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  1 

Abstract 2 

Wind energy is of increasing importance for a sustainable energy supply worldwide. At the 3 

same time, concerns have been growing about the number of birds and bats being killed at 4 

wind turbines. In this situation, methods for a reliable estimation of bird and bat fatality 5 

numbers are needed. To obtain an unbiased estimate of the number of fatalities from fatality 6 

searches the probability to detect the carcass of an animal being killed at a turbine has to be 7 

assessed by considering carcass persistence rate, searcher efficiency, and the probability that a 8 

killed animal falls into a searched area. Here, we describe a new formula to determine the 9 

detection probability of birds or bats that are killed at wind turbines and to estimate the 10 

number of fatalities from the number of carcasses found. The formula was developed to 11 

analyse a large data set of bats killed at wind turbines in Germany. In simulations, we 12 

compared it to three other formulas used in this context. Our new formula seems to have 13 

unbiased results when searcher efficiency and carcass removal rate are constant over time. 14 

When searcher efficiency or carcass removal rate varied with time all four formulas showed a 15 

similar bias. These comparative results can be used to choose between methods depending on 16 

the (quality of) information available. Our estimator can, for instance, be adapted to different 17 

situations including temporal changes of searcher efficiency or carcass removal rate because it 18 

is based on an explicit process model.  19 

 20 

Introduction 21 

Wind energy is showing a rapid growth and can help to avoid the ecological and health 22 

problems of fossil and nuclear energy production (Holdren & Smith 2000). At the same time, 23 

concerns have been growing about birds and bats being killed at wind energy facilities and 24 

possible ecological (e.g. de Lucas et al. 2007, Arnett et al. 2008) and economic (Boyles et al. 25 

2011) consequences. In this situation, methods for a reliable estimation of bird and bat fatality 26 

numbers are needed that are simple enough to qualify for a broad use. In order to reliably 27 

estimate the number of fatalities at wind turbines from the number of carcasses detected one 28 

has to correct for imperfect detection ("searcher efficiency"), for carcass removal, and, if 29 

necessary, for incompletely searched area. To do so, a model is needed that reflects the 30 

important steps of the actual processes as well as possible sources of imprecision.  31 

The key parameter in estimating bird and bat fatalities is the probability that an animal being 32 

killed is found by a searcher (detection probability p). On the one hand, this probability 33 

depends on the distribution of the carcasses in the area beneath a wind turbine and on the 34 
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fraction of this area that can be searched, i.e. the proportion of carcasses lying in the area 1 

searched (a). On the other hand, detection probability p is influenced by the carcass 2 

persistence probability (s), i.e. the probability that a carcass does not disappear within 24 3 

hours (due to removal e.g. by scavengers), and the searcher efficiency (f), i.e. the probability 4 

that a carcass that has fallen in the area searched and has not been removed is found by a 5 

searcher. Thus, the probability that an animal killed is also found can be determined as the 6 

product of a and a function g which depends on s and f :  a * g(s,f). For simplicity, we will 7 

assume here that 100 % of the area beneath a wind turbine is searched (a = 1), so that the 8 

detection probability is p = g(s,f). A simple example for function g is the product of carcass 9 

persistence probability and searcher efficiency, p = f * s. While this equation includes two 10 

very important factors, it does not take into account that carcasses that have been overlooked 11 

may be found during a later search. Consequently, the number of fatalities will be 12 

overestimated particularly when searcher efficiency is low and persistence time is high. More 13 

sophisticated estimators have been developed to account for repeated searches (e.g. Erickson 14 

et al. 2004, Huso 2010). In an extensive simulation study Huso (2010) showed that her 15 

estimator is more reliable than two commonly used estimators (Johnson et al. 2003, Kerns & 16 

Kerlinger 2004). These simulations also showed that her estimator works well for the North 17 

American situations where carcass persistence times normally are long (on average 32 d, 18 

Arnett et al. 2009) and usually search intervals of more than 14 days are used. However, for 19 

Central European situations with short persistence times (average 4.5 d, Niermann et al. 2011) 20 

and short search intervals (usually 1 -7 days) her estimator tends to overestimate the number 21 

of fatalities (Huso 2010). Therefore, we have developed a new formula to estimate the 22 

detection probability that allows for a detection of carcasses during repeated searches, and 23 

that is also reliable for central European situations. Our estimator is based on a conceptually 24 

different model than the one used by Johnson et al. (2003), Erickson et al. (2004) and Kerns 25 

& Kerlinger (2004) or the one used by Huso (2010). Our estimator is a more general 26 

formulation of the conceptual model used by Baerwald and Barclay (2009, see methods).  27 

An important advantage of our approach is that the formula can be adapted to different 28 

distributions of searcher efficiency or carcass removal rates. This results from the fact that it 29 

is based on an explicit model of the carcass removal and search processes. Searcher efficiency 30 

depends on the ability of a searcher to detect a carcass. This efficiency can be assumed to be 31 

approximately constant over time (i.e. with the number of searches) on uniform and bare 32 

ground. However, on structured ground some of the carcasses might be much more difficult 33 

to detect than others (Arnett 2006). As a result, carcasses that are easy to detect are more 34 
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likely to be found during the first search, whereas hidden carcasses will be more likely to 1 

remain on the plot. Searcher efficiency for a cohort of carcasses will, hence, decrease in 2 

repeated searches. A modification of our formula accounts for such a decreasing searcher 3 

efficiency in repeated searches. 4 

We assessed the bias and precision of our new formula for the estimation of bat or bird 5 

fatalities in a simulation study. We compared the results obtained with our formula to that of 6 

three different approaches to model carcass detection. The other approaches were (1) the 7 

above-mentioned simple formula p = f * s
*
, where s* is the remaining proportion of carcasses 8 

of animals that were killed during one search interval (see below) (2) the formula of Erickson 9 

et al. (2004) that is one of the latest versions of the earlier estimators before the publication of 10 

Huso (2010), and (3) the formula of Huso (2010). 11 

Simulation results were also compared with the uncorrected raw number of carcasses found 12 

(C). Using the carcass count as an estimate for the number of animals killed ( N̂ ), i.e. N̂ = C, 13 

or just correcting it in a simple way, e.g. N̂  = C/(f*s
*
) is still common practice despite the 14 

obvious shortcomings (Smallwood & Karas 2009, Dulac 2010).  15 

In summary, we suggest a new formula to estimate bat or bird mortality at wind turbines and 16 

analyse differences in bias and precision of five methods when used in different situations. 17 

The new estimator is based on an explicit model of the processes and can be adapted to 18 

specific situations when needed. Our goal is to help in deciding which method should 19 

advantageously be used in which context. 20 

 21 

Methods  22 

The formula 23 

The formula we developed is based on an explicit model of two processes: the removal by 24 

scavengers or decay, and the carcass search. The basic formula assumes that a mean number 25 

of m  individuals are killed per day, that the carcasses of these killed animals are removed (by 26 

scavengers, decay etc.) at a constant probability (1-s; i.e., s = daily persistence probability), 27 

and that the searcher efficiency is constant over time and similar for all carcasses. Variations 28 

of the formula can account for non-constancy in persistence time and/or searcher efficiency 29 

(see below). Searches are conducted at regular intervals of d days. During each search 30 

carcasses are found with searcher efficiency f and are removed from the plot. Based on these 31 

assumptions the number of carcasses found can be calculated (see Appendix, Table 1): 32 

 33 
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C  is the total number of carcasses found during n searches conducted at intervals of d days, 2 

given an average number of m  animals killed per night, a searcher efficiency f, and a carcass 3 

persistence rate s. If we divide the number of detected carcasses by the total number of 4 

animals killed (m nd), we obtain an estimate for the probability p of finding an animal that is 5 

killed at a wind energy turbine: 6 

ndm

C
p =ˆ  7 

If the above formula for C  is inserted in this formula, m  cancels out. This makes the 8 

detection probability p̂  independent of the number of killed animals: 9 
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The formula assumes that f and s are constant over time (see results of the simulation study) 12 

and that these two parameters do not differ between individual carcasses (see Discussion).  13 

Baerwald and Barclay (2009) used a similar formula as the one presented here. In their 14 

formula a carcass that is not found during the first search can also be found during the second 15 

search but not thereafter. In contrast, our formula allows that such a carcass can be found at 16 

any subsequent search. The present formula may, therefore, be seen as a generalization of the 17 

method proposed by Baerwald and Barclay (2009).  18 

 19 

Simulation study to assess the performance of the new formula in comparison with other 20 

formulas 21 

To assess the performance of the new formula we simulated data sets and subsequently used 22 

five different estimators for the number of animals killed. The simplest estimator used the 23 

number of carcasses found as a measure of mortality: N̂  = !
=

n

i

i
c

1

 where ci equals the number 24 

of carcasses found during the i-th search. All other estimators include a formula to estimate 25 

the probability p to detect a killed animal. For simplicity, we here divide the number of found 26 

carcasses by p̂ to obtain an estimate of the number of killed animals: N̂  = 
p

c
n

i

i

ˆ

1

!
= . We present 27 

in the Appendix a method to obtain a credible interval for this estimate. 28 
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 1 

The four formulas for the detection probability were: 2 

1) The simple formula p̂  = f s
*
, where 

* ( 1)

1

1 d
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= "  is the proportion of carcasses that 3 

died in the time interval ]t-d, t] and remained until the search at time t, and f is the searcher 4 

efficiency, i.e. the proportion of carcasses present during the search that are found by the 5 

searcher. This formula ignores carcasses that were overlooked by the searchers. i.e. it assumes 6 

that all remaining carcasses have a probability of zero to be detected during further searches. 7 

2) Our formula in two versions, namely in its basic version as presented above (1) as well as 8 

in an adapted version that accounts for decreasing searcher efficiency with the number of 9 

searches: 10 
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 and k is the factor by which the searcher efficiency decreases with each 13 

search. 14 

 15 

3) The formula suggested by Erickson et al. (2004): 16 
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where t is the mean persistence time of a carcass. This parameter is related to the persistence 18 

probability s with t = 
)ln(

1

s!
.  19 

4) A formula recently developed by Huso (2010) and applied by Arnett et al. (2009):  20 
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where f is the searcher’s efficiency, )
~
,min(*
ddd = , td *)01.0log(

~
!= , and 22 

)/
~
,1min( ddk = . Here, r is the proportion of animals killed during d nights which are still 23 

there at the end of the investigation period. k is either 1 or the ratio between the time until 24 

99% of the carcasses have disappeared and d.  25 

 26 
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We simulated data given different scenarios (see below) and applied the five estimators to 1 

obtain an estimate of the number of killed animals from the number of carcasses found. For 2 

every simulated data set we calculated the relative error of the estimates by dividing the 3 

difference between estimated and true number of animals killed by the true number:  4 

relative error of estimate = ( N̂ -N)/ N 5 

 6 

The following protocol was used to simulate data: 7 

1. For n*d days, the true number of killed animals per day mt was drawn from a Poisson-8 

distribution with expected value m . m was either held constant or was proportional to 9 

empirical acoustic bat activity data taken from Behr et al. (2011).  10 

2. The number of carcasses that have not been removed during the first day, N1, was drawn 11 

from a binomial distribution N1~binom(m1, s). 12 

2. The number of carcasses present (Nt) at day t = 2 to t = I was simulated autoregressively as 13 

the sum of two binomial processes: those animals that were killed before day t and have not 14 

been removed (lt) and those that were killed during day t and were not removed during that 15 

day (kt): Nt = lt + kt  with  lt ~ binom(Nt-1, s) and kt ~ binom(mt, s) 16 

3. At intervals of d days virtual searches were performed. For each search day, we subtracted 17 

from Nt the number of carcasses found and removed by a searcher: Nt
*
 = Nt – ci  with  ci ~ 18 

binom(Nt, f). Nt was then replaced by Nt
*
. 19 

4. Steps 2 and 3 were repeated until t reached the end of the investigation period (t = I). 20 

 21 

For scenarios with variable persistence probabilities s or variable searcher efficiencies f we 22 

kept track of the individual cohorts (animals killed on the same day) during step 2 to 4. In all 23 

simulations, the number of carcasses was zero at the beginning of the study in order to 24 

exclude effects of the initial number of carcasses on the bias estimates. In field studies, this 25 

effect can be reduced by clean-out searches at the beginning of the study and by discarding 26 

old carcasses during the first days of the study.  27 

Data were simulated in order to estimate the bias in the different formulas and to assess their 28 

robustness against violations of the assumptions: First, the bias of the five estimators was 29 

assessed for data that met all assumptions made by our new basic formula (1), i.e. constant 30 

persistence probability as well as constant and independent searcher efficiency. Based on 31 

these assumptions, 12 different scenarios were simulated by using constant or variable 32 

mortality rates (for the constant case: m  = 0.01, for the variable case: mt proportional to 33 

empirical acoustic bat activity with an average of 0.01), short or high average carcass 34 



 8

persistence times ( t = 3 or t = 30) and three different search intervals (d = 1, 7, 14). 1 

Searcher efficiency f was set to 0.8 and the study period to I = 100 days. Secondly, we 2 

assessed the robustness of the basic formula against violation of the assumption of constant 3 

persistence probability. The little empirical data available on carcass persistence times suggest 4 

that persistence time might generally increase with exposure time of carcasses (e.g. American 5 

crows and House sparrows in North America, Ward et al. 2006; Guillemots in Alaska, Van 6 

Pelt & Piatt 1995; bats and mice, own data in electronic supplement). Though, these own data 7 

(electronic supplement) and those of Erickson et al. (2004) show that this increase in 8 

persistence time with exposure time might be negligible. To account for the scarce knowledge 9 

about temporal variability in carcass persistence times, we simulated data once with 10 

decreasing and once with increasing persistence probabilities over time for the six scenarios 11 

described above with constant mt. Virtual carcass persistence times were simulated as random 12 

draws from a Weibull distribution with t = 3 or 30 and shape parameter 0.7 for increasing 13 

and 1.3 for decreasing persistence probability (see electronic supplement). Third, robustness 14 

against variation of searcher efficiency was tested using nine scenarios: the average 15 

persistence time was set to 4.5 days, the search interval was d = 1, 7, or 14, and searcher 16 

efficiency was constant f = 0.5, 0.8, or decreased per carcass with the number of searches i: 17 

f(i) = 0.8 * 0.25
(i-1)

. For these simulations we also used our adapted formula (2) that takes into 18 

account a decrease in searcher efficiency. The range of parameter values that was used was 19 

inspired by studies on bat collisions in Germany (Brinkmann et al. 2011) and North America 20 

(Arnett et al. 2009).  21 

A last set of simulations was carried out to assess the maximally possible precision that can 22 

be obtained when estimating the number of fatalities based on carcass searches. Here, we 23 

assumed that all parameters are constant in time. In different simulation runs we varied 24 

average mortality rates (m  from 0.01 to 1), and searcher efficiency (f from 0.05 to 0.95). 25 

Hundred scenarios were produced that differed in the number of carcasses found and in the 26 

detection probability for carcasses. For each scenario, the standard deviation of the relative 27 

error from 1000 replicates was used as a measure for minimal uncertainty (i.e. maximal 28 

precision).  29 

In field data, several additional factors will increase uncertainty, such as a clumped temporal 30 

distribution of fatalities (i.e. a non-constant mortality rate) or an uncertainty in the estimated 31 

searcher efficiency and persistence probability. The latter two were assumed to be known in 32 

our simulations but actually have to be estimated from separate experiments using specific 33 

methods. Therefore, the standard deviations presented here have to be interpreted as a 34 
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minimal possible uncertainty given the number of carcasses found and the specific detection 1 

probability. 2 

Due to the large variety in methods applied to estimate searcher efficiency and carcass 3 

removal rates, the exploration of bias and precision in these estimates is beyond the topic of 4 

this paper. However, we present a worked example in the Appendix that shows how to 5 

combine the uncertainty of the estimated searcher efficiency and carcass persistence 6 

probability with the uncertainty that is inherent to the observation process. 7 

The simulations were done in R 2.12.0 (R Development Core Team 2010). The R-code for 8 

the simulations can be obtained from the authors upon request. 9 

 10 

Results 11 

The data simulation generally showed that the proportion of simulated data sets with zero 12 

carcasses found (i.e. no single carcass was found during the whole study period) reached up to 13 

40 % when assuming a true average of 10 animals killed during the 100 days of virtual study 14 

period (Fig. 1). The proportion increased with increasing search interval, with decreasing 15 

persistence time, and when mortality rate varied over time. The 95 % range of the relative 16 

errors strongly correlated with the proportion of zero counts among the data sets and they 17 

were similar between the different estimators. 18 

The uncorrected count consistently underestimated the number of fatalities in all scenarios 19 

(Fig. 1, 2). The simple formula produced an overestimation with searcher efficiency kept 20 

constant over time for short search intervals (d = 1) and with long persistence times (Fig. 1). 21 

When searcher efficiency decreased with the number of searches the simple formula appeared 22 

to perform well, at least for an average persistence time of 4.5 days and search intervals of 1, 23 

7 or 14 days (Fig. 2, right panel).  24 

The new formula presented here appeared to be unbiased for all scenarios with constant 25 

parameters and robust towards a decrease of removal probability with time (Fig 1). When 26 

removal probability increased over time the formula produced an underestimation of the 27 

number of fatalities, especially with short persistence times and long search intervals. The 28 

size of this underestimation was similar to the underestimation by the other three formulas. 29 

When searcher efficiency decreased over time the basic version of our new formula produced 30 

a slight underestimation for short search intervals (Fig. 2). However, this bias was reduced 31 

when the adapted formula was used (Fig. 2). 32 

The formula of Erickson et al. (2004) slightly underestimated the number of fatalities when 33 

persistence times were short (Fig. 1), but appeared to produce unbiased results for long 34 
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persistence times. This formula was rather robust towards temporal variation in removal 1 

probabilities. However, for short average persistence times and increasing removal 2 

probabilities, this formula produced an underestimation, too.  3 

The formula of Huso (2010) tended to overestimate the number of fatalities for short search 4 

intervals and long persistence times and constant low searcher efficiency (Fig. 1, 2). This 5 

formula was quite robust when removal probabilities decreased over time and it showed a 6 

similar negative bias as our formula when persistence times were short, removal probability 7 

increased and search interval was large. The Huso (2010) formula seemed to be robust against 8 

decreasing searcher efficiency (Fig. 2). 9 

The standard deviations of the relative error (hereafter called "uncertainty") were substantially 10 

smaller when the uncorrected counts were used as estimator than when a formula was used 11 

that accounted for detection probability. However, uncorrected counts were strongly 12 

negatively biased. Therefore, we do not show the uncertainty of this method here. The 13 

uncertainty and its correlation with the number of carcasses found and with the detection 14 

probability did not differ substantially between the four formulas (simple formula, new 15 

formula presented here, Erickson et al. 2004, and Huso 2010). Therefore, we present only the 16 

results for our formula. The uncertainty decreased with the number of carcasses found and 17 

with increasing detection probability (Fig. 3). When less than ten carcasses were found the 18 

uncertainty increased dramatically, especially when detection probability was low.  19 

 20 

 21 

Discussion 22 

We present a new estimator for the number of bats or birds killed at wind turbines from the 23 

number of carcasses found in fatality searches. Similar to previously published approaches, 24 

our new method accounts for the bias resulting from carcass removal by predators or decay 25 

and from imperfect detection. In a simulation study we compared our estimator with four 26 

existing ones. All five estimators assume that 100 % of the area beneath a wind turbine is 27 

being searched. When only parts of the area can be searched, a correction is necessary that 28 

takes into account the distribution of carcasses beneath a turbine (Hull & Muir 2010, Arnett et 29 

al. 2009, and Niermann et al. 2011).  30 

The five estimators we compared differed with respect to bias. If the number of carcasses 31 

found was used directly as an estimator of the number of fatalities, this number was, of 32 

course, consistently underestimated. This method works best with high detection 33 

probabilities. It has the advantage to be cheap and fast, because no experiments to assess 34 
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searcher efficiency (f) and carcass persistence probability (s) are necessary. However, it only 1 

gives a minimum number of dead animals and under most conditions the estimated number of 2 

fatalities will only be very weakly correlated with the real number of animals being killed.  3 

Not surprisingly, the number of fatalities can be estimated more accurately when the detection 4 

probability is accounted for. Even using the simple formula p = f*s
*
 reduced the bias 5 

considerably. However, this method overestimated the number of fatalities when search 6 

intervals were short or carcass persistence rates were high (Fig. 1, 2). That is because the 7 

formula ignores the carcasses that were missed in a search. When searcher efficiency 8 

decreases with the number of searches the simple formula can produce fairly reliable results. 9 

Many studies on bat and bird mortality at wind turbines have used this simple formula, e.g. to 10 

estimate bird mortality with a mean search interval of 17 to > 90 days (Smallwood and Karas 11 

2009) or to assess bat mortality with weekly searches (Dulac 2010).  12 

When comparing the performance of the three more complex formulas (Erickson et al. 2004, 13 

Huso 2010, and our formula) none can be identified to be consistently superior to the others 14 

according to our simulations. The formula of Erickson et al. (2004) generally showed a slight 15 

underestimation. Our formula produced, on average, the smallest bias. When searcher 16 

efficiency decreased with the number of searches, our formula could be adapted, whereas the 17 

formula of Huso (2010) appeared to be robust towards decreasing searcher efficiency. This 18 

formula was designed to be robust when detectability is heterogeneous, as is the case when 19 

searcher efficiency decreases (see Huso 2010). It overestimated, however, the number of 20 

fatalities when searcher efficiency was low and independent of previous searches and when 21 

the search interval was short (Fig. 2). All three formulas similarly underestimated the actual 22 

number of fatalities when removal probability was high and when it increased over time.  23 

If the strength of the increase or decrease of the removal probability over time is known (or 24 

estimated from experimental data) it is possible to adapt our new formula to account for the 25 

temporal variation in removal probability. This is possible because our estimator is based on 26 

an explicit model of the removal and search process. Empirical data from bats and mice 27 

carcasses (electronic supplement, Erickson et al. 2004) or bird carcasses (Van Pelt & Piatt 28 

1995, Ward et al. 2006) suggested that removal probabilities were either constant or slightly 29 

decreasing over time. Removal rates may decrease with time because those carcasses most 30 

easily detected by scavengers are removed first, leaving only those more difficult to detect on 31 

the plot. For the same reason, searcher efficiency is often assumed to decrease with 32 

persistence time. 33 
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A further issue that has to be addressed in real cases is that removal probability might be 1 

lower for the first day than during subsequent days because the exposure time is on average 2 

shorter than 24 hours for the day the animal is killed. In this case, it might be necessary to 3 

include a separate persistence probability for the first day in the formula. However, for bats in 4 

central Europe it seems reasonable to assume similar carcass persistence probabilities s for the 5 

first and subsequent days: most of the bats are likely to be killed during the first half of the 6 

night (as inferred from acoustic activity measurements, Behr et al. 2011) and activity of the 7 

most common predator, the red fox Vulpes vulpes, peaks in the second half of the night (Ott 8 

2009).  9 

All formulas presented here assume a constant search interval. In the field, searches may be 10 

performed at irregular time intervals. Different search interval patterns will affect the fatality 11 

estimate each in its own way. This strongly suggest to agree on a realistic schedule and to 12 

stick to it as closely as possible. Alternatively, the effect of a specific search interval pattern 13 

can be assed based on simulated data. 14 

When the animals killed include a variety of species with different body sizes (e.g. from 15 

hummingbirds to eagles), persistence time and detectability may differ substantially between 16 

individual carcasses. Such heterogeneity in persistence time and in detectability can produce a 17 

bias in the estimated number of fatalities, as it has been described for mark-recapture models 18 

used to estimate population size (Carothers 1973; Nichols et al. 1982; Pollock and Raveling 19 

1982). Species-specific heterogeneity in persistence time and detectability can be reduced by 20 

analysing groups of similar species separately.  21 

The distribution and the mean of carcass persistence times will also most likely differ 22 

substantially between different study sites because of differences in e.g. predator behaviour, 23 

temperature, and humidity. Within Germany we found carcass persistence times that varied 24 

between 1.3 and 24.5 days at 30 different wind turbines (with a mean of 4.2 days; Niermann 25 

et al. 2011). Arnett et al. (2009) report a mean persistence time of 32 days in North America. 26 

Furthermore, vegetation cover and other ground parameters (e.g. stones) differ between study 27 

sites producing heterogeneity in carcass detectability to different degrees. The search interval 28 

and study period also differ between studies depending on the time and funding available. 29 

These differences have to be accounted for when estimating fatality rates. Therefore, and 30 

based on our simulation results we suggest that there may not be a universal formula that is 31 

applicable in all situations. For each study, the most appropriate method should be chosen and 32 

our simulation study can provide an orientation for this decision. 33 
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We found a strong correlation of the (highest possible) precision of the estimated number of 1 

fatalities with both the number of carcasses found and with the detection probability: If less 2 

than ten carcasses were found, the (highest possible) precision in our simulation was low, 3 

suggesting that conclusions from studies where only few dead animals are detected will be 4 

very uncertain. This implies that at some sites a big search effort may be necessary to obtain 5 

estimates with acceptable precision. The number of carcasses found can be increased e.g. with 6 

shorter search intervals, a longer study period, a larger proportion of area searched, an 7 

improved visibility in the area searched, and by increasing the number of turbines included in 8 

the study. However, optimising the visibility in the area searched should be done with care 9 

because it might affect the number of fatalities by altering the habitat use by the animals.  10 

Data from different turbines and estimated searcher efficiencies from different searchers can 11 

be combined in different ways. Jones et al. (2009) suggested generalised linear models 12 

(GLM). In our extensive study we used weighted averages of searcher efficiencies per turbine 13 

with weights proportional to three visibility classes in the area searched and to the number of 14 

searches per person (Niermann et al. 2011).  15 

Once the searcher efficiency and removal probabilities are estimated for a specific study, one 16 

of the formulas discussed in this article can be applied to obtain an estimate for the number of 17 

fatalities. To obtain an uncertainty measure for this estimate, several sources of uncertainties 18 

have to be included: 1) the randomness produced by the count process, 2) the uncertainty in 19 

the estimated removal probability, 3) the uncertainty in the estimate for searcher efficiency, 20 

and 4) if less than 100 % of the area beneath a wind turbine is searched, the uncertainty of the 21 

estimated proportion of killed animals that fall into a searched area. Numbers 2) to 4) were 22 

not included in our simulation studies in this article. The uncertainty in actual field data 23 

would therefore be considerably higher than in the simulated data presented here. We provide 24 

one possibility to combine the sources of uncertainty mentioned above for real data in a 25 

worked example in the Appendix.  26 

 27 

To summarize, the new formula presented here appears to provide an unbiased estimate of the 28 

number of animals killed when searcher efficiency and removal probability are constant in 29 

time. The robustness of the new formula with respect to temporal variation in the removal 30 

probability or searcher efficiency is similar to that of other formulas published. However, in 31 

contrast to other approaches the formula presented here is based on an explicit carcass search 32 

process model that can be adapted to the specific circumstances of a field study.  33 

 34 
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Tables 1 

 2 

Table 1. Definitions of important parameters used 

d = search interval, i.e. number of days between two searches 

n = number of searches in the study 

s = daily persistence probability of a carcass, i.e. proportion of killed bats/birds which do not disappear (e.g. 

due to decay or scavangers) in 24 h 

t  = average persistence time of a carcass 

f = searcher efficiency, i.e. the proportion of bats/birds killed and not removed that are found during one 

search 

I = length of study period (days); I = n*d 

N = number of bats/birds which were killed during the study period I (unknown parameter of interest) 

Nt 
= number of bats/birds which were killed during day t 

m  = average number of bats/birds killed during one day 

ci = number of carcasses counted during search i 

C 
= !

=

n

i

i
c

1

, the total number of counted carcasses 

p = probability that a bat/bird, which is killed during the study period I, is found 

 3 

4 
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Figure legends 1 

 2 

Fig. 1. Relative errors of five different estimators for the number of fatalities in 1000 3 

simulated data sets for eight different scenarios (symbols = means, bars = range of 95 % of 4 

the relative errors). In the upper row, data were simulated with a high carcass removal rate 5 

(short average persistence time t = 3 days). In the lower row, a long persistence time of 30 6 

days was assumed. In the first column, mortality and removal rates were constant over time. 7 

In the second column, mortality rate was proportional to empirical acoustic bat activity (i.e. 8 

mortality rate varied from day to day; own data), simulating a natural distribution of bat 9 

fatalities. In the last two columns, removal rate decreased (third column) or increased (fourth 10 

column) with time. See text for details of the five different estimators. – Constant parameters: 11 

searcher efficiency f = 0.8, mean mortality rate per night m = 0.1, study period I = 100 days. - 12 

Wide grey bars (right axes): proportion of simulated data sets with zero carcasses found. 13 

 14 

Fig. 2. Relative errors of six different estimators for the number of fatalities in 1000 simulated 15 

data sets for three different scenarios (symbols = means, bars = range of 95 % of the relative 16 

errors). The first and second plots show the relative errors if searcher efficiency f is low or 17 

high, respectively and constant over time. In the third plot, searcher efficiency was 0.8 during 18 

the first search and then decreased by the factor 0.25 for each subsequent search to simulate 19 

carcasses missed at the search. In addition to the five estimators presented in Fig. 1 the 20 

adaptation of our formula is shown that allows for a decrease in searcher efficiency (formula 21 

2 in the text). 22 

 23 

Fig. 3. Highest possible precision given the number of carcasses found and the detection 24 

probability: Shown are the standard deviations of the relative errors (estimated fatalities 25 

minus true fatalities divided by true fatalities) for different numbers of carcasses found (x-26 

axis) and for different detection probabilities (numbers), based on simulated data (see text). 27 

Only results for our formula are presented - the formulas of Huso (2010) or Erickson (2004) 28 

showed similar results. For data simulation, average persistence time was set to 30 days, 29 

searcher efficiency varied from 0.05 to 0.95, mean number of fatalities per night varied from 30 

0.01 to 1, search interval was set to 7 days and total time sampled to 100 days. Note that the 31 

standard deviations in this figure show the uncertainty induced by the variation of the 32 

Poisson-distribution of the simulated fatalities and by random effects in the search process, 33 

only. In field data, several additional factors will increase uncertainty, such as a clumped 34 
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distribution of the fatalities or the uncertainty in the estimated searcher efficiency and 1 

persistence probability (both were assumed to be known in our simulations).  2 

3 
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Fig. 1   1 
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Appendix 1 2 

Derivation of the new formula to estimate carcass detection probability 3 

The table below contains the expected number of killed bats or birds that are present below a 4 

wind turbine for each day (1 to I) of the study period, if an average of m  animals are killed 5 

per day. For each search the expected number of carcasses found is given in the last column. 6 

The last row gives the sum of the expected number of animals killed and the sum of the 7 

carcasses found during all searches.   8 

Search Night/day Expected number of killed bats present Expected number of killed bats 

found 
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Appendix 2 2 

Here, we present a worked example using the statistical software R (R Development core 3 

team 2010) to obtain a fatality estimate based on an empirical carcass count. It assumes that 4 

both searcher efficiency and removal probability are experimentally assessed. By providing 5 

this example, we show one possible way to obtain an estimate together with an uncertainty 6 

measure (here a 95 % credible interval). 7 

To obtain an uncertainty measure for the estimated number of fatalities, the following sources 8 

of uncertainties have to be combined: 1) the randomness of the count process (e.g. two 9 

searches will result in different numbers of carcasses found even if detection probability and 10 

the true number of carcasses are the same), 2) the uncertainty in the estimate for removal 11 

probability, 3) the uncertainty in the estimate for searcher efficiency. The uncertainty of the 12 

fatality estimate which is due to the randomness of the count process is calculated with the 13 

help of Bayes' theorem. This gives a posterior distribution of the number of fatalities based on 14 

the carcasses counted and the (known) probability of detecting a carcass. To include the 15 

uncertainty in the detection probability (that is based on the estimated searcher efficiency and 16 

the estimated carcass removal probability) into this posterior distribution, we apply a Monte 17 

Carlo simulation.  18 

Note that the credible interval presented here shows the uncertainty in the fatality estimate for 19 

the actual sample (the specific study period and study location) only, and it is only reliable for 20 

short search intervals. This is because it does not take the temporal or spatial distribution of 21 

the fatalities into account. If the aim of the study is to predict fatality in future or for different 22 

turbines or if search intervals are large a model of the collision process (and presumably 23 

additional data providing information about the temporal and spatial distribution of the 24 

animal) is needed in addition to the search process model presented here to obtain a reliable 25 

uncertainty measure (see Korner-Nievergelt et al. 2011 for an example).  26 

 27 

Example study description: 28 

Carcass searches were performed every second day during a 200 days study period (100 29 

searches). For simplicity, we assume that 100 % of the area beneath a wind turbine is 30 
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searched. If only a part of the area is searched the probability that a killed animal falls into the 1 

searched area (a) has to be estimated (see Niermann et al. 2011). Then, the probability that a 2 

killed animal is detected by a researcher is p
*
 = p*a, and the uncertainty in the estimate of a 3 

can be included in the uncertainty measure for p
*
 by Monte Carlo methods in the same way as 4 

shown here for the uncertainties in the estimates for searcher efficiency and carcass 5 

persistence probability. 6 

 7 

Example data: 8 

Number of carcasses found C = 12, searcher efficiency f = 0.72 (95 % CI: 0.62 – 0.81 from 9 

experiments), i.e. the probability that a carcass that is lying on the ground at the time of the 10 

search is found by the searcher, carcass persistence s = 0.84 (95 % CI: 0.64 – 0.94 from 11 

experiments), i.e. the probability that a carcass is not removed during 24 h. As CI, credible or 12 

confidence intervals can be used. 13 

 14 

Estimating the number of fatalities with a credible interval 15 

Step 1: 16 

Describe the uncertainty in the estimates for searcher efficiency and carcass persistence 17 

probability by a beta-distribution, i.e. transform the 95 % CI into the shape parameters of the 18 

beta-distributions. 19 

 20 

f <- 0.72; f.lower <- 0.62; f.upper <- 0.81 21 

s <- 0.84; s.lower <- 0.64; s.upper <- 0.94 22 

 23 

#-------------------------------------------------------------------- 24 

# function to transform the 95% CI into shape parameters of a beta 25 

# distribution 26 

shapeparameter<-function(m, lwr, upr){ 27 

# m = estimate 28 

# lwr, upr = lower and upper limit of the 95 % credible or confidence  29 

# interval 30 

#-------------------------------------------------------------------- 31 

ci <- upr - lwr 32 

sigma2 <-(ci/4)^2 33 

a <- m*(m*(1-m)/sigma2-1) 34 

b <- (1-m)*(m*(1-m)/sigma2-1) 35 

list(a=a,b=b) 36 

} 37 

# end of function shapeparameter-------------------------------------- 38 
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 1 

f.a <- shapeparameter(f, f.lower, f.upper)$a 2 

f.b <- shapeparameter(f, f.lower, f.upper)$b 3 

s.a <- shapeparameter(s, s.lower, s.upper)$a 4 

s.b <- shapeparameter(s, s.lower, s.upper)$b 5 

 6 

Step 2 7 

Define the parameters of the simulations and prepare the vector for the resulting posterior 8 

distribution of the number of fatalities. Define a function to obtain the detection probability 9 

from searcher efficiency, persistence probability and search interval. Here, we use the new 10 

formula presented in this article. Define a function to obtain the posterior distribution of the 11 

number of fatalities based on the number of observed carcasses and the detection probability. 12 

This formula is based on the theorem of Bayes. Start the loop over step 3 and step 4. 13 

 14 

maxn <- 500  # define a maximum for the number of fatalities 15 

nsim <- 1000 # number of Monte Carlo simulations 16 

# prepare a vector for the posterior density distribution  17 

# of the estimated number of fatalities:  18 

Npostdist <- numeric(maxn+1)  19 

 20 

#-------------------------------------------------------------- 21 

# function to obtain the probability of detecting a carcass 22 

# given the searcher efficiency (f), persistence probability 23 

# (s), search interval (d) and the total number of searches 24 

# (n). 25 

pcarcass <- function(s, f, d, n){ 26 

# s = probability that a carcass remains 24 hours 27 

# f = probability that a carcass is detected by a  28 

# searcher during a search given it persisted to the search 29 

# d = (average) number of days between two searches 30 

# n = number of searches (n * d = length of study period) 31 

#-------------------------------------------------------------- 32 

x <- (1-f)*s^d 33 

A <- s*(1-s^d)/(1-s) 34 

summep <- numeric(n) 35 

for(k in 0:(n-1)) summep[k+1] <- (n-k)*x^k 36 

p <- A*f*sum(summep)/(d*n) 37 

p 38 

} 39 
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# end of function pcarcass----------------------------------- 1 

 2 

 3 

#------------------------------------------------------------ 4 

# function to obtain the posterior density distribution of the 5 

# number of fatalities based on a (known) probability that a  6 

# carcass is detected (p) and the number of observed carcasses (nf) 7 

posterior.N <- function(p, nf=0, maxN=50, ci.int=0.95, plot=TRUE, 8 

dist=FALSE){ 9 

# p = probability that a killed animal is detected by a seacher 10 

# nf = number of carcasses found 11 

# maxN = maximal possible number of fatalities 12 

# ci.int = size of the credible interval that should be calculated 13 

# plot: posterior distribution is plotted if TRUE  14 

# dist: posterior distribution is given if  TRUE 15 

#--------------------------------------------------------------- 16 

N <- nf:maxN 17 

if(nf==0) pN <- p*(1-p)^(N-nf) 18 

if(nf>0) { 19 

  denom <- sum(choose(N, nf) * (1-p)^(N-nf)) 20 

  pN <- choose(N, nf)*(1-p)^(N-nf)/denom 21 

  pN <- c(rep(0, nf), pN) 22 

  N <- c(rep(0, nf), N)   23 

} 24 

 25 

if(plot) plot(N, pN, type="h", lwd=5, lend="butt", xlab="Number of 26 

fatalities", ylab="Posterior density") 27 

index <- cumsum(pN)<ci.int 28 

indexLower <- cumsum(pN)<(1-ci.int)/2 29 

indexUpper <- cumsum(pN)<1-(1-ci.int)/2 30 

if(nf==0) interval <- c(nf, min(N[!index]))    31 

if(nf>0)  interval <- c(min(N[!indexLower]), min(N[!indexUpper]))  32 

if(interval[2]==Inf) cat("Upper limit of CI larger than maxN! -> increase 33 

maxN\n") 34 

expected <- min(N[!cumsum(pN)<0.5]) 35 

results <- list(interval=interval, expected=expected) 36 

if(dist==TRUE) results <- list(interval=interval, expected=expected, pN=pN) 37 

results 38 

} 39 

# end of function posterior.N------------------------------------------ 40 

 41 

for(i in 1:nsim){ 42 
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 1 

Step 3 2 

Draw a searcher efficiency f at random from the beta distribution defined by f.a and f.b.  3 

fr <- rbeta(1, f.a, f.b) 4 

 5 

Draw a persistence probability s at random from the beta distribution defined by s.a and s.b.  6 

sr <- rbeta(1, s.a, s.b) 7 

 8 

Calculate the detection probability given sr, fr, search interval d=2 and number of searches 9 

n=100. 10 

pr <- pcarcass(sr, fr, d=2, n=100) 11 

 12 

Step 4 13 

Compute the posterior density distribution of the number of fatalities based on pr and the 14 

observed number of carcasses (number found =12) using the function posterior.N. 15 

 16 

postNtemp <- posterior.N(nf=12, p=pr, maxN=maxn,  plot=FALSE, dist=TRUE) 17 

 18 

Sum the posterior densities over all nsim simulations. 19 

 20 

Npostdist <- Npostdist + postNtemp$pN 21 

} # close loop i 22 

 23 

Step 5 24 

Scale the summed posterior distribution and extract median and 95 % credible interval. 25 

 26 

Npostdist.sc <- Npostdist/nsim 27 

indexLower <- cumsum(Npostdist.sc) < 0.025 28 

indexMedian <- cumsum(Npostdist.sc) < 0.5  29 

indexUpper <- cumsum(Npostdist.sc) < 0.975 30 

lower <- min(c(0:maxn)[!indexLower])   31 

estimate <- min(c(0:maxn)[!indexMedian])   32 

upper <- min(c(0:maxn)[!indexUpper]) 33 

lower; estimate; upper 34 

 35 

As a result we receive an estimate of 17 fatalities with a 95 % credible interval of 12-31 36 

fatalities. 37 



 28

The posterior distribution of the number of fatalities is plotted: 1 

 2 

plot(0:maxn, Npostdist.sc , type="h", lwd=5, lend="butt", xlab="Number of 3 

fatalities", ylab="Posterior density", xlim=c(0,50)) 4 

 5 

 6 

Electronic supplement 1 7 

Fig. Effect of assuming a constant removal probability when it is actually decreasing or 8 

increasing in time: Proportion of remaining carcasses (solid black lines) and the 9 

corresponding daily removal probabilities (dotted black lines) for four simulation scenarios. 10 

To obtain the proportions of remaining carcasses and the removal probabilities Weibull 11 

distributions for the persistence times were assumed. For simulating decreasing removal 12 

probabilities with time, α was set to 0.7, and for increasing removal probabilities α was set to 13 

1.3. λ was then obtained using the mean assumed persistence time T: 
T
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day. Grey solid lines are the proportion of remaining carcasses under the (false) assumption of 17 

a constant removal rate (grey dotted lines).  18 
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Electronic supplement 2 1 

Fig. Proportion of remaining carcasses (bats, brown mice) at 30 wind energy turbines in 2 

Germany (see Niermann et al. 2011) over the first 14 days. The black line gives the 3 

proportion of remaining carcasses (with 95 % confidence interval within the dotted lines) 4 

estimated by a non-parametric Cox proportional hazard model with turbine as a grouping 5 

factor. This model does not assume constant removal rates. The grey line gives the same 6 

proportion estimated by assuming an exponential distribution of the persistence times, i.e. 7 

constant removal rates. In total 662 carcasses (7 – 35 per turbine, 32 bats and 630 brown 8 

mice) were used.  9 
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