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Abstract 

Background Temperature variability (TV) is associated with increased mortality risks. However, the independent 
impacts of interday and intraday are still unknown.

Methods We proposed a new method to decompose TV into interday TV and intraday TV through algebra deriva-
tion. Intraday TV was defined as the weighted average standard deviation (SD) of minimum temperature and maxi-
mum temperature on each day. Interday TV was defined as the weighted SD of daily mean temperatures during the 
exposure period. We then performed an illustrative analysis using data on daily mortality and temperature in France in 
2019–2021.

Results The novel interday and intraday TV indices were good proxies for existing indicators, inlcluding diurnal tem-
perature range (DTR) and temperature change between neighbouring days (TCN). In the illustrative analyses, interday 
and intraday TVs showed differentiated mortality risks. Mortality burden related to TV was mainly explained by the 
intraday component, accounting for an attributable fraction (AF) of 1.81% (95% CI: 0.64%, 2.97%) of total mortality, 
more than twice the AF of interday TV (0.86%, 95% CI: 0.47%, 1.24%).

Conclusions This study proposed a novel method for identifying and isolating the different components of tempera-
ture variability and offered a comprehensive way to investigate their health impacts.

Keywords Temperature variability, Mortality, Interday, Intraday

Background
Unstable weather conditions have been increasing in 
frequency and intensity across the globe, posing a sub-
stantial threat to human health [1]. Several indices of 
short-term temperature fluctuations, including tempera-
ture change between neighbouring days (TCN), diurnal 

temperature range (DTR), and temperature variability 
(TV) have been associated with increased morbidity and 
mortality risk [2–10]. While there has been a decreasing 
trend in average DTR at a global level, mainly as a result 
of aerosols and cloudiness, some tropical regions are 
experiencing increased DTR fluctuations [11–13]. Addi-
tionally, DTR is projected to significantly across Europe, 
Central and South America, Africa, and Australia [11, 
14, 15]. Similarly, temperature fluctuation between inter-
days are also projected to increase in across Southeast 
Asia, southern regions of Africa and North America, and 
Europe [16, 17]. The unstable weather and temperature 
fluctuations would continuously pose a threat to human 
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health, which would be more profound in some vulner-
able regions.

DTR and TCN have been commonly used to assess the 
health impacts of intraday fluctuation and interday fluc-
tuation of temperatures, respectively [18]. However, DTR 
and TCN only included absolute changes in temperatures 
on the same day or neighbouring two days without con-
sidering the potential lag period. Thus, it would be more 
rational to measure the temperature fluctuation over 
a short-term period referring to the impacts on human 
health. In line with this idea, TV was proposed to assess 
the temperature fluctuation during a short period and 
was found to have a substantial short-term association 
with mortality globally [8]. Given the thermoregulatory 
processes of the human body have the capacity to func-
tion on different time scales (within the same day and 
between days), coupled with the ability of people to adopt 
different behavioral adaption strategies, interday and 
intraday TV may have differential health impacts. For 
example, people may have sufficient time to respond to 
the interday TV with the assistance of the weather fore-
casts and early warning systems. In comparison, it may 
be difficult for people to respond immediately to sudden 
temperature changes within the same day. Thus, there is 
a need to separate TV into interday and intraday com-
ponents and to provide targeted protections for human 
health from unstable weather conditions.

In this study, we aimed to provide the algebra deriva-
tion of two novel indices: interday TV and intraday TV. 
In comparison to previous indicators (DTR or TCN), the 
two novel indices measure the temperature variability by 
considering the mean temperature and including a lag 
period. Through the derivation, we intended to reveal the 
relationship between the existing total TV and the newly 
developed indices. We also provide an illustrative exam-
ple of the indices using daily mortality data. Associations 
between mortality risk and interday and intraday TVs in 
metropolitan France, during 2019 and 2021, are exam-
ined in the example analyses.

Methods
Derivation of interday and intraday Temperature variability 
(TV)
In previous studies [8, 19], TV has been defined as the 
standard deviation (SD) of daily minimum tempera-
tures and daily maximum temperatures within L days 
before the current day, which was also used in the pre-
sent study. In this study, the intraday TV was defined 
as the weighted average SD of minimum temperature 
and maximum temperature on each day, and the inter-
day TV was defined as the weighted SD of daily mean 

temperatures during the past L + 1  days. Using these 
definitions, TV incorporates both intraday and inter-
day variability of temperature, while intraday TV only 
considers temperature changes within the same day 
and interday TV only considers the variations between 
days.

TV could be calculated by the following Equation,

where L is the number of preceding days (e.g., L = 1 when 
calculating TV 0–1, L = 2 when calculating TV 0–2, and 
so on), Tl,min is the minimum temperature on day l while 
Tl,max is the maximum temperature on day l, T  is the 
average of daily minimum temperatures and maximum 
temperatures during the L + 1 days.

We can express the numerator in Eq. (1) as,

where Tl  is the average of the daily minimum tempera-
ture and maximum temperature on day l.Tl  could be 
approximated as the daily mean temperature on day l, fol-
lowing the recommendation of the World Meteorological 
Organization (WMO) [20]. Thus, we can further divide 
Eq. (2) into Eqs. (3) to (5) by decomposing the variance,

For Eq. (3), we could denote it as the sum of the vari-
ance of minimum temperature and maximum tempera-
ture on specific day l (VARl). Similarly, we could denote 
Eq.  (4) as the multiples of the variance of daily mean 
temperatures ( Tl  ) on the current day and preceding L 
days (VARtmean). Putting the two equations in Eq.  (1), 
we could derive Eq. (6),

We could name the first part of Eq. (6) as the intraday 
portion of temperature variability and the second part as 
the interday portion. As a result, we could calculate the 
intraday and interday TV using the following equations:
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Here, we could calculate the square roots to make the 
unit of intraday and interday TV comparable, allowing 
relationship between TV, interday TV, and intraday TV 
to be expressed as,

Illustrative analyses
In this section, we performed an illustrative analysis 
using the two novel indices. By this example, we would 
like to provide the details on how to analyse the asso-
ciations of mortality risk with interday and intraday 
TV. Data on daily mortality in France during 2019 and 
2021 were used to demonstrate the analyses. This data-
set was chosen as it is publicly available and thus others 
could replicate our analyses.

Data collection
We collected daily all-cause mortality data at the 
department level from 1 January 2019 to 31 August 
2021 in 96 departments in metropolitan France 
(https:// www. insee. fr/ en/). We obtained hourly ambi-
ent temperature and ambient dew point temperature 
(at 2 m above the land surface) during the same period 
from the ERA5 dataset at a resolution of 0.1˚ × 0.1˚ 
[21]. We computed the hourly relative humidity (RH) 
for each grid using the hourly ambient temperatures 
and ambient dew point temperatures [22]. For each 
grid, the daily minimum temperature was calculated 
as the minimum value of hourly observations each day 
and the daily maximum temperature was calculated as 
the maximum value of hourly observations each day. 
Daily mean temperature and daily mean RH were cal-
culated as the average of the hourly observations for 
ambient temperatures and RH, on each day, in each 
grid, respectively. We then calculated the gridded daily 
minimum temperature, daily maximum temperature, 
daily mean temperature, and daily mean RH and linked 
them to each department by calculating the average 
value of all grids overlaying the area. TV, intraday TV, 
and interday TV were defined using Eq. (1), Eq. (7), and 
Eq. (8), respectively, as per the definitions above.
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Statistical analyses
Main analyses
We applied a time-stratified case-crossover design with 
quasi-Poisson regression to examine the association 
between mortality risk and TV indices [23]. This design 
compares the exposure in the case period (defined as the 
day when death occurs) with exposures in the control 
periods [24, 25]. We selected the control periods as the 
same days of the week in the same calendar month, the 
same year, and the same department. Two different mod-
els were applied in our analyses. In the first model, TV 
was added to the model using a linear function according 
to the previous studies [8, 10, 19]. In the second model, 
we added interday TV and intraday TV to a single model 
using linear functions. As we focused on the short-term 
effects of TV, a maximum of seven days was used as the 
lag period in two models following the previous studies, 
and thus TV indices were defined as TV 0–1 to TV 0–7, 
interday TV 0–1 to TV 0–7, and intraday TV 0–1 to TV 
0–7 [8, 26]. In addition, we controlled the daily mean 
temperature and daily mean RH using distributed lag 
non-linear models (DLNM) [27]. For daily mean temper-
ature and RH, we applied a natural cubic spline with four 
degrees of freedom for both exposure–response dimen-
sion and lag dimension up to 21  days (equally-spaced 
knots in the log scale of lag days) in the cross-basis func-
tions [8]. The associations of mortality with TV indices 
were expressed as the percentage change (%) associated 
with per interquartile range (IQR) increase in each index, 
with a 95% confidence interval (95% CI).

Attributable mortality
To estimate the mortality burden attributable to the TV 
indices, we calculated the attributable number of deaths 
(AN) and corresponding attributable fractions (AF) by 
the following equations [10],

where i is the department and t is the day during the 
study period, βper1 ◦C increase (and 95% CI) is the estimate 
of the association for one of the three TV indices, Indexi,t 
is the observation of TV indices on day t in department 
i, Number of deathsi,t is the department-specific aver-
age number (from day t to day t + L) of all-cause deaths 

(10)RRi,t = exp(βper1 ◦C increase × Indexi,t)

(11)
ANi,t = Number of deathsi,t × (RRi,t − 1)/RRi,t

(12)AN =

∑

i

∑

t
ANi,t

(13)AF =
AN

Total number of deaths

https://www.insee.fr/en/
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department i across the lag period. We calculated the 
total AN (95% CI) by summing all ANi,t values (95% CI) 
for each department and then computed AF (95% CI) by 
dividing AN (95% CI) by the total number of deaths.

Stratified analyses and sensitivity analyses
We conducted stratified analyses by different seasons 
defined using the monthly mean temperatures, including 
warm season (defined as four adjacent hottest months), 
cold season (defined as four adjacent coldest months), 
and moderate season (other months). We also performed 
several sensitivity analyses. First, we changed the lag days 
of daily mean temperature and daily RH from 21  days 
to a maximum of 28 days. Secondly, the degrees of free-
dom (df ) for daily mean temperature and daily RH were 
changed to test the robustness of results (3, 5, and 6 df ). 
Finally, daily minimum temperature and daily maximum 
temperature were used to replace the daily mean temper-
ature using the same cross-basis function in our models.

All analyses were performed with R software (version 
4.0.3). The “dlnm” and “gnm” packages were used to per-
form the distributed lag non-linear models and condi-
tional Poisson regressions [23, 27].

Results
Figure 1 shows that departments with a higher interday 
TV were generally located in northwest, while depart-
ments with a higher intraday TV were mainly located in 
south. The geographical distribution of TV was similar to 
the distribution of intraday TV.

Daily mortality, daily mean temperatures, and TV 
indices are summarized in Table  1. A total of 1,681,619 
deaths were recorded during the study period and the 
median number of deaths per day was 15. The median 
daily mean temperature was 11.6 ℃ (interquartile range 
[IQR]: 7.1℃, 17.2℃) during the study period across all 
departments. The median TV 0–1 for all departments 

was 4.6 ℃ (IQR: 3.4℃, 6.0℃) and the median intraday TV 
0–1 was 4.4 ℃ (IQR: 3.2℃, 5.9℃). The median interday 
TV 0–1 was 0.7℃ (IQR: 0.3℃, 1.2℃), which was sub-
stantially lower than the median TV 0–1 and the median 
intraday TV 0–1. The median of interday TV increased 
with the increase in lag periods while the intraday TV 
showed a slightly decreasing trend.

The Pearson coefficients between daily mean tem-
perature and TV indices are shown in Table  2. A high 
correlation was observed between the TV and intra-
day TV indices, with a Pearson coefficient value greater 
than 0.90 for all lag periods. Besides, interday TV had 
a low or moderate correlation with TV and the coeffi-
cients increased from 0.13 for lag 0–1 days to 0.44 for lag 
0–7 days.

Figure  2 shows the percentage changes in mortality 
risk associated with per IQR increase in each TV index. 
Generally, mortality risk increased, as the lag period 
increased, for all indices. The percentage change for TV 
0–7 was the highest (1.43%; 95% CI: 0.89%, 1.97%) among 
all lag periods and the highest percentage change for 
intraday TV 0–7 was 1.06% (95% CI: 0.37%, 1.74%). The 
highest percentage change in mortality risk was 0.65% 
(95% CI: 0.38%, 0.91%) for interday TV 0–6, which was 
similar to the percentage change for interday TV 0–7 
(0.60%; 95% CI: 0.32%, 0.87%). When stratified by sea-
sons, it could be observed that associations between 
mortality and TV indices were more profound during the 
moderate season (Fig. 3).

Attributable fractions of mortality associated with 
each TV index and corresponding attributable deaths 
are shown in Table 3. The attributable fraction of mor-
tality was 2.16% (95% CI: 1.35%, 2.97%) for TV 0–7, 
equivalent to 36,369 (95% CI: 22,624, 49,977) deaths. 
The attributable fraction for intraday TV 0–7 (1.81%; 
95%CI: 0.64%, 2.97%) was higher than that for interday 
TV 0–7 (0.86%; 95%CI: 0.47%, 1.24%), corresponding 

Fig. 1 Geographical distribution of TV 0–7, interday TV 0–7, and intraday TV 0–7
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to 30,494 (95% CI: 10,754, 49,970) and 14,391 (95% CI: 
7835, 20,915) deaths, respectively.

Sensitivity analyses showed the estimations of the 
percentage change of mortality risk were robust when 
we changed lag days for daily mean temperatures and 
relative humidity from 21 to 28 (Supplementary Fig. 
S1). Similarly, results were robust when changing the 
df of the lag-response curve for daily mean tempera-
tures and relative humidity while estimations for TV 
and intraday TV in a shorter lag period were higher 
when df was three (Supplementary Fig. S2). The asso-
ciations did not change substantially when replacing 
the daily mean temperature with the daily minimum 
temperature or daily maximum temperature (Supple-
mentary Fig. S3).

Discussion
In this study, we proposed two novel indices to separate 
the impacts of temperature variability into interday and 
intraday components. Through the algebraic derivation, 
we illustrated the relationship of the two new indices 
with daily minimum temperature, daily maximum tem-
perature, and total TV. The findings of the illustrative 
analyses showed that mortality risk related to tempera-
ture fluctuations was mainly explained by intraday vari-
ability in France.

The intraday and interday TV indices could also be 
linked to indicators like DTR and TCN, which have 
been previously used to indicate the intraday and inter-
day temperature fluctuations. DTR was defined as 
the difference between the daily maximum and daily 
minimum temperatures while TCN was defined as the 

Table 1 Summary of daily mortality, daily meteorological indices, and TV indices

Mean SD 25th Percentile Median 75th Percentile

Daily mortality 18 13 9 15 24

Daily mean temperature, ℃ 12.0 6.8 7.1 11.6 17.2

Daily minimum temperature, ℃ 8.2 6.2 3.5 8.2 13.0

Daily maximum temperature, ℃ 16.0 7.5 10.5 15.5 21.4

Daily relative humidity, % 74.2 12.4 65.9 75.7 83.7

TV, ℃
 0–1 4.8 1.7 3.4 4.6 6.0

 0–2 4.6 1.5 3.5 4.5 5.8

 0–3 4.6 1.4 3.5 4.6 5.7

 0–4 4.7 1.4 3.6 4.6 5.7

 0–5 4.7 1.3 3.7 4.6 5.6

 0–6 4.7 1.3 3.7 4.7 5.6

 0–7 4.7 1.2 3.8 4.7 5.6

Interday TV, ℃
 0–1 0.8 0.7 0.3 0.7 1.2

 0–2 1.2 0.8 0.6 1.0 1.6

 0–3 1.4 0.8 0.8 1.3 1.9

 0–4 1.6 0.8 1.0 1.5 2.1

 0–5 1.7 0.8 1.1 1.6 2.2

 0–6 1.8 0.8 1.2 1.7 2.3

 0–7 1.9 0.8 1.3 1.8 2.4

Intraday TV, ℃
 0–1 4.6 1.8 3.2 4.4 5.9

 0–2 4.4 1.6 3.2 4.3 5.6

 0–3 4.3 1.5 3.2 4.3 5.4

 0–4 4.3 1.4 3.2 4.2 5.3

 0–5 4.3 1.3 3.2 4.2 5.3

 0–6 4.2 1.3 3.2 4.2 5.2

 0–7 4.2 1.3 3.2 4.2 5.2
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change in daily mean temperature between two neigh-
bouring days [28]. For example, we could easily obtain 
the relationship between interday TV 0–1 and TCN 
with the following equation:

The relationship between intraday TV and DTR could 
be obtained using using the following equation:

The equations revealed that the impacts of TCN and 
DTR could be well incorporated into the impacts of 
interday and intraday TV. In other words, the two new 
indices could be used in place of the previous indicators 
(TCN and DTR) to assess the health impacts of interday 
and intraday temperature fluctuations. However, the two 
indices included the lag period in their definitions, which 
enables researchers to describe the temperature changes 
in the short-term period more easily and directly. 
Besides, the daily mean temperatures were used in the 
definitions of the interday TV and intraday TV. Consid-
ering the potential human adaption to the local climate 
conditions, the two novel indices would reflect the scale 
of temperature fluctuation from the average level of 
weather conditions.

In the illustrative analysis, we found that intraday TV 
could explain the majority of the observed mortality risk 
related to temperature fluctuation in France. For exam-
ple, an IQR increase of TV 0–7 was responsible for 2.16% 
of the total deaths in France during the study period 
while 1.81% of the total deaths could be attributed to an 
IQR increase of intraday TV 0–7. By contrast, only 0.86% 
of the total deaths could be attributed to an IQR increase 
of interday TV0–7, which was relatively lower than the 
AF for intraday TV.

We also observed that the geographical distribution of 
TV was similar to the distribution of intraday TV, show-
ing that intraday TV was the major driver of the short-
term temperature changes in France. However, it would 
be difficult to generalize the findings to other locations, 
without considering local climate patterns and socioeco-
nomic status. For instance, it was estimated that the frac-
tion of outpatient visits for childhood asthma attributed 
to an IQR increase of DTR was lower than that of TCN in 
the warm season while it was reversed in the cold season 
[29]. Similarly, our study found the mortality risk related 
to interday TV and intraday TV varied across differ-
ent seasons. The differences may be due to the potential 
adaption abilities of the human body and corresponding 
behavioural patterns.
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Table 2 Correlations (Pearson coefficients) among TV indices 
and daily temperature

TV Temperature variability

Daily mean 
temperature

TV Interday TV Intraday TV

Lag 0–1

 Daily mean tem-
perature

1.00

 TV 0.47 1.00

 Interday TV -0.02 0.13 1.00

 Intraday TV 0.48 0.99 0.02 1.00

Lag 0–2

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV -0.02 0.21 1.00

 Intraday TV 0.51 0.98 0.04 1.00

Lag 0–3

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV -0.02 0.28 1.00

 Intraday TV 0.53 0.97 0.06 1.00

Lag 0–4

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV -0.01 0.34 1.00

 Intraday TV 0.53 0.96 0.09 1.00

Lag 0–5

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV 0.00 0.38 1.00

 Intraday TV 0.54 0.96 0.11 1.00

Lag 0–6

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV 0.01 0.41 1.00

 Intraday TV 0.54 0.95 0.13 1.00

Lag 0–7

 Daily mean tem-
perature

1.00

 TV 0.49 1.00

 Interday TV 0.03 0.44 1.00

 Intraday TV 0.54 0.94 0.14 1.00
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Fig. 2 Percentage change of mortality risk associated with per interquartile range (IQR) increase in TV 0–1 to 0–7, interday and intraday TV 0–1 to 0–7

Fig. 3 Percentage change of mortality risk associated with per interquartile range (IQR) increase in TV 0–1 to 0–7, interday and intraday TV 0–1 to 
0–7, stratified by seasons
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In this study, we applied a time-stratified case-cross-
over design with quasi-Poisson regression to examine 
the effects of TV indices, which has been widely used 
to estimate the health impacts of environmental factors 
[25, 30, 31]. This self-matched design could effectively 
control for potential confounders (age, sex, income, 
lifestyles), seasonality, and long-term trend [25]. Nev-
ertheless, the current study could only investigate the 
association of mortality risk with TV indices rather than 
the causal effects. Thus, further research in different loca-
tions around the world is required to fully investigate the 
impact of TV on human health.

Additionally, it is recommended that future stud-
ies explore the potential differentiation in mechanisms 
between interday and intraday TV. Sudden changes in 
temperature may lead to mortality by triggering cardio-
vascular and respiratory events and causing inflamma-
tory nasal responses [8, 28]. Temperature fluctuation 
over a very short period would increase blood pressure, 
heart rate, and oxygen intake, and will further increase 
the workload of the cardiovascular system [2]. Besides, 
temperature fluctuations could also lead to inflammatory 
nasal responses, especially in patients with allergic rhini-
tis [32, 33]. In addition, physiologically vulnerable groups, 
including the elderly, children, and those with underlying 

conditions, would be more susceptible to temperature 
fluctuations due to the attenuated thermoregulatory abil-
ity [34]. The differentiated health impacts of the intra-
day and interday TV may result from the capabilities of 
the thermoregulatory process. The thermoregulatory 
response of the human body may be unable to cope with 
drastic temperature changes within the same day [34]. 
By contrast, results from both animal and human experi-
ments have observed that short-term heat acclimation 
could be established within six days of heat exposure [35, 
36]. Thus, the short-term adaption abilities of the human 
body could help reduce thermal load, improve physical 
performance, and mitigate the adverse effects of intraday 
TV [36]. In addition, personal behaviours may also play a 
critical role in the health impact of TV. For example, peo-
ple being caught outside may be difficult to take timely 
preventive measures (e.g., wearing warm clothes) against 
a sudden drop in temperature [9]. From this viewpoint, 
it could be easier for people to plan ahead with the aid of 
warning systems and weather forecasts to deal with inter-
day TV.

Utilising the interday and intraday TV indices intro-
duced in this study, the health impact of temperature 
fluctuation could be investigated more comprehensively 
in the future. First, it is still in need to investigate whether 
the impact of interday TV and intraday TV will change as 
weather patterns change in different locations or climate 
zones. Both interday and intraday TV should be con-
sidered in future studies to assess the health impacts of 
temperature fluctuations. Second, previous studies have 
found that there may exist modification effects of daily 
mean temperature for the health impact of TV [37, 38]. 
In other words, the health impacts of temperature fluctu-
ation would be more profound on extremely hot or cold 
days. Thus, future studies are warranted to investigate the 
potential modification effects of the mean temperature. 
In addition, vulnerable populations like children and the 
elderly are more susceptible to temperature fluctuations. 
Further investigation on targeted interventions for the 
vulnerable population is also in need to prevent excess 
deaths related to temperature fluctuations. Nevertheless, 
the present study suggested that immediate responses to 
intraday and interday TV were necessary. It is vital for 
policy-makers to consider the TV indices that pose the 
greatest threat to the region when developing adapta-
tion strategies. Besides, individuals are encouraged to 
follow the instructions and be well prepared to deal with 
the dramatic change in temperature by adding or remov-
ing clothing and moving to places with air conditioning. 
In addition to evaluating the impacts on health, the two 
novel indices could be applied in many other fields. For 
example, our method could help to assess patterns and 
mechanisms of various climate patterns from a unified 

Table 3 Attributable deaths and fractions associated with the TV 
indices

Indices Lag Attributable deaths Attributable fraction 
(%)

TV Lag 0–1 9690 (-924, 20,221) 0.58 (-0.05, 1.20)

Lag 0–2 9225 (-2447, 20,800) 0.55 (-0.15, 1.24)

Lag 0–3 16,488 (4263, 28,606) 0.98 (0.25, 1.70)

Lag 0–4 19,163 (6593, 31,620) 1.14 (0.39, 1.88)

Lag 0–5 26,278 (13,382, 39,055) 1.56 (0.80, 2.32)

Lag 0–6 33,222 (19,966, 46,351) 1.98 (1.19, 2.76)

Lag 0–7 36,369 (22,624, 49,977) 2.16 (1.35, 2.97)

Interday TV Lag 0–1 2080 (-1625, 5772) 0.12 (-0.10, 0.34)

Lag 0–2 1666 (-3003, 6316) 0.10 (-0.18, 0.38)

Lag 0–3 7329 (2129, 12,506) 0.44 (0.13, 0.74)

Lag 0–4 7995 (2414, 13,551) 0.48 (0.14, 0.81)

Lag 0–5 12,471 (6607, 18,309) 0.74 (0.39, 1.09)

Lag 0–6 14,992 (8819, 21,135) 0.89 (0.52, 1.26)

Lag 0–7 14,391 (7835, 20,915) 0.86 (0.47, 1.24)

Intraday TV Lag 0–1 8408 (-2229, 18,962) 0.50 (-0.13, 1.13)

Lag 0–2 10,657 (-1966, 23,166) 0.63 (-0.12, 1.38)

Lag 0–3 12,440 (-1803, 26,541) 0.74 (-0.11, 1.58)

Lag 0–4 15,839 (275, 31,234) 0.94 (0.02, 1.86)

Lag 0–5 17,847 (953, 34,544) 1.06 (0.06, 2.05)

Lag 0–6 23,219 (4976, 41,235) 1.38 (0.30, 2.45)

Lag 0–7 30,494 (10,754, 49,970) 1.81 (0.64, 2.97)



Page 9 of 10Wen et al. BMC Medical Research Methodology           (2023) 23:92  

framework. Besides, two novel indices could also be used 
to evaluate the impacts of climate change on agriculture, 
manufacturing, and services [39].

Some limitations of this study should be acknowl-
edged. First, we used gridded temperature data instead 
of individual-level data to estimate the mortality risk of 
TV exposure, which may lead to potential measurement 
error. Second, we were unable to apply stratified analyses 
due to the lack of age or gender in the dataset. Thus, it 
could be addressed if additional data are released, thereby 
facilitating the use of the new indices to assess the vul-
nerability of different subgroups. Third, the COVID-19 
pandemic led to excess deaths during the study period, 
which may affect individual vulnerability to environ-
mental factors such as temperature and air pollution [40, 
41]. However, the impacts would be similar for interday 
and intraday TV and thus the outbreak of COVID-19 is 
unlikely to have a great impact on our conclusion. Finally, 
our findings in the illustrative analyses cannot be gener-
alized, so more comprehensive studies covering multiple 
regions are still needed in the future.

Conclusions
In conclusion, the interday TV and intraday TV indices 
defined in this study provided a new method to sepa-
rate temperature variability into different components, 
offering a comprehensive way to investigate the health 
impacts of temperature fluctuations.
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