
Vol.:(0123456789)1 3

Journal of Membrane Computing (2019) 1:251–261

https://doi.org/10.1007/s41965-019-00024-z

REGULAR PAPER

A new method to simulate restricted variants of polarizationless P
systems with active membranes

Zsolt Gazdag1 · Gábor Kolonits2

Received: 25 July 2019 / Accepted: 29 October 2019 / Published online: 2 December 2019

© The Author(s) 2019

Abstract

According to the P conjecture by Gh. Păun, polarizationless P systems with active membranes cannot solve ��-complete
problems in polynomial time. The conjecture is proved only in special cases yet. In this paper we consider the case where
only elementary membrane division and dissolution rules are used and the initial membrane structure consists of one elemen-
tary membrane besides the skin membrane. We give a new approach based on the concept of object division polynomials
introduced in this paper to simulate certain computations of these P systems. Moreover, we show how to compute efficiently
the result of these computations using these polynomials.

Keywords P systems · Active membranes · Simulation · Polynomials · Matrix multiplication

1 Introduction

P systems with active membranes, introduced in [23], are
among the most investigated variants of P systems. Using
the polarizations of the membranes and the possibility of
dividing elementary (or even non-elementary) membranes
these systems can solve computationally hard problems effi-
ciently. More precisely, with elementary membrane division
they can solve ��-complete problems [12, 23, 28, 33], while
with non-elementary membrane division they can solve even
������-complete problems in polynomial time [1, 30].
Solving computationally hard problems with P systems with
active membranes has a huge literature in Membrane Com-
puting, see, e.g. [2, 5, 7, 21, 22, 27, 29, 31], and the refer-
ences therein.

It is also widely investigated how certain restrictions
on P systems with active membrane affect the computa-
tion power of these systems (see for example [6, 8, 9, 11,
13, 14, 16, 17, 19, 20, 25]). Probably, the most investigated
question in this research line is whether these P systems
are still powerful enough to solve hard problems in polyno-
mial time when the polarizations of the membranes are not
used. In the case when non-elementary membrane division
is allowed the answer to this question is positive since in
[3] the ������-complete QSAT problem was solved in
polynomial time without polarizations. On the other hand,
no polynomial-time solutions for hard problems exist when
neither polarization nor non-elementary membrane division
is allowed. In fact, Gh. Păun conjectured already in 2005
that without polarization and non-elementary membrane
division P systems with active membranes cannot solve ��
-complete problems in polynomial time [24]. Păun’s con-
jecture, often called the P conjecture, has not been proven
yet although there are some partial solutions for it (see, e.g.
[10, 15, 18, 32]). A direct attempt to calculate efficiently all
the elementary membranes of a computation of a P system
with active membranes fails as in general, the number of
these membranes can grow exponentially and, moreover,
these membranes can contain pairwise different multisets.
However, it was discovered in [10] that if dissolution rules
are not allowed to use, then there is no need to simulate all
the elementary membranes to determine the result of a com-
putation. Instead, it is enough to consider a certain graph,

The results of this paper were presented at the 20th International
Conference on Membrane Computing, CMC20, Curtea de Argeș,
Romania, August 5–8, 2019.

 * Zsolt Gazdag
 gazdag@inf.u-szeged.hu

 Gábor Kolonits
 kolomax@inf.elte.hu

1 Department of Foundations of Computer Science, University
of Szeged, Szeged, Hungary

2 Department of Algorithms and Their Applications, Eötvös
Loránd University, Budapest, Hungary

http://orcid.org/0000-0002-5617-8743
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00024-z&domain=pdf

252 Z. Gazdag, G. Kolonits

1 3

called the dependency graph [4] of the P system. Roughly,
this graph describes how the rules of the P system can evolve
and move objects through the membranes. To determine the
result of a computation in this case it is enough to check
whether a distinguished object is reachable from certain
objects in the dependency graph. Using dependency graphs
it was shown in [10] that polarizationless P systems with
active membranes using no dissolution rules and working
in polynomial time can solve only problems in �.

If dissolution rules are also allowed, then things become
much more complicated. Consider a P system � with active
membranes and assume, for example, that � contains a
membrane sub-structure [[a b]

2
]
1
 . Assume moreover that a

can dissolve membrane 2 but b cannot. Then � dissolves
membrane 2 using a and b releases to membrane 1 without
directly being involved in any application of a rule. Notice
that in this case b immediately “knows” that � contained an
occurrence of a in the membrane with label 2. This way the
objects can send information to each other, and this kind of
behaviour cannot be captured by dependency graphs.

Using generalizations of dependency graphs the P con-
jecture was already proved in some special cases where the
P systems were allowed to use dissolution rules as well. In
[32], for example, the P conjecture was proved using object

division graphs in the case where the initial membrane struc-
ture of the P system is a linearly nested sequence of mem-
branes and the system can employ only dissolution and ele-
mentary membrane division rules. In [15] the P conjecture
was proved in another case using a generalization of depend-
ency graphs. Here the P systems are deterministic, can use
all types of rules except send-in communication rules, and
the membrane structure is such that the skin contains only
elementary membranes. In these papers the authors used
these generalizations of dependency graphs to simulate a
reasonable small part of the configurations in a computation
of the investigated P systems.

In this paper we propose a new method to address Păun’s
conjecture. With this method we are able to simulate effi-
ciently an entire computation of a P system. More precisely,
we can compute in polynomial time the multiset content of
the skin membrane at the end of certain computations of a
P system. To make our ideas as clear as possible, we give
our method only for a rather restricted variant of P systems,
called halting simple divide-dissolve P systems. The com-
putations of these P systems always terminate, initially they
have only one elementary membrane in the skin, and they
can employ only membrane division and membrane dissolu-
tion rules (see Definition 1 for further properties of these P
systems). Moreover, we simulate only particular computa-
tions of these P systems, where, for example, division rules
have priority over dissolution rules. We will call these com-
putations division-driven computations (see Definition 2 for
further details).

Our approach can be roughly described as follows. Con-
sider a halting simple divide-dissolve P system � , its input
multiset �

1
 , and a division-driven computation C of � . First,

based on the concept of object division graphs, we define
object division polynomials (Definition 3). The object divi-
sion polynomial of an object a describes which and how
many objects can be created from a using only division
rules of � . Then, we consider a polynomial P

�
1

 which is,
roughly, the multiplication of the object division polynomi-
als of objects in �

1
 (Definition 5). After that, we show that

there is a strong relationship between the monomials of P
�

1

and the numbers of certain membranes and their contents in
C (Lemma 3). Then, using P

�
1

 , we show how to calculate in
polynomial time which and how many objects are released to
the skin membrane in each step of C (Theorem 1). Using this
we conclude that the multiset content of the skin membrane
in the last configuration of C can be computed in polynomial
time (Corollary 1).

We believe that our method can be extended to more gen-
eral variants of P systems. In particular, a generalization to
P systems having also send-out communication rules and a
more general initial membrane structure seems to be achiev-
able as it is discussed in the Conclusions section.

2 Preliminaries

Here we recall the necessary notions used later. Neverthe-
less, we assume that the reader is familiar with the basic
concepts of membrane computing techniques (for a com-
prehensive guide see, e.g. [26]).

ℕ denotes the set of natural numbers including zero and,
for every i, j ∈ ℕ , i ≤ j , [i, j] denotes the set {i,… , j} . If i = 1 ,
then [i, j] is denoted by [j]. We will use polynomials with
coefficients in ℕ . A polynomial of the form p = cx

j
1

1
… x

jn
n

where c, n, j1,… , jn ∈ ℕ and x1,… , x
n
 are variables is called

a monomial and c is called the coefficient of p. An n × m
matrix � has n rows and m columns. We will consider
matrices with entries in ℕ . (�)ij denotes the jth element of
the ith row of � . By a vector � we mean an n × 1 matrix,
for some n ≥ 1 . �T denotes the transpose of � , and instead of
(�)j1 and (�T)

1j (j ∈ [n]) we will write simply (�)j and (�T)j ,
respectively. If a vector � has n entries, for some n ≥ 1 , then
� is called an n-dimensional vector or just an n-vector.

Next, we define a variant of polarizationless P systems
with active membranes.

Definition 1 A simple divide-dissolve P system (sdd P sys-

tem, for short) is a polarizationless P system with active
membranes having the following properties. � is of the form
� = (O, H,�,�1, R) , where

• O is the alphabet of objects,

253A new method to simulate restricted variants of polarizationless P systems with active membranes

1 3

• H = {1, s} is the set of labels of the membranes,
• � = [[]

1
]
s
 is the initial membrane structure containing

two membranes labelled with 1 and s, respectively, s
being the skin membrane,

• �
1
∈ O

∗ is the initial multiset of objects placed in the
membrane with label 1 (initially, the skin membrane is
empty), and

• R is a finite set of rules defined as follows:

• [a]
1
→ a , where a ∈ O

 (membrane dissolution rules; in reaction with an
object, a membrane can be dissolved, the objects of a
dissolved membrane remain in the region surround-
ing it) and

• [a]
1
→ [b]

1
[c]

1 , where a, b, c ∈ O

 (division rules for elementary membranes; in reac-
tion with an object, the membrane is divided into two
membranes with the same label; the object specified
in the rule is replaced in the two new membranes by
possibly new objects; all other objects are duplicated
in the two new copies of the membrane).

Moreover, for every a ∈ O , R has at most one division rule
of the form [a]

1
→ [b]

1
[c]

1
 . � is called halting, if each of its

computations halts.
As it is usual in membrane computing, sdd P systems

work in a maximally parallel manner: at each step the system
first nondeterministically assigns appropriate rules to the
objects of the system such that the assigned multiset S of
rules satisfies the following properties: (i) at most one rule
from S is assigned to any object of the system, (ii) a mem-
brane can be the subject of at most one rule in S, and (iii) S is
maximal among the multisets of rules satisfying (i) and (ii).

Let � = (O, {1, s}, [[]1]s,�1, R) be a halting sdd P sys-
tem. For any rule r of the form u → v , u (resp. v) is called
the left-hand side (resp. the right-hand side) of r. We call
membranes with label 1 working membranes (notice that
as the skin cannot be divided or dissolved, the objects in
the skin remain unchanged during all computations of � ,
that is, only objects in working membranes can be changed).
An object a ∈ O is called a divider if a can divide working
membranes, that is, R contains a division rule with left-hand
side [a]

1
 . Likewise, an object a ∈ O is called a dissolver if R

contains a dissolution rule with left-hand side [a]
1
.

3 Results

In this paper we consider only halting sdd P systems. In the
rest of this section � is always a halting sdd P system of the
form � = (O, {1, s}, [[]1]s,�1, R) , where O = {a1,… , a

n
}

(n ∈ ℕ) and �
1
= a

i
1

… a
i
m

 (m ≥ 1 and i1,… , i
m
∈ [n]).

In this section we show that the multiset content of
the skin membrane of � at the end of so-called division-

driven computations can be computed in polynomial time
in nm. In a division-driven computation division rules
have priority over dissolution rules and there is a certain
order between the division rules too. To specify these
computations precisely we need some preparation.

Consider a halting computation C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t

of � . We first assign to each occurrence of an object
occurring in a working membrane a label defined induc-
tively as follows. The label of an object a

i
�
 (� ∈ [m]) in �

1

in C
0
 is � . Now, let M be a working membrane in C

i
 , for

some i ∈ [0, t − 1] , and consider an occurrence of an object
a in M with label � (� ∈ [m]) . Then we have exactly one
of the following three cases: (i) this occurrence of a is not
involved in the application of any rule, or (ii) it is involved
in the application of a division rule r ∶ [a]

1
→ [b]

1
[c]

1
 , or

(iii) it is involved in the application of a dissolution rule
during C

i
⇒ C

i+1
 . In Case (i) the same occurrence of a

occurs in C
i+1

 too. Then let the label of this occurrence
of a in C

i+1
 be � . In Case (ii) r divides M into two new

membranes in C
i+1

 . Then let the label of the occurrences
of b and c introduced by r in these two new membranes be
� . In Case (iii) no objects are introduced in the working
membranes by the considered occurrence of a, thus no
labelling is necessary in this case. If a is an object with
label � , then we will often denote this by a(�).

Notice that the multiset content of a working membrane
in C always has the form a

(1)

j
1

… a
(m)

jm
 , for some

j1,… , jm ∈ [n] . Using the labels of the objects we can
define now division-driven computations as follows.

Definition 2 Let � be a halting sdd P system with object
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 .
A halting computation C of � is called division-driven if the
following conditions hold.

1. If � can apply both division and dissolution rules to a
membrane in C , then � applies a division rule, and

2. when a division rule is applied to a membrane
M in C with an object a

(�)

i
 on the left-hand side

(i ∈ [n],� ∈ [m]) , then M contains no dividers with label
�
′
< �.

Intuitively, in a division-driven computation C of � the
computation goes as follows. Assume that the labels of
those objects in �

1
 that can divide working membranes

are 𝓁
1
< ⋯ < 𝓁

k
 , for some k ∈ [m] . Then first objects with

label �
1
 are used to divide working membranes, then those

objects which have label �
2
 , and so on until at the end

those objects are used which have label �
k
 . Then those

objects are used which can dissolve working membranes,

254 Z. Gazdag, G. Kolonits

1 3

and if no more working membranes can be dissolved,
the computation terminates. Notice that if a non-divider
object with label � occurs in a working membrane, then
this object remains unchanged until the computation halts.

Example 1 Let �
ex
= ({a1, a2, a3, a4}, {1, s}, [[]1]s, a

(1)

1
a
(2)

1
, R) ,

where

Figure 1 shows a division-driven computation of �
ex

 . Recall
that the numbers in parentheses are the labels of the corre-
sponding objects. Notice that each working membrane con-
tains two objects with label 1 and 2, respectively. One can
see that this computation is indeed a division-driven one. In
the first step, a(1)

1
 is used to divide the working membrane.

Then, in the second step the upper working membrane is
divided by a(1)

2
 and the other working membrane is divided

by a(2)

1
 (no dividers with label 1 are present in this mem-

brane). In the third step, the upper two working membranes
are divided by a(2)

1
 , the working membrane containing a(1)

3
a
(2)

2

is divided by a(2)

2
 , and the remaining working membrane is

unchanged. Then, the computation continues according to
the definition of division-driven computations: dividers have
priority over dissolvers and dividers (resp. dissolvers) with
label 1 have priority over dividers (resp. dissolvers) with
label 2. ◻

As it is mentioned in the introduction, our work is based
on the concept of object division polynomials. To define
this concept precisely we first define object division trees

R = {[a1]1 → [a2]1[a3]1, [a2]1 → [a4]1[a4]1, [a4]1 → a4}.

similarly as object division graphs were defined, for exam-
ple, in [32]. Let � be a halting sdd P system with object
alphabet O = {a1,… , a

n
} . The object division tree of a

i

(i ∈ [n]), denoted by odt
a

i

 , is the smallest binary tree sat-
isfying the following conditions:

• the root of odt
a

i

 is labelled by a
i
 , and

• if a node N of odt
a

i

 is labelled by aj (j ∈ [n]) and
[aj]1 → [ak]1[al]1 (k, l ∈ [n]) is a rule of � , then N has
exactly two children with labels a

k
 and a

l
 , respectively.

Since � is an sdd P system, it does not have different divi-
sion rules with the same left-hand side. Thus odt

a
i

 is well
defined. Notice that in odt

a
i

 a subtree with a root labelled
by an object aj (j ∈ [n]) is equal to odtaj

 . The height of odt
a

i

 ,

denoted by h(odt
a

i
) , is defined inductively as follows. If

odt
a

i

 is a single node labelled by a
i
 , then h(odt

a
i
) = 0 . Oth-

erwise let h
max

 be the maximum of the heights of subtrees
of the root in odt

a
i

 . Then h(odt
a

i
) = h

max
+ 1.

Example 2 Consider again �
ex

 from Example 1. The tree
odt

a
1
 can be seen in Fig. 2. Notice that odt

a
2
 and odt

a
3
 are

equal to the first and second subtrees of odt
a

1
 , respectively,

and odt
a

4
 is equal, for example, to the first subtree of odt

a
2
 .

 ◻

Next we show a useful property of object division trees.

Lemma 1 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
 . Let i ∈ [n] such

that a
i
 occurs in �

1
 . Then h(odt

a
i
) < n.

Fig. 1 A division-driven
computation of �

ex
 from

Example 1. Grey areas are the
working membranes. Working
membranes appearing closer
to each other are results of a
membrane division

255A new method to simulate restricted variants of polarizationless P systems with active membranes

1 3

Proof We give an indirect proof. Assume that h(odt
a

i
) ≥ n .

Then there exists a path P in odt
a

i

 with length at least n. Due
to the pigeonhole principle, there exists j ∈ [n] such that aj
occurs at least twice in P. Let N

1
 and N

2
 be the first two

nodes of P (counted from the root) labelled by aj . Let t
1
 and

t
2
 be the subtrees of odt

a
i

 with roots N
1
 and N

2
 , respectively.

Clearly, t
2
 is a proper subtree of t

1
 . Moreover, by our above

note t
1
= t

2
= odtaj

 . This implies that odt
a

i

 is infinite, which

further implies that a division-driven computation will never
halt. However, this contradicts to the fact that � is a halting
sdd P system, proving our statement. ◻

Every object division tree defines an object division poly-

nomial as follows.

Definition 3 Consider a halting sdd P system � with object
alphabet O = {a1,… , a

n
} . Let V = {x

i
∣ i ∈ [n]} ∪ {x} be a

set of variables. Let moreover i ∈ [n] and l = h(odt
i
) . The

object division polynomial of a
i
 (odp

a
i

 for short) is a poly-
nomial with variables in V defined as follows:

where mjk is the number of leaves in odt
a

i

 at depth j labelled
by a

k
.

Example 3 Consider �
ex

 from Example 1 and the object
division trees considered in Example 2. The corresponding
object division polynomials are as follows:

• odp
a1
= 2x4x

2
+ x3x,

• odp
a2
= 2x4x,

• odp
a3
= x3,

• odp
a4
= x4.

 ◻

Next we show that object division polynomials can be
calculated in polynomial time.

Lemma 2 Consider a halting sdd P system � with object

alphabet O = {a1,… , a
n
} and let i ∈ [n] . Then the object

odpai
=

∑

j∈[0,l],k∈[n]

mjk ⋅ xk ⋅ xj,

division polynomial of a
i
 can be computed in polynomial

time in n.

Proof Let l = h(odt
a

i
) and, for every j ∈ [0, l] , let �j

be an n-vector such that (�j)k (k ∈ [n]) is the num-
ber of nodes labelled by a

k
 on the j th level of odt

a
i

 . Let
ndiv = {j ∈ [n] ∣ aj is a non-divider} . As the set of labels of
leaves in odt

a
i

 is included in the set {aj ∣ j ∈ ndiv} , we get
that

where �
k
 (k ∈ [n]) is an n-vector defined as follows:

To compute �j (j ∈ [0, l]) let us define, for every k ∈ [n] , the
n-vector �

k
 as follows: for every � ∈ [n] , if there is a rule r

of � with a� on the left- and a
k
 on the right-hand side, then

let (�
k
)� be the number of occurrences of a

k
 on the right-

hand side of r. If there is no such rule of � , then let (�
k
)�

be 0. It can be clearly seen that if we multiply �T
j

(j ∈ [0, l − 1]) with �
k
 (k ∈ [n]) , we get the number of occur-

rences of a
k
 on the (j + 1) th level of odt

a
i

 . Thus, for every
j ∈ [0, l − 1] , �T

j+1
= �

T
j
� , where � is the n × n matrix

whose kth column (k ∈ [n]) is �
k
 . Since matrix multiplica-

tion is associative, we get that �T
j
= �

T
0
�

j (j ∈ [l]) . This
implies that

Notice that since the 0th level of odt
a

i

 contains only the root
of odt

a
i

 , (�
0
)
k
= 1 if k = i , and (�

0
)
k
= 0 otherwise. There-

fore, the coefficient of a factor xkxj in odp
a

i

 is (�j)ik . Thus,
we only have to compute �j for every j ∈ [0, l] . Since every
row in � contains at most two non-zero elements and the
sum of these elements is two, it is easy to see that the largest
value in �j is at most 2j . So these values can be stored using
n bits and thus computing one entry of �j+1 can be done
in O(n) steps. Since � is an n × n matrix, computing every
necessary value can be done in polynomial time in n. ◻

Example 4 Consider odp
a1

 and odp
a2

 given in Exam-
ple 3. According to the proof of Lemma 2, we can
compute these polynomials as follows. We will use
�

i
 (i ∈ [4]) and �j (j ∈ [0, 2]) in the computation of

each polynomial. These have the following values:
�

T

1
= �

T

2
=

[

0 0 0 0
]

, �T

3
=

[

0 0 1 0
]

, �T

4
=

[

0 0 0 1
]

, and

odpai
=

∑

j∈[0,l],k∈[n]

�j�kxkxj,

(e
k
)� =

{

1 if � = k and k ∈ ndiv

0 otherwise.

odpai
=

∑

j∈[0,l],k∈[n]

�
T
0
�

j
�kxkxj.

Fig. 2 The tree odt
a

1
 from Example 2

256 Z. Gazdag, G. Kolonits

1 3

Moreover, in the case of odp
a1

 �T

0
= [1 0 0 0] and l = 2 .

Clearly,

Thus, in the case of odp
a1

 we get that

On the other hand, in the case of odp
a2

 �T

0
= [0 1 0 0] and

l = 1 . Thus we get the following calculation.

 ◻

Let � be a halting sdd P system with object alphabet
O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Consider
a division-driven computation C ∶ C

0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of

� . First we specify certain working membranes of C , then
show how to use object division polynomials to calculate the
multiset contents of these working membranes.

�
0
=

⎡
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

, �
1
=

⎡
⎢
⎢
⎢
⎣

0 1 1 0

0 0 0 2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎦

, �
2
=

⎡
⎢
⎢
⎢
⎣

0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

∑

j∈[0,2],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

�
T
0
�

0
�kxk +

∑

k∈[4]

�
T
0
�

1
�kxkx +

∑

k∈[4]

�
T
0
�

2
�kxkx2

.

∑

j∈[0,2],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

[1 0 0 0]�kxk +
∑

k∈[4]

[0 1 1 0]�kxkx

+
∑

k∈[4]

[0 0 0 2]�kxkx2 = (0x1 + 0x2 + 0x3 + 0x4)

+ (0x1x + 0x2x + 1x3x + 0x4x)

+ (0x1x2 + 0x2x2 + 0x3x2 + 2x4x2)

= 2x4x2 + x3x = odpa1
.

∑

j∈[0,1],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

[0 1 0 0]�kxk +
∑

k∈[4]

[0 0 0 2]�kxkx

= (0x1 + 0x2 + 0x3 + 0x4)

+ (0x1x + 0x2x + 0x3x + 2x4x)

= 2x4x = odpa2
.

Let M be a working membrane in C and � ∈ [m] . If M
contains no dividers with label �′ ≤ � , then M is called �
-divider-stable. Moreover, m-divider-stable working mem-
branes are called non-dividing. Consider an �-divider-stable
membrane M in C

i
 (� ∈ [m], i ∈ [t]) . M is called primary

if either i = 0 or the following holds. Let N be that mem-
brane in C

i−1
 from which � derives M. Then N is not �

-divider-stable.

Example 5 Let �
ex

 be the P system given in Example 1 and
consider the working membrane M containing a(1)

3
a
(2)

2
 in C

2
 .

Then M is 1-divider-stable, as the only object in M having
label 1 or less is a

3
 which is a non-divider. However, this

M is not 2-divider-stable, since it contains a
2
 having label

2 and a
2
 is a divider. M is neither primary, as M is derived

from the working membrane N in C
1
 containing a(1)

3
a
(2)

1
 , but

N is 1-divider-stable too. However, N is primary, since it
is derived from the working membrane in C

0
 containing

a
(1)

1
a
(2)

2
 , which is not 1-divider-stable.

The only working membrane in C
5
 is non-dividing, as it

is 2-divider-stable, and 2 is the greatest label in this exam-
ple. Notice that non-dividing working membranes are those
which do not contain dividers. ◻

Let C be a division-driven computation of � . To calculate
the multiset contents of primary non-dividing working mem-
branes of C , we extend first the definition of object division
polynomials to objects having labels.

Definition 4 Consider a halting sdd P system � with object
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 .
Let i ∈ [n] , � ∈ [m] , and consider the object division poly-
nomial odpai

=
∑

j∈[0,l],k∈[n] mjkxkxj of a
i
.

The labelled object division polynomial of a(�)

i
 (lodp

a
(�)

i

for short) is the polynomial
∑

j∈[0,l],k∈[n] mjkx
�kxj (that is, we

added � to the indices of certain variables of odp
a

i

 , referring
this way to the label of the corresponding object).

Next we define a product of labelled object division poly-
nomials of objects in �

1
.

Definition 5 Let � be a halting sdd P system with object
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 .
The �

1
-product of � is

It is easy to see that all monomials in P
�

1

 have the form
�x

1j
1

… xmjm
xj , for some �, j ∈ ℕ and j1,… , jm ∈ [n] . Using

the next lemma we can determine the multiset contents of
primary non-dividing working membranes of the computa-
tion C by calculating the monomials of P

�
1

.

P
�1

=
∏

�∈[m]

lodp
a
(�)

i�

.

257A new method to simulate restricted variants of polarizationless P systems with active membranes

1 3

Lemma 3 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Con-

sider the �
1
-product P

�
1

 and a division-driven computation

C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of � . Let moreover j1,… , jm ∈ [n]

and j ∈ [0, t] . Then the coefficient of x
1j

1

… xmjm
xj in P

�
1

equals to the number of those primary non-dividing working

membranes in Cj which contain a
(1)

j
1

… a
(m)

jm
.

Proof We show the statement by induction on m. If m = 1 ,
then P

�1
= lodp

a
(1)

i1

 . Then, by Definitions 3 and 4, P
�

1

 con-

tains a monomial mjkx
1kxj if and only if the number of leaves

in odt
a

1
 at depth j labelled by a

k
 is mjk . Thus, the number of

those non-dividing working membranes in Cj which contain
a
(1)

k
 equals to the coefficient of x

1kxj in P
�

1

 . Then the state-
ment follows taking into consideration that every non-divid-
ing working membrane in C is primary.

Now assume that the statement holds if m = m
� , for some

m
′ ≥ 1 . We show it for m = m

�
+ 1 . Let � be the coefficient

of a monomial x
1j

1

… xmjm
xj in P

�
1

 . Let moreover �̂� be the
number of those primary m-divider-stable working mem-
branes in Cj which contain a(1)

j
1

… a
(m)

jm
 . We show that 𝛼 = �̂�.

Let ��

1
= a

i
1

… a
i
m�

 and P
�
�
1
=
∏

�∈[m�] lodp
a
(�)

i�

 . Clearly,

P
�1

= P
�
�
1
lodp

a
(m)

im

 . Let us denote by �j′ and �j′′ (j
�
, j�� ∈ [t]) the

coefficients of x
1j

1

… xm�jm�
xj� in P

�
′

1

 and xmjm
xj′′ in lodp

a
(m)

im

 ,

respectively. One can see that � can be calculated by sum-
ming up the products �j′�j′′ , for every j�, j�� ∈ [t] with
j� + j�� = j.

On the other hand, let j�, j�� ∈ [t] and denote �̂�j′ the num-
ber of those primary m′-divider-stable working membranes
in Cj′ which contain a(1)

j
1

… a
(m�)

jm�
 . Denote, moreover, 𝛽j′′ the

number of leaves labelled by ajm
 in odt

a
im

 at depth j′′ . Con-

sider now a membrane M in Cj containing a(1)

j
1

… a
(m)

jm
 . One

can see that the only way for � to create M is the following.
First � creates a membrane N containing a(1)

j
1

… a
(m�)

jm�
a
(m)

im
 in

j′ steps (j� ∈ [t]) using only dividers having labels m′ or less.
Then, using dividers with label m, � creates M in j�� = j − j�
steps. Thus �̂� can be calculated by summing up the products
�̂�j′𝛽j′′ , for every j�, j�� ∈ [t] with j� + j�� = j.

By induction hypothesis, 𝛼j� = �̂�j� , for every j� ∈ [t] .
Moreover, by the definition of object division polynomials,
𝛽j�� = 𝛽j�� , for every j�� ∈ [t] . Thus we have that

which finishes the proof of the lemma. ◻

We show now through an example how to use the �
1

-product P
�

1

 to calculate multiset contents of primary non-
dividing working membranes.

Example 6 Consider �
ex

 from Example 1 and the computa-
tion C given in Fig. 1. From Example 3 we know that
odp

a1
= 2x4x

2
+ x3x . Thus lodp

a
(1)

1

= 2x14x
2 + x13x and

lodp
a
(2)

1

= 2x24x
2 + x23x . As P

a
(1)

1
a
(2)

1

= lodp
a
(1)

1

lodp
a
(2)

1

 we get

that

Figure 3 shows the correspondence between the monomials
of P

a
(1)

1
a
(2)

1

 and the primary non-dividing working membranes

of C . Notice that the variables xij (i ∈ [2], j ∈ [4]) correspond
to objects a(i)

j
 , the coefficient of a monomial corresponds to

the number of the corresponding membranes, and the power
of x shows the index of the corresponding configuration.
 ◻

Consider a halting sdd � , the �
1
-product P

�
1

 of � , and
a division-driven computation C of � . As we have seen,
the multiset content of the primary non-dividing working
membranes of C can be calculated by determining the mono-
mials of P

�
1

 . Clearly, if we know these multisets, then we
can tell which and how many objects are released to the skin
(by applying membrane dissolution rules) in each step of C .
However, the size of P

�
1

 can be exponential in nm, which

𝛼 =
∑

j�, j�� ∈ [t],

j� + j�� = j

𝛼j�𝛽j�� =
∑

j�, j�� ∈ [t],

j� + j�� = j

�̂�j�𝛽j�� = �̂�,

P
a
(1)

1
a
(2)

1

= (2x
14

x
2 + x

13
x)(2x

24
x

2 + x
23

x)

= 4x
14

x
24

x
4 + 2x

14
x

23
x

3 + 2x
13

x
24

x
3 + x

13
x

23
x

2
.

Fig. 3 Representing primary
non-dividing working mem-
branes of �

ex
 by monomials

258 Z. Gazdag, G. Kolonits

1 3

means that we cannot use P
�

1

 directly to calculate efficiently
the number of these objects. Instead, we will use another
polynomial yielded by using the next definition.

Definition 6 Consider a halting sdd P system � with
object alphabet O = {a1,… , a

n
} and initial multiset

�
1
= a

i
1

… a
i
m

 . Let P be a polynomial over the variables
V = ({x

�k
∣ � ∈ [m], k ∈ [n]} ∪ {x}) . Let moreover i ∈ [n]

and y be a new variable not occurring in V. The i-reduction

of P is the polynomial P⟨i⟩ which we get from P using the
following operations. First, for every � ∈ [m], k ∈ [n] with
k ≠ i , we substitute x

�k
 in P with z, where

Let the given new polynomial be P′ and let P⟨i⟩ be the poly-
nomial created from P′ by substituting x

�i
 with x

i
 , for every

� ∈ [m].

Example 7 The i-reductions (i ∈ [4]) of P
a
(1)

1
a
(2)

1

 given in

Example 6 are as follows:

P
⟨1⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2y1x3 + 2 ⋅ 1yx3 + 1 ⋅ 1x2 = 4y2x4

+4yx
3
+ x

2,
P
⟨2⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2y1x3 + 2 ⋅ 1yx3 + 1 ⋅ 1x2 = 4y2x4

+4yx
3
+ x

2,
P
⟨3⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2yx
3
x3 + 2x

3
yx3 + x

3
x

3
x2 = 4y2x4

+4yx
3
x

3
+ x

2

3
x

2,
P
⟨4⟩

a
(1)

1
a
(2)

1

= 4x
4
x

4
x

4 + 2x
4
1x

3 + 2 ⋅ 1x
4
x

3 + 1 ⋅ 1x
2 = 4x

2

4
x

4

+4x
4
x

3
+ x

2.

Lemma 4 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Con-

sider the �
1
-product P

�
1

 of � . Let moreover i ∈ [n] . Then

the i-reduction of P
�

1

 can be calculated in polynomial time

in nm.

Proof One can see using basic properties of polynomials that

where P⟨i⟩
�

1
 and odp⟨i⟩

a
i�

 denote the i-reductions of P
�

1

 and

lodp
a
(�)

i�

 , respectively. By Lemma 2, we can compute odp
a

i�

 ,

and in turn odp⟨i⟩
a

i�

 as well, in polynomial time in n. Moreover,

odp⟨i⟩
a

i�

 contains only at most three variables, x
i
, x , and y, for

every � ∈ [m] . Thus, multiplying these polynomials can be
done in polynomial time in nm. ◻

z =

{

y, if a
(�)

k
can dissolve working membranes, and

1, otherwise.

P
⟨i⟩
�1

=
�

�∈[m]

odp⟨i⟩
a

i�

,

Using the i-reduction of P
�

1

 we can compute which and
how many objects are released to the skin membrane during
a division-driven computation of � as follows.

Theorem 1 Let � be a halting sdd P system with

object alphabet O = {a1,… , a
n
} and initial multi-

set �
1
= a

i
1

… a
i
m

 . Consider a division-driven com-

putation C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of � . Let moreover

i ∈ [n], j ∈ [0, t − 1] and denote Nij the number of copies of

a
i
 released to the skin membrane by dissolutions of elemen-

tary membranes during the step Cj ⇒ Cj+1
 . Then Nij can be

computed in polynomial time in nm.

Proof Let P
�

1

 be the �
1
-product of � and P⟨i⟩

�
1
 be the i-reduc-

tion of P
�

1

 . Clearly, P⟨i⟩
�

1
 can be written in the form

Using Lemma 3 and the definition of i-reductions, we get
the following. A monomial m

��jx
�

i
y�xj in P⟨i⟩

�
1
 represents that

there are m
��j primary m-divider-stable membranes in Cj

containing � copies of a
i
 and � copies of such objects differ-

ent from a
i
 which can dissolve the membrane. Distinguish-

ing between the cases whether a
i
 is a dissolver or not, we get

the following equations.

if a
i
 is a non-dissolver, and

otherwise. As we have seen in Lemma 4, P⟨i⟩
�

1
 can be com-

puted in polynomial time in nm. Thus, the corresponding
(polynomial number of) coefficients of the monomials in the
sums (1) and (2) can be calculated in polynomial time in nm
as well. ◻

Example 8 Consider Example 1 and the computation shown
in Fig. 1. Let, for every i ∈ [4], j ∈ [0, 4] , Nij be the value
defined in Theorem 1. Then Nij = 0 , for i ∈ [2], j ∈ [0, 4]
and i ∈ [3, 4], j ∈ [0, 2] . Moreover, N

33
= N

43
= 4 , N

34
= 0 ,

and N
44

= 8.
We show that these values can be calculated using the

i-reductions given in Example 7 and the equations (1) and
(2) given in the proof of Theorem 1. If i ∈ [2] , then a

i
 is a

P⟨i⟩
�1

=
�

�, � ∈ [0, m],� + � ≤ m

j ∈ [0, mn]

m
��jx

�

i
y�xj

.

(1)
Nij =

∑

�, � ∈ [0, m], � ≥ 1

� + � ≤ m

m
��j�,

(2)
Nij =

∑

�, � ∈ [0, m]

� + � ≤ m

m
��j�

259A new method to simulate restricted variants of polarizationless P systems with active membranes

1 3

non-dissolver, thus we have to use Eq. (1) in this case. How-
ever, the monomials in P⟨i⟩

a
(1)

1
a
(2)

1

 do not contain x
i
 , hence in this

case � is 0, for each monomial. Therefore the sum equals to
0, for every j ∈ [0, 4] . Now let i = 3 . Since a

3
 is a non-dis-

solver, we should use again Eq. (1) in this case. Now the
only monomial which contains both x

3
 and y is 4yx

3
x

3 , which
means that N

33
= 4 ⋅ 1 = 4 and N

3j = 0 , for every
j ∈ {0, 1, 2, 4} . Lastly, let i = 4 . Since a

4
 is a dissolver, we

should use Eq. (2) in this case. Now the monomials that
contain x

4
 are 4x

2

4
x

4 and 4x
4
x

3 . Therefore N
44

= 4 ⋅ 2 = 8 ,
N

43
= 4 ⋅ 1 = 4 , and N

4j = 0 , for every j ∈ [0, 2] . ◻

From Theorem 1 we immediately get the following result.

Corollary 1 Let � be a halting sdd P system with

object alphabet O = {a1,… , a
n
} and initial multiset

�
1
= a

i
1

… a
i
m

 . Consider a division-driven computation

C ∶ C
0
⇒ C

1
⇒ … ⇒ C

t
 of � . Then the multiset content of

the skin in C
t
 can be computed in polynomial time in nm.

Proof Let i ∈ [n] . It can be clearly seen that the number N
i
 of

occurrences of a
i
 in the skin membrane in C

t
 is

∑

j∈[0,t−1]
Nij ,

where Nij is the number defined in Theorem 1. By Theo-
rem 1, Nij can be calculated in polynomial time in nm. Thus,
to see the statement it is enough to show that t ≤ nm.

On the one hand, �
1
 contains m objects. On the other

hand, by Lemma 1, for every � ∈ [m] , h(odt
a

i�

) < n . This

means that there are at most n − 1 steps in C where objects
with label � are used to divide working membranes. Thus
there are at most m(n − 1) steps where division rules are
applied, and there is at most one step, where only dissolution
rules are applied. Thus, t ≤ m(n − 1) + 1 ≤ mn . ◻

4 Conclusions

In this paper we proposed a polynomial-time method for
calculating the number of each object occurring in the skin
membrane at the end of a division-driven computation of a
halting sdd P system � . To calculate these numbers we used
multiplications of certain polynomials which were created
from the object division polynomials of the objects initially
contained in the working membrane of �.

Although our method considers only division-driven
computations of halting sdd P systems, we can use it to
simulate recognizer P systems too. Recognizer P systems
[28] are common tools in membrane computing to solve
decision problems with P systems. They have only halt-
ing computations and they are confluent, which means that
all of their computations yield the same result. That is, a

division-driven computation gives the same result as that of
the other computations.

By definition, sdd P systems have no different rules with
the same left-hand side. In fact, we can safely assume that
a recognizer P system having only dissolution and division
rules possesses this property, too. To see this consider such
a recognizer P system � . If � has two different rules r

1
 and

r
2
 with the same left-hand side, then there is a computa-

tion of � where in each situation when r
2
 is applicable, �

applies r
1
 instead (clearly, if r

2
 is applicable, then r

1
 should

be applicable, too). That is, if we remove r
2
 from � , then

the remaining part of � will still compute the same result
as before.

Concerning the future work, we would like to extend our
method to P systems having other types of rules or differ-
ent initial membrane structures. The method can easily be
extended to the case when the dissolution rules can have
arbitrary objects in their right-hand sides. Indeed, in this
case we only need to change the calculation of the value Nij
in the proof of Theorem 1 accordingly.

It seems that we can extend our method to send-out com-
munication rules too. To this end, we need to extend the
definition of division-driven computations, for example such
that send-out communication rules have less priority than
that of dissolution rules. Moreover, in the calculation of Nij
in the proof of Theorem 1 we should add a case where a

i
 is

a non-dissolver but can trigger a send-out communication
rule. Notice that a working membrane can contain more than
one occurrence of such an object a which can trigger send-
out communication rules. However, during one step only
one a can be used by a rule. Therefore, in the computation
of Nij we might need to consider such monomials too which
contain xj′ , for some j′ < j.

Moreover, our method seems to be suitable for generali-
sation to such P systems which initially have more than one
working membranes (possibly with different labels). On the
other hand, to extend it to such P systems where the initial
membrane structure is deeper than one is not so trivial. Con-
sider for example a P system � having an initial membrane
structure of the form [… [[]

1
]
2
…]

n
 , where n ≥ 3 and n is

the skin. Assume also that the other properties of � corre-
spond to those of the sdd P systems. Since membranes with
label i > 1 cannot be divided until membranes with label 1 are
present, we could use our method to calculate the number of
objects in the regions of � until the last membrane with label
1 is dissolved. Assume that at this point the elementary mem-
brane has label i, for some i ∈ [2, n] . We can use our method
again to calculate the number of objects in the regions of �
until the last membrane with label i is dissolved. Continu-
ing this way the application of our method, we can calculate
the number of objects occurring in the skin membrane when
the computation of � halts. However, we cannot assume that
the above-described computation is efficient because of the

260 Z. Gazdag, G. Kolonits

1 3

following reasons. Consider that point of the computation
when the last membrane with label 1 is dissolved and the new
elementary membrane is the one with label i. Then this mem-
brane can contain exponentially many objects, which means
that to apply our method we should multiply exponentially
many polynomials. Nevertheless, it is more or less clear that
if � works in polynomial time, then only a polynomially large
number of these objects are used by � during the computa-
tion. This means that we can apply our method taking into
consideration only a polynomially large number of objects.

Acknowledgements Open access funding provided by University of
Szeged (SZTE). Research of the first author was supported by Grant
TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Tech-
nology, Hungary. Research of the second author was supported by
NKFIH—National Research, Development, and Innovation Office,
Hungary, Grant no. K 120558.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Alhazov, A., Martín-Vide, C., & Pan, L. (2003). Solving a
PSPACE-complete problem by P systems with restricted active
membranes. Fundamenta Informaticae, 58, 67–77.

 2. Alhazov, A., Pan, L., & Păun, G. (2004). Trading polarizations
for labels in P systems with active membranes. Acta Informatica,
41(2–3), 111–144.

 3. Alhazov, A., & Pérez-Jiménez, M.J. (2007). Uniform solution of
QSAT using polarizationless active membranes. In J. Durand-
Lose, & M. Margenstern (Eds.), Machines, Computations, and

Universality, MCU 2007, LNCS vol. 4664, pp. 122–133.
 4. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez,

M.J., & Riscos-Núñez, A. (2005). Exploring computation trees
associated with P systems. In G. Mauri, G., Paun, M. J. Pérez-
Jiménez, G. Rozenberg, & Salomaa, (Eds.), Membrane Comput-

ing, 5th International Workshop, WMC 2004, LNCS vol. 3365,
pp. 278–286.

 5. Gazdag, Z. (2014). Solving SAT by P systems with active mem-
branes in linear time in the number of variables. In A. Alhazov,
S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, & A.
Salomaa (Eds.), Membrane Computing: 14th International Con-
ference, LNCS, vol. 8340, pp. 189–205.

 6. Gazdag, Z., & Gutiérrez-Naranjo, M.A. (2014). Solving the ST-
connectivity problem with pure membrane computing techniques.
In M. Gheorghe, G., Rozenberg, A., Salomaa, P., Sosík, & C.,
Zandron, (Eds.), Membrane Computing: 15th International Con-
ference, LNCS vol. 8961, pp. 215–228.

 7. Gazdag, Z., & Kolonits, G. (2013). A new approach for solving
SAT by P systems with active membranes. In E. Csuhaj-Varjú,
M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil (Eds.),
Membrane Computing: 13th International Conference, LNCS vol.
7762, pp. 195–207.

 8. Gazdag, Z., & Kolonits, G. (2017). Remarks on the computational
power of some restricted variants of P systems with active mem-
branes. In A. Leporati, G. Rozenberg, A. Salomaa, & C. Zandron

(Eds.), Membrane Computing, 17th International Conference,
LNCS vol. 10105, pp. 209–232.

 9. Gazdag, Z., Kolonits, G., & Gutiérrez-Naranjo, M.A. (2014).
Simulating Turing machines with polarizationless P systems with
active membranes. In M. Gheorghe, G. Rozenberg, A. Salomaa, P.
Sosík, & C. Zandron, (Eds.), Membrane Computing: 15th Inter-
national Conference, LNCS vol. 8961, pp. 229–240.

 10. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J., Riscos-Núñez,
A., & Romero-Campero, F.J. (2006). On the power of dissolu-
tion in P systems with active membranes. In R. Freund, G. Păun,
G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing: 6th
International Workshop, LNCS vol. 3850, pp. 224–240.

 11. Kolonits, G. (2015). A solution of horn-SAT with P systems using
antimatter. In: Membrane Computing: 16th International Confer-
ence, LNCS vol. 9504, pp. 236–250.

 12. Krishna, S. N., & Rama, R. (1999). A variant of P systems with
active membranes: Solving NP-complete problems. Romanian

Journal of Information Science and Technology, 2(4), 357–367.
 13. Leporati, A., Ferretti, C., Mauri, G., & Pérez-Jiménez, M. J.

(2009). Complexity aspects of polarizationless membrane sys-
tems. Natural Computing: An International Journal, 8(4),
703–717.

 14. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zandron,
C. (2014). Simulating elementary active membranes, with an
application to the P conjecture. In M. Gheorghe, G. Rozenberg,
P. Sosík, & C. Zandron, (Eds.), Membrane Computing, 15th Inter-
national Conference, LNCS vol. 8961, pp. 284–299.

 15. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., & Zan-
dron, C. (2017). Solving a special case of the P conjecture using
dependency graphs with dissolution. In M. Gheorghe, G. Rozen-
berg, A. Salomaa, & C. Zandron, (Eds.), Membrane Computing:
18th International Conference, LNCS vol. 10725, pp. 196–213.

 16. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2018). Solving QSAT in Sublinear Depth. In: Membrane
Computing: 19th International Conference, LNCS vol. 11399,
pp. 188–201.

 17. Leporati, A., Zandron, C., Ferretti, C., & Mauri, G. (2009). Solv-
ing PSPACE-complete problems by polarizationless recognizer P
systems with strong division and dissolution. Emerging Paradigms
in Informatics, Systems and Communication, pp. 93–98.

 18. Murphy, N., & Woods, D. (2007). Active membrane systems with-
out charges and using only symmetric elementary division char-
acterise P. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg,
& A. Salomaa, (Eds.), Membrane Computing: 8th International
Workshop, LNCS vol. 4860, pp. 367–384.

 19. Murphy, N., & Woods, D. (2008). A Characterisation of NL
using membrane systems without charges and dissolution. In C.S.
Calude, J.F.G. da Costa, R. Freund, M. Oswald, & G. Rozenberg,
(Eds.), Unconventional Computing: 7th International Conference,
LNCS vol. 5204, pp. 164–176.

 20. Murphy, N., & Woods, D. (2011). The computational power of
membrane systems under tight uniformity conditions. Natural

Computing: An International Journal, 10(1), 613–632.
 21. Pan, L., & Alhazov, A. (2006). Solving HPP and SAT by P sys-

tems with active membranes and separation rules. Acta Informat-

ica, 43(2), 131–145.
 22. Pan, L., Alhazov, A., & Ishdorj, T.-O. (2004). Further remarks

on P systems with active membranes, separation, merging, and
release rules. Soft Computing, 9(9), 686–690.

 23. Păun, G. (2001). P systems with active membranes: attacking NP-
complete problems. Journal of Automata, Languages and Combi-

natorics, 6(1), 75–90.
 24. Păun, Gh. (2005). Further twenty six open problems in membrane

computing. In: Third Brainstorming Week on Membrane Comput-
ing, pp. 249–262. Fénix Editora, Sevilla.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

261A new method to simulate restricted variants of polarizationless P systems with active membranes

1 3

 25. Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2012).
Sublinear-space P systems with active membranes. In E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil,
(Eds.), Membrane Computing 13th International Conference,
LNCS vol. 7762, pp. 342–357.

 26. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The

Oxford Handbook of Membrane Computing. Oxford, England:
Oxford University Press.

 27. Pérez-Jiménez, M.J., & Romero-Campero, F.J. (2005). Trading
polarization for bi-stable catalysts in P systems with active mem-
branes. In G. Mauri, G. Păun, M.J. Pérez-Jiménez, G. Rozenberg,
& A. Salomaa, (eds.) Membrane Computing: 5th International
Workshop, LNCS vol. 3365, pp. 373–388.

 28. Pérez-Jiménez, M. J., Romero-Jiménez, Á., & Sancho-Caparrini,
F. (2003). Complexity classes in models of cellular computing
with membranes. Natural Computing, 2(3), 265–285.

 29. Pérez-Jiménez, M. J., Romero-Jiménez, Á., & Sancho-Caparrini,
F. (2006). A polynomial complexity class in P systems using
membrane division. Journal of Automata, Languages and Com-

binatorics, 11(4), 423–434.
 30. Sosík, P. (2003). The computational power of cell division in P

systems. Natural Computing, 2(3), 287–298.
 31. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing

and complexity theory: A characterization of PSPACE. Journal

of Computer and System Sciences, 73(1), 137–152.
 32. Woods, D., Murphy, N., Pérez-Jiménez, M.J., & Riscos-Núñez, A.

(2009). Membrane dissolution and division in P. In C.S. Calude,
J.F.G. da Costa, N. Dershowitz, E. Freire, & G. Rozenberg (Eds.),
Unconventional Computation: 8th International Conference,
LNCS vol. 5715, pp. 262–276.

 33. Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP-com-
plete problems using P systems with active membranes. Uncon-

ventional Models of Computation (pp. 289–301), UMC’2K:
Proceedings of the Second International Conference on Uncon-
ventional Models of Computation, London: Springer.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Zsolt Gazdag is an associate pro-
fessor at the Institute of Infor-
matics, University of Szeged
(Hungary). He received his
Ph.D. degree in Mathematics
and Computer Science from the

University of Szeged in 2007. His research interests include the com-
putational complexity of P systems with active membranes, the expres-
sive power of grammars with controlled derivations, and the theory of
weighted tree automata.

Gábor Kolonits is currently an
assistant lecturer at the Faculty
of Informatics, Eötvös Loránd
University, Budapest, Hungary.
He finished his B.Sc. and M.Sc.
in Computer Engineering at Eöt-
vös Loránd University in 2009
and 20012, respectively. His cur-
rent main focus is on exploring
the computational power of
restricted variants of P systems
with active membranes. His
research interests include dis-
crete mathematics and bio-
inspired computations.

	A new method to simulate restricted variants of polarizationless P systems with active membranes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Results
	4 Conclusions
	Acknowledgements
	References

