Results indicate that our proposed method is superior to the common RNA

secondary structure prediction algorithms in predicting three benchmark RNA families.

Based on the characteristics of deep learning algorithm, it can be inferred that themethod

proposed in this paper has a 30% higher prediction success rate when compared

with other algorithms, which will be needed as the amount of real RNA structure data

increases in the future.

Keywords: convolutional neural network, dynamic programming, RNA secondary structure, base pairing

probability, energy balance status
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INTRODUCTION

RNA is an important basic substance in living organisms. It
plays an important role in encoding, decoding, regulating, and
expressing genes. The function of RNA in an organism depends
mainly on its tertiary structure. However, the tertiary structure of
RNA molecules is complex and lacks an effective representation
to describe it; thus, it is very difficult to directly predict the
tertiary structure from the primary structure of RNA molecules.
Therefore, predicting the secondary structure of RNA from the
primary structure of RNA becomes the main process for studying
RNA structure.

At present, the identified RNA secondary structure can be
obtained mainly by means of biological experiments such as
X-ray diffraction and NMR. However, biological experimental
methods are inefficient, expensive, and arduous when measuring
structures on large scales (Novikova et al., 2012); furthermore,
they are not effective for all RNA molecules (Fürtig et al.,
2003). Howard and Eran proposed the PARS technique to
predict the RNA secondary structure (Kertesz et al., 2010). It
applies endonucleases to cleave the single-stranded portion and
the double-stranded portion of the RNA to create a library
of two RNA fragments, and then sequence-analyzes the two
RNA fragment libraries separately to obtain an RNA secondary
structure. But endonucleases cannot pass through the cell
membrane, and RNA can only be extracted from the cells. This
will destroy an RNA natural structure and result in structural
changes. Ding et al. (2014) uses DMS for biological experiments.
DMS can react with adenine and cytosine in unpaired RNA
sequences in cells, and RNA regions reactive with DMS cannot
be reverse transcribed into DNA. The DNA reverse-transcribed
into RNA is subjected to sequence analysis to determine unpaired
RNA regions. DMS technology still has drawbacks. It can only
determine two paired nucleotides in an RNA molecule, and the
rest requires computer algorithms for simulation. In addition,
researchers have used SHAPE reagents instead of DMS reagents
(Wilkinson et al., 2008; Novikova et al., 2013), which can acylate
the 2’ hydroxyl groups of four bases in an unpaired state, thereby
analyzing the single-strand flexibility of the RNA backbone at any
position and speculating whether the bases are paired. However,
the pairing object cannot be determined. Up until now, not
one biological RNA method has been able to predict a true
RNA secondary structure in large quantities; thus, computational
prediction algorithms are still needed to effectively predict RNA
secondary structures.

There are two main types of mainstream RNA secondary
structure prediction algorithms. One is the deterministic
dynamic programming algorithm. The earliest use of a dynamic
programming algorithm is the Nussinov algorithm based on the
maximum number of base pairings (Nussinov et al., 1978). This
algorithm simply assumes that the RNA single-strands are folded
into themselves so that base pairs can (as much as possible)
constitute the secondary structure of the RNA. However, this
algorithm has low prediction accuracy due to the assumption
that the premise is too simple, and the formed base pairs are
often discontinuous and cannot form stem regions. Based on the
Nussinov algorithm and energy information, Zuker proposed a

minimum free energy algorithm (Zuker and Stiegler, 1981). The
minimum free energy algorithm assumes that RNA structure has
a great relationship with free energy. The size of free energy
is not only related to the type of base pairing, but the free
energy size is also affected by adjacent base pairs. The free
energy of different structures (hair-loop, inner-loop, etc.) is also
very different. The minimum free algorithm still uses the idea
of dynamic programming, but the calculated object is a series
of complex free energy parameters obtained from experiments.
Many well-known RNA secondary structure prediction software
applications, such as the mfold web server (Zuker, 2003) and
RNAfold (Hofacker et al., 1994), have adopted the minimum
free algorithm and its improvement. However, experiments show
that due to the complexity of the internal environment, RNA
is seldom folded in a manner that can minimize the free
energy of the structure, and it is generally in a suboptimal
energy folded structure (Zou et al., 2008).Notably, the Zuker
algorithm has better prediction results for secondary structures of
shorter RNAs. However, for longer RNAs, its prediction accuracy
acutely decreases.

The second category of mainstream RNA secondary structure
prediction algorithms refers to the comparative sequence analysis
methods. In biological experiments, it is usually necessary to
simultaneously process one or more sets of homologous RNA
sequences. It is generally believed that in homologous RNA
molecules, the conservation of the structure is greater than
the conservation of the sequence. For example, the secondary
structures of all tRNA molecules are clover-shaped. This
consistency of shape gives tRNA molecules the structural
consistency they need to perform similar functions. Therefore,
the comparing sequence method can improve prediction
accuracy to a certain extent. There are three main methods of
comparative sequence analysis. The first method includes a prior
distribution of RNA structures, which includes evolutionary
history when comparing and post-predicting (Knudsen and
Hein, 1999). The results obtain by this method strongly
depend on the effect of multiple sequence alignment. The
second method simultaneously performs structural prediction
and sequence comparison, but this algorithm consumes
excessive computational resources (Sankoff, 1985). The third
comparative sequence analysis method predicts first and
compares afterwards. This method can obtain multiple candidate
structures, but it cannot be guaranteed to contain real structures
(Allali and Sagot, 2005).

Artificial intelligence methods have been applied in many
fields. At present, there have been some artificial intelligence
learning algorithms such as the genetic algorithm (Hu, 2003),
neural network algorithm (Zhang et al., 2006), support vector
machine algorithm, and other methods to predict the secondary
structure of RNA. All achieved good results. However, all these
methods are based on small samples, and the prediction accuracy
is low for single-class data samples. With the development of
computer technology, deep learning methods have emerged in
the field of artificial intelligence, which can effectively improve
the accuracy of prediction. Deep learning methods can extract
effective and implicit features through deep-seated networks in
large-scale data and use these features to construct effective
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prediction models. At present, deep learning methods have
made great breakthroughs in the field of protein secondary
structure prediction (Wang et al., 2016). However, compared
with secondary structure prediction of proteins, RNA secondary
structure prediction is more complicated and difficult since
each pair of bases on the RNA needs to correspond to another
base in the chain even though each amino acid of a protein
is not related to other amino acids in the chain during
structure prediction. This paper proposes a novel computational
method that combines deep learning with dynamic programming
to predict RNA secondary structure prediction, which can
effectively solve the problems above. Compared with the current
mainstream algorithms, our method has better results.

DATA AND METHODS

The RNA secondary structure is mainly composed of a stem
structure formed by complementary pairing of contiguous bases
and a cyclic structure formed by non-pairing of bases. This RNA
secondary structure is also called the stem-and-loop structure,
As long as all the paired bases of an RNA sequence are
determined, the secondary structure of the entire RNA can be
determined. Based on the RNA secondary prediction problems
presented in our literature search up to this point, this paper
proposes a more efficient algorithm for RNA secondary structure
prediction. This algorithm, referred to as CDPfold, combines
a convolutional neural network and dynamic programming as
well as a sequence alignment method. In comparative sequence
analysis, we constructed a convolutional neural network to
extract the characteristics of effective implicit features from large-
scale data and predicted the matching probability of each base on
the RNA sequence. Convolutional neural networks can use the
currently collected RNA sequences as training samples, which
solves the constraints of homologous sequences in comparative
sequence analysis. For the probabilistic results obtained by the
convolutional neural network, we used the iterative idea of
dynamic programming and the definition of the RNA secondary
structure to obtain the base matching probability and the
maximum RNA secondary structure. This operation can avoid
the degradation of long sequence prediction accuracy due to the
use of the free energy method. The process of CDPfold predicting
an RNA secondary structure is shown in Figure 1.

RNA Matrix Representation Based on RNA
Sequence Pairing
An RNA sequence is mainly composed of four types of base
combinations, “A,” “U,” “G,” and “C,” but most of the algorithm
models do not accept the “AUGC” combination sequence as
input data. So, we had to encode the sequence. Currently, the
most common encoding method is one-hot encoding, but since
one-hot encoding does not reflect the implicit matching between
bases, we developed a new encoding method.

We built the matrix Wi×i for each RNA, where each row of
the matrix represents possible pairings of bases at that position,
as follows:

1. According to the number of hydrogen bonds between the
paired bases, the pairing weight between A and U is set to 2,
and the pairing weight between G and C is set to 3. Since the
U-G pair is a wobble base pair, the pairing weight between U
and G is set to x (0 < x < 2), which leads to:

P(Rj,Rj) =















2, (if (Rj = Aand Rj = U) or (Ri = U and Rj = A))

3, (if (Ri = Gand Rj = C) or (Ri = C and Rj = G))

x, (if (Ri = Gand Rj = U) or (Ri = U and Rj = G))

0, else

(1)

2. For any two positions, such as i, j on the RNA sequence, this
article must not only consider the pairing of these two bases,
but also whether these two positions can form paired bases on
the stem. Therefore, we had to take into account the pairing
of the bases on the left (right) side of i with the right (left)
side of j.

3. For one stem, the paired bases in the middle of the stem
are relatively stable, and the paired bases on both sides
are relatively unstable. Therefore, the calculation offers the
possibility of pairing the two positions, i and j, on an RNA
sequence. This article refers to the idea of the local weighted
linear regression, adding a Gaussian function as a weight. The
closer i and j were, the higher the weight of the paired bases
and the greater their effect.

Combining these points of view, this paper introduces the
following algorithm flow to calculate the specific values of each
position of the coding matrixWi×i, as shown in Figure 2.

Base pairing according to RNA sequence coding matrix can
be obtained by calculation. Through the analysis of thematrix, we
can know that the position of the stem region in the real structure
of the RNA is represented by a sub-diagonal line with a large
intermediate value and a small value on both sides in the coding
matrix. The advantage of the convolutional neural networks in
deep learning methods is that they can effectively extract the
regional features of the blocks in the matrix. Therefore, we
used the convolutional neural networks instead of other machine
learningmodels to predict the pairing of bases in RNA sequences.

Convolutional Neural Network Predicts the
Probabilities of RNA Sequence Base
Pairing
Our goal is to predict the pairing of each base on an RNA
sequence; so, we had to split the RNA sequence encoding matrix.
The RNA representation method converts a sequence of length n
into a matrix of size n× n.We use the sliding window method to
divide the matrix into nmatrices of size d× n. Where d is the size
of the sliding window. Thus, the bases on each RNA sequence can
be represented by a matrix of size d × n. The size of the sliding
window, using the sliding window method, has a great influence
on the experiment. If the sliding window is set too small, the
extracted features will be incomplete. Too large a window setting
will result in more redundant information in the matrix, which
leads to a longer training model and may affect the accuracy of
the final prediction model prediction. After analysis, the value of
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FIGURE 1 | The process of CDPfold.

the sliding window should be related to the length of the stem
region in the RNA. Therefore, we had to count the stem region
information of the experimental object to determine the size of
the sliding window.

The convolutional neural network requires that the data
input into the model be of a uniform size, and the size of the
RNA sequence corresponding to each RNA sequence is different
due to the length of the RNA sequence. Therefore, during the
experiment, we need to calculate the mean value of the RNA
sequence length in the experimental data set and use that mean
value to normalize the data. The sliding window method and
normalization of the RNA coding matrix can convert the RNA
sequence of length n into n matrices of the same size, which
satisfies the requirements of the convolutional neural network for
input data.

This article uses the dot bracket representation to represent
the RNA secondary structure. The dot-bracket indicates that the
RNA secondary structure is represented as a combination of
sequences of “(“,”)” and “.”. Therefore, the output layer of the
convolutional neural network designed in this paper is composed
of three nodes, and the output of each base corresponds to
the matrix corresponding to the probability of the three labels
“(“, “)"and “.”.

Maximum Probability Sum Algorithm
Corrects Predictions
The deep learning method has a high accuracy rate for
classification problems. However, RNA secondary structure
prediction is not a simple classification problem.We can consider
RNA secondary structure prediction as a combination of multiple
classification problems under certain restrictions.

From the result of the previous step, we can obtain Pleft ,
Pright , and Ppoint . Which are the probabilities of the three labels
“(“,”)” and “.” in the secondary structure of each base in the
RNA sequence. However, if the label with the highest probability
of prediction is used as the prediction result for each base,
this combination does not guarantee that such a result will
satisfy the definition of the secondary structure defined for
RNA: It may appear that the number of left brackets is not
equal to the number of right brackets or a prediction could
be made in which the matched brackets cannot pair with the
corresponding bases. So we need to modify the prediction
results to meet the requirements of the definition of an RNA
secondary structure.

Based on the probabilistic results obtained in the previous
step of the convolutional neural network, the goal of this paper
is to find a compatible bracketed sequence that represents
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FIGURE 2 | The process of RNA matrix representation based on RNA sequence pairing.

the secondary structure of the RNA. To achieve this, the
process requires:

1. Sequence Bracket Matching.
2. Matching brackets in the sequence that pair the bases in the

corresponding positions (A-U,G-C,G-U).
3. To satisfy 1 and 2, the sum of the probabilities is maximized

based on the output of each tag within its convolutional
neural network.

To find a sequence that meets these requirements, this article
enhances the Nussinov algorithm in the dynamic programming
method. This requires changing the number of iteratively
accumulated paired bases in the Nussinov algorithm to the sum
of the cumulative probability of the iterative cumulative bases.
Thus, a maximum probability sum algorithm was proposed.
This algorithm makes use of the dynamic programming method.
Throughmultiple iterations, the secondary structure of RNA that
satisfies the requirements can be obtained. The specific iteration
formula follows:

N(i, j) = max



















N(i+ 1, j)+ ppoint(Ri)
N(i, j− 1)+ ppoint(Rj)
N(i+ 1, j− 1)+ δ(Rj,Rj)
max
i<k<j

[N(i, k)+ N(k+ 1, j)]

δ(Rj,Rj) =

{

pleft(Ri)+ pright(Rj) (Ri and Rj paired)

ppoint(Ri)+ ppoint(Rj) (Ri and Rj not paired)

(2)

whereN (i, j) is themaximumprobability of the i-th base to the
j-th base in the RNA sequence. Pleft , Pright , and Ppointrepresent
the probability of the ith base of the RNA sequence being
outputted by the convolutional neural network for three labels.

RESULTS

Prediction of Secondary Structure of
Single Family RNA by CDPfold
The data used in our experiment are derived from Turner and
Mathews (2009). The data contained in the data set is shown in
Table 1.

Among the various RNA families included in the dataset,
we first selected the 5sRNA with the largest number and the
most concentrated distribution without a pseudoknot. Sequence
analysis of the 5sRNA dataset reveals that some identical or
similar sequence data exists in RNA dataset. In order to avoid the
effect of the experiments by the same or similar sequence data,
it is necessary to preprocess the data in the dataset. That is, the
5sRNA data set is programmed to remove the same or similar
sequences in the data. After the duplication removal operation,
the number of 5s RNAs used in the experiment is 1,059. To
train the model and accurately evaluate the entire model, we
divide the number of removed 5sRNA datasets into a training
set, consisting of a validation set and a test set. The ratio of
RNAs in the training sets, validation sets and test set is 7:2:1.
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TABLE 1 | Distribution of RNA types and their number in each dataset.

RNA Type Number

5sRNA 1283

16sRNA 110

25sRNA 35

grp1RNA 98

grp2RNA 11

RNasePRNA 454

srpRNA 928

tmRNA 462

tRNA 557

telomeraseRNA 37

FIGURE 3 | 5sRNA maximum stem length statistics.

The experiment uses the training set to train the network model
and determine the model parameters; then, the verification set
is used to make the model selection. Therefore, in the final
optimization and determination of the model, the final test
set is used to measure the generalization ability of the whole
prediction method.

Several parameters in the CDPfold can affect the results of
the experiment, and the problematic parameters must be fixed
before the experiment. The first problem parameter is the size of
the sliding window. We calculated the length of the largest stem
region of all RNAs in the 5sRNA data set used in the experiment.
The results obtained are shown in the Figure 3. The length of the
longest stem region in the 5sRNA dataset is used as the size of the
sliding window method. We also calculated the average length of
the 5sRNA sequence in the data set, as shown in Figure 4.

Figure 4 shows that the maximum stem length of the 5sRNA
is 11 continuous base pair, and the average length of the
sequence is 120 nt. Since the convolutional neural network has
a good accuracy for the shifted and scaled images, this paper
applies the idea of image scaling, which means that the matrix
representation of the bases obtained through the sliding window
can be uniformly scaled into a matrix size of 11× 120.

FIGURE 4 | 5sRNA length distribution.

FIGURE 5 | Convolutional neural network structure in the 5sRNA experiment.

The framework used in the convolutional neural network
model constructed in this paper is Tensorflow. The convolutional
neural network model consists of an input layer, three
convolutional layers, three pooling layers, two fully connected
layers, and a final output layer. In the test phase, the tf.nn.top_k()
function of the output layer is removed to obtain the probability
that each base will correspond to three tags. The convolutional
neural network model used in this paper is shown in Figure 5.

The data input from the input layer of the convolutional
neural network is represented by the sliding window algorithm
and the normalized base matrix. The parameter optimization
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FIGURE 6 | The accuracy of the model in the training set and the validation

set.

method using a batch random gradient descent uses 256 data
for each iteration. The convolutional neural network consists of
three convolutional layers, three pooling layers, and two fully
connected layers, where each convolutional layer uses 16 3 ×

3 convolution kernels, and each pool layer also uses 3 × 3
convolution kernels. The largest pool, and each full connection
layer uses 32 nodes. The output layer of the model maps the data
to the three labels of the point bracket representation, and the
probability that the base belongs to three labels can be verified.
The initialization method of each parameter of the model is the
Xavier initialization method, and the error function of the output
layer adopts the maximum entropy function. When the model
parameters are trained, the model is iterated 400 times.

Through the sliding window method and normalization, a
matrix representation corresponding to each base in the 5s RNA
sequence in training set can be obtained, wherein each base has
a corresponding structural label. Analysis of the data shows that
because the number of unpaired bases in each 5s RNA sequence is
slightly larger than the number of paired base pairs, this will result
in an imbalance of the three types of data samples in the data set,
so the data needs to be processed with unbalanced data. Since the
amount of experimental data is sufficient, the upsampling data
processing method will be adopted to balance the various sample
data in the data set.

The processed data is used to train the convolutional neural
network model. The performance of the convolutional neural
network model we built on the training set and test set is shown
in Figure 6. From Figure 6, we can see that the model has a
similar test accuracy on the training set and the test set, and the
experimental results are not over-fitting. This figure also shows
that the model has a similar test accuracy on the training set and
the test set, and the experimental results are not over-fitting.

After determining the model used in the experiment, we need
to select an appropriate value for the weight x of G-U pairing
(Formula 1). The matching weight of the swing pair should not
be too large or too small. Unfavorable weights will result in a

FIGURE 7 | The ErrorBar of accuracy changes with wobble base pairing

weights.

decrease in prediction accuracy. In order to select the appropriate
weights, we conducted a number of experiments. The results are
shown in Figure 7. Experiments show that when the matching
weight of G-U pairing is 0.8, the overall model’s mean and
variance of accuracy are optimal.

The test set data are input into the trained CDPfold, and
the pairing probability of each base on each RNA obtained by
the convolutional neural network is used as an intermediate
result. These intermediate results are used in our probability
and maximum correction algorithm. The optimal secondary
structure that satisfies the definition of RNA secondary structure
is obtained, and compared with the corresponding real structure,
thereby validating our complete model design.

For the prediction of an RNA secondary structure obtained by
the CDPfold, we used two indicators, sensitivity and specificity.
Sensitivity refers to the predicted percentage of all base pairs in
the real structure, corresponding to the recall-rate in machine
learning. Specificity refers to the correct percentage of all
predicted base pairs, corresponding to the precision-rate in
machine learning. The RNA secondary structure prediction
algorithm is difficult to achieve in general since it is always biased
to one side. The F-score can be used to measure the precision
and recall.

F-score =
2× Sensitivity× Specificity

Sensitivity+ Specificity
(3)

Based on the above metrics, we obtained the predicted effects of
the designed algorithm model on the 5sRNA dataset. We used
the same data to perform experiments under other published
algorithms. Table 2 compares the results of our experiments
included in our new algorithm with the results obtained by
other popular programs in current software. Table 2 shows
the accuracy of our designed algorithm compared with other
algorithms on the 5sRNA dataset. Obviously, the sensitivity and
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specificity of our designed algorithm are significantly higher than
that found in other algorithms.

Prediction of Secondary Structure of
Multiple Family RNAs by CDPfold
Based on the above studies, we used the 5sRNA dataset trained
model to predict the secondary structure of tRNA. The results
have a sensitivity of 0.2 and a specificity of 0.15.This is quite
different from the 5sRNA dataset trained model effect on
the 5sRNA data set. We analyzed this result and found the
function of 5sRNA to quite different from that of tRNA. Models
trained using the 5sRNA dataset only extract features that
favor the classification of 5sRNA. The lack of these features
in tRNA resulted in a greatly reduced prediction accuracy.
Therefore, without determining the RNA function or family, it
is not possible to directly predict those characteristics using the
established model. Thus, the entire sample data must be obtained
to build a general model.

First, we analyzed all the data in the dataset and found
pseudoknots in some RNA structure data. Since the
pseudoknot belongs to RNA tertiary structure category, all
data with pseudoknots were deleted in the pre-processing
operation. Table 3 shows the number of RNAs after the
pseudoknot deletion.

We chose the 5sRNA, srpRNA, and tRNA using a number
>100 after the pseudoknot, and first performed removal of
redundant operations on these three types of RNA to delete the
same or similar sequence data in the RNA data set. Figure 8

TABLE 2 | Comparison of algorithms in 5sRna.

Software 5sRNA

Sensitivity Specificity F-score

mfold 0.693 0.704 0.698

RNAfold 0.694 0.704 0.699

cofold 0.585 0.591 0.588

Sfold 0.703 0.733 0.718

CDPfold 0.932 0.916 0.924

TABLE 3 | The number of RNAs in each data set before and after the

pseudo-knot was removed.

RNA Type Before After

5sRNA 1283 1283

16sRNA 110 50

25sRNA 35 20

grp1RNA 98 0

grp2RNA 11 11

RNasePRNA 454 37

srpRNA 928 928

tmRNA 462 3

tRNA 557 557

telomeraseRNA 37 0

shows the RNAs of each family and the data distribution after
the removal of identical or similar sequence data.

We also calculated the maximum stem length of each RNA
sequence in the data set and the average length of the RNA
sequence, which are shown in Figures 9, 10.

As it can be seen from Figures 9, 10, the maximum length
of the stem region is 19 continuous base pair, and the average
length of the sequence is 128 nt. Thus, the RNA matrix
representation will be represented as a matrix of size 19 ×

128 after normalization and sliding window operations. The
experiment divides the data into training sets, validation sets and
test sets, in which the ratio of various types of RNA remained at
7:2:1. In the general model, due to the significant increase in the
number of data types and RNA, the experiment will fine-tune the
convolutional neural network of the original 5sRNA prediction
model: To extract themore generalized hidden features of various
RNAs, the number of convolutional and pooling layers is reduced
from three to two. Other configuration parameters have not
changed. During the training process, the batch data size for
each iteration is increased from 256 to 512, and the number of
iterations is increased to 2,000. In Figure 11, the convolutional
neural network model used in the experiment is as follows.

After our convolutional neural network model is trained, the
test set data is input into the trained general model to obtain the
pairing probability of each base on each RNA, and the maximum
probability and base correction algorithm are used for pairing
probability and RNA sequence. In this manner, the optimal
secondary structure of the RNA sequence is obtained.

Using the F-score, we can get the predicted effect of the
designed generic model on the three types of RNA datasets.
We use the same test data to perform experiments under
other published algorithms. The comparison results are shown
in Table 4.

DISCUSSION

This paper proposes a CDPfold prediction method based on
a convolutional neural network for RNA secondary structure.
This method uses the convolutional neural network to extract
the hidden features of RNA sequence data and applies it to the
field of structural prediction. The results are corrected using a
dynamic programming-based correction algorithm to obtain an
optimal RNA secondary structure. Experimentally, our method
has had good performance in predicting the accuracy of a RNA
secondary structure.

Although CDPfold has achieved good results in RNA
secondary structure prediction, some problems encountered
during the experiment process are summarized below, and
suggestions for solving the problem follow.

First, the reason why RNA can form stem regions depends
on the hydrogen bonds formed by the complementary pairing of
bases. The secondary structure of DNA mainly exists in the form
of a double helix. Due to the limitation of double helix structure,
base pairing in DNA can only be composed of pyrimidines
and hydrazine pairs. Therefore, DNA molecules only have two
pairing modes: A-T and G-C.RNA molecules are different. RNA
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FIGURE 8 | Number and length distribution of the RNA data of each family after redundancy.

FIGURE 9 | Stem length statistics in the data set.

molecules mainly exist in single-stranded forms. Their double-
stranded regions are composed of different regions of the same
chain. They do not have a long structural regular double-helix
structure. Therefore, in addition to standard A-U and G-C base
pairs, there are also G-U swing pairs. The hydrogen bonds
formed by the rocking pair are unstable, and not all G and U

FIGURE 10 | RNA sequence length distribution.

elements can form paired base pairs. The current handling of G-
U swing pairings will be fixed, either as pairable or as unpairable.
In this paper, a smaller number is selected as the pairing weight
on the G-U swing pair, but the G-U pairing problem is not
well-explained. We believe that it is necessary to dynamically
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FIGURE 11 | Convolutional neural network model in general model.

TABLE 4 | Comparison of three types of RNA based on their prediction accuracy.

Software 5sRNA tRNA srpRNA

Mfold 0.698 0.631 0.566

RNAfold 0.699 0.632 0.577

CDPfold 0.911 0.905 0.823

determine whether G and U can form paired base pairs according
to different states during the process of RNA folding, but this
dynamic method is extremely difficult, and there is no research
to propose a corresponding solution.

The results predicted by the CDPfold method proposed in
this paper still need to be further corrected in the results
predicted by the convolutional neural network. This is because all
machine learning algorithms have generalization errors, and the
convolutional nerves are caused by the existence of generalization
errors. The results obtained by the network did not form a
satisfactory RNA secondary structure. A similar situation has
emerged in other studies that use machine learning algorithms to
solve RNA secondary structure predictions. There are two main
solutions to obtaining a satisfactory RNA secondary structure for

more accurate predictions. One is to directly optimize the results
of the machine learning model. This paper adopts this approach.
The second is to use the results as conditional constraints, and
use these constraints to optimize other algorithms. In essence,
both approaches are an optimization process for intermediate
results. In this problem, it may be an effective solution to generate
an anti-network model. The generator that generates the anti-
network is used to generate the RNA secondary structure, and
the discriminator is used to determine whether the results satisfy
the definition of the RNA secondary structure. The optimal RNA
secondary structure is obtained by the confrontation between
the generator and the discriminator. The difficulty of this
method is how to design a good training method. Otherwise, the
output may be unsatisfactory due to the freedom of generating
the model.

In the selection method of an optimization algorithm, the
authors of this paper used group intelligence optimization
algorithms such as genetic algorithm. These intelligent
algorithms can solve complex non-linear problems by simulating
biological evolution. In this paper, the probabilistic results
provided by the convolutional neural network are used as
the probability of selection, mutation, hybridization, etc. in
the genetic algorithm, and the number of mismatches in the
simulated RNA structural species is used as the optimization
target. Although this method can also obtain the RNA secondary
structure that meets the requirements, the randomness of each
link in the group intelligent optimization algorithm and the
discreteness of the data prevent the algorithm from having a
fixed number of optimization iterations. In addition, since the
goal is to find the secondary structure of the RNA that does not
mismatch, and the number of such results is large, the result
of each optimization is uncertain, so the group intelligence
algorithm cannot be used as the optimization algorithm of
this paper. Therefore, the dynamic programming algorithm
was chosen as the optimization algorithm, and the probability
and maximum correction method are proposed based on the
Nussinov algorithm.

In the current prediction of the RNA secondary structure,
the prediction of pseudoknots is still a difficult point. In
this study, it was found that 5sRNA, srpRNA, and tRNA are
free of pseudoknots, while most of RNasePRNA and tmRNA
have pseudoknots. In these RNAs containing pseudoknots, the
number of pseudoknots in each RNA is relatively small, but
their existence cannot be ignored. Not only pseudoknots plays an
important role in the function of the RNA, but also the prediction
of the pseudoknot effect is wrong, it will cause a mistake in the
normal stem area. The RNA structure representation method
used in this paper uses the dot bracket representation. However,
the dot bracket representation does not reflect the false knots
present in the RNA structure. Therefore, the data containing
the pseudoknots are deleted in the experiment. If a secondary
structure representation of RNA can be found that can represent
a pseudoknot, the CDPfold proposed in this paper can be
modified accordingly to predict the secondary structure of the
RNA with a pseudoknot.

The experimental data used in this paper focuses on 5sRNA,
srpRNA, and tRNA. The length of these three types of RNA
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sequences is mostly between 50 and 350 nt. In this part of the
length range, the effect of CDPfold is due to the existing RNA
prediction software. The prediction of the secondary structure of
longer RNA sequences is not reflected. This is because the current
experimental methods are not perfect enough. The secondary
structure data of long-sequence RNAs measured by experiments
are not enough. The data set was provided by Turner and
Mathews (2009) used in the experiment. Less than 200 RNA
sequences longer than 1,000 nt were used, which is <10% of the
entire data set. The most important factor affecting the predictive
effect of deep learning is the amount of data, so we did not study
longer sequences. However, with the continuous improvement of
experimental techniques, the number of long sequence structures
measured by experiments continues to increase. On this basis,
models based on deep learning have an advantage.

The last point is the instability of the RNA structure.
The structure of the RNA molecule is highly susceptible to
environmental factors. Studies have shown that RNA molecules
can damage their natural structures when they are exposed to
an in vitro environment, leading to structural damage; thus, in
vivo structural prediction experiments are not perfect, which
means the current RNA secondary structure is not necessarily a
real structure.

In addition, unlike proteins, which function differently, not
all RNA molecules can function in the body; furthermore, RNA
that encodes proteins accounts for only 2% of the total RNA.
Thus, RNA structures that do not have an actual function
may not be as fixed as functional RNA structures. These
problems all have an impact on the prediction of RNA secondary
structure prediction.

In general, the CDP-Fold algorithm based on the
convolutional neural network for RNA secondary structure

prediction achieved good results in data sets without pseudo-
knots. Many difficulties remain in the research of RNA
secondary structure prediction, and many parts still need to
be improved. Our research provides new ideas for the study
of the RNA secondary structure and serves as a very good
source of structural prediction problems and solutions for
other researchers.
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