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Abstract

According to the P conjecture by Gh. Păun, polarizationless P systems with active membranes cannot solve ��-complete 
problems in polynomial time. The conjecture is proved only in special cases yet. In this paper we consider the case where 
only elementary membrane division and dissolution rules are used and the initial membrane structure consists of one elemen-
tary membrane besides the skin membrane. We give a new approach based on the concept of object division polynomials 
introduced in this paper to simulate certain computations of these P systems. Moreover, we show how to compute efficiently 
the result of these computations using these polynomials.
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1 Introduction

P systems with active membranes, introduced in [23], are 
among the most investigated variants of P systems. Using 
the polarizations of the membranes and the possibility of 
dividing elementary (or even non-elementary) membranes 
these systems can solve computationally hard problems effi-
ciently. More precisely, with elementary membrane division 
they can solve ��-complete problems [12, 23, 28, 33], while 
with non-elementary membrane division they can solve even 
������-complete problems in polynomial time [1, 30]. 
Solving computationally hard problems with P systems with 
active membranes has a huge literature in Membrane Com-
puting, see, e.g. [2, 5, 7, 21, 22, 27, 29, 31], and the refer-
ences therein.

It is also widely investigated how certain restrictions 
on P systems with active membrane affect the computa-
tion power of these systems (see for example [6, 8, 9, 11, 
13, 14, 16, 17, 19, 20, 25]). Probably, the most investigated 
question in this research line is whether these P systems 
are still powerful enough to solve hard problems in polyno-
mial time when the polarizations of the membranes are not 
used. In the case when non-elementary membrane division 
is allowed the answer to this question is positive since in 
[3] the ������-complete QSAT problem was solved in 
polynomial time without polarizations. On the other hand, 
no polynomial-time solutions for hard problems exist when 
neither polarization nor non-elementary membrane division 
is allowed. In fact, Gh. Păun conjectured already in 2005 
that without polarization and non-elementary membrane 
division P systems with active membranes cannot solve ��
-complete problems in polynomial time [24]. Păun’s con-
jecture, often called the P conjecture, has not been proven 
yet although there are some partial solutions for it (see, e.g. 
[10, 15, 18, 32]). A direct attempt to calculate efficiently all 
the elementary membranes of a computation of a P system 
with active membranes fails as in general, the number of 
these membranes can grow exponentially and, moreover, 
these membranes can contain pairwise different multisets. 
However, it was discovered in [10] that if dissolution rules 
are not allowed to use, then there is no need to simulate all 
the elementary membranes to determine the result of a com-
putation. Instead, it is enough to consider a certain graph, 
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called the dependency graph [4] of the P system. Roughly, 
this graph describes how the rules of the P system can evolve 
and move objects through the membranes. To determine the 
result of a computation in this case it is enough to check 
whether a distinguished object is reachable from certain 
objects in the dependency graph. Using dependency graphs 
it was shown in [10] that polarizationless P systems with 
active membranes using no dissolution rules and working 
in polynomial time can solve only problems in �.

If dissolution rules are also allowed, then things become 
much more complicated. Consider a P system � with active 
membranes and assume, for example, that � contains a 
membrane sub-structure [[a b]

2
]
1
 . Assume moreover that a 

can dissolve membrane 2 but b cannot. Then � dissolves 
membrane 2 using a and b releases to membrane 1 without 
directly being involved in any application of a rule. Notice 
that in this case b immediately “knows” that � contained an 
occurrence of a in the membrane with label 2. This way the 
objects can send information to each other, and this kind of 
behaviour cannot be captured by dependency graphs.

Using generalizations of dependency graphs the P con-
jecture was already proved in some special cases where the 
P systems were allowed to use dissolution rules as well. In 
[32], for example, the P conjecture was proved using object 

division graphs in the case where the initial membrane struc-
ture of the P system is a linearly nested sequence of mem-
branes and the system can employ only dissolution and ele-
mentary membrane division rules. In [15] the P conjecture 
was proved in another case using a generalization of depend-
ency graphs. Here the P systems are deterministic, can use 
all types of rules except send-in communication rules, and 
the membrane structure is such that the skin contains only 
elementary membranes. In these papers the authors used 
these generalizations of dependency graphs to simulate a 
reasonable small part of the configurations in a computation 
of the investigated P systems.

In this paper we propose a new method to address Păun’s 
conjecture. With this method we are able to simulate effi-
ciently an entire computation of a P system. More precisely, 
we can compute in polynomial time the multiset content of 
the skin membrane at the end of certain computations of a 
P system. To make our ideas as clear as possible, we give 
our method only for a rather restricted variant of P systems, 
called halting simple divide-dissolve P systems. The com-
putations of these P systems always terminate, initially they 
have only one elementary membrane in the skin, and they 
can employ only membrane division and membrane dissolu-
tion rules (see Definition 1 for further properties of these P 
systems). Moreover, we simulate only particular computa-
tions of these P systems, where, for example, division rules 
have priority over dissolution rules. We will call these com-
putations division-driven computations (see Definition 2 for 
further details).

Our approach can be roughly described as follows. Con-
sider a halting simple divide-dissolve P system � , its input 
multiset �

1
 , and a division-driven computation C of � . First, 

based on the concept of object division graphs, we define 
object division polynomials (Definition 3). The object divi-
sion polynomial of an object a describes which and how 
many objects can be created from a using only division 
rules of � . Then, we consider a polynomial P

�
1

 which is, 
roughly, the multiplication of the object division polynomi-
als of objects in �

1
 (Definition 5). After that, we show that 

there is a strong relationship between the monomials of P
�

1

 
and the numbers of certain membranes and their contents in 
C (Lemma 3). Then, using P

�
1

 , we show how to calculate in 
polynomial time which and how many objects are released to 
the skin membrane in each step of C (Theorem 1). Using this 
we conclude that the multiset content of the skin membrane 
in the last configuration of C can be computed in polynomial 
time (Corollary 1).

We believe that our method can be extended to more gen-
eral variants of P systems. In particular, a generalization to 
P systems having also send-out communication rules and a 
more general initial membrane structure seems to be achiev-
able as it is discussed in the Conclusions section.

2  Preliminaries

Here we recall the necessary notions used later. Neverthe-
less, we assume that the reader is familiar with the basic 
concepts of membrane computing techniques (for a com-
prehensive guide see, e.g. [26]).

ℕ denotes the set of natural numbers including zero and, 
for every i, j ∈ ℕ , i ≤ j , [i, j] denotes the set {i,… , j} . If i = 1 , 
then [i, j] is denoted by [j]. We will use polynomials with 
coefficients in ℕ . A polynomial of the form p = cx

j
1

1
… x

jn
n  

where c, n, j1,… , jn ∈ ℕ and x1,… , x
n
 are variables is called 

a monomial and c is called the coefficient of p. An n × m 
matrix � has n rows and m columns. We will consider 
matrices with entries in ℕ . (�)ij denotes the jth element of 
the ith row of � . By a vector � we mean an n × 1 matrix, 
for some n ≥ 1 . �T denotes the transpose of � , and instead of 
(�)j1 and (�T )

1j (j ∈ [n]) we will write simply (�)j and (�T )j , 
respectively. If a vector � has n entries, for some n ≥ 1 , then 
� is called an n-dimensional vector or just an n-vector.

Next, we define a variant of polarizationless P systems 
with active membranes.

Definition 1 A simple divide-dissolve P system (sdd P sys-

tem, for short) is a polarizationless P system with active 
membranes having the following properties. � is of the form 
� = (O, H,�,�1, R) , where

• O is the alphabet of objects,
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• H = {1, s} is the set of labels of the membranes,
• � = [[ ]

1
]
s
 is the initial membrane structure containing 

two membranes labelled with 1 and s, respectively, s 
being the skin membrane,

• �
1
∈ O

∗ is the initial multiset of objects placed in the 
membrane with label 1 (initially, the skin membrane is 
empty), and

• R is a finite set of rules defined as follows:

• [a]
1
→ a , where a ∈ O

  (membrane dissolution rules; in reaction with an 
object, a membrane can be dissolved, the objects of a 
dissolved membrane remain in the region surround-
ing it) and

• [a]
1
→ [b]

1
[c]

1 , where a, b, c ∈ O

  (division rules for elementary membranes; in reac-
tion with an object, the membrane is divided into two 
membranes with the same label; the object specified 
in the rule is replaced in the two new membranes by 
possibly new objects; all other objects are duplicated 
in the two new copies of the membrane).

Moreover, for every a ∈ O , R has at most one division rule 
of the form [a]

1
→ [b]

1
[c]

1
 . � is called halting, if each of its 

computations halts.
As it is usual in membrane computing, sdd P systems 

work in a maximally parallel manner: at each step the system 
first nondeterministically assigns appropriate rules to the 
objects of the system such that the assigned multiset S of 
rules satisfies the following properties: (i) at most one rule 
from S is assigned to any object of the system, (ii) a mem-
brane can be the subject of at most one rule in S, and (iii) S is 
maximal among the multisets of rules satisfying (i) and (ii).

Let � = (O, {1, s}, [[ ]1]s,�1, R) be a halting sdd P sys-
tem. For any rule r of the form u → v , u (resp. v) is called 
the left-hand side (resp. the right-hand side) of r. We call 
membranes with label 1 working membranes (notice that 
as the skin cannot be divided or dissolved, the objects in 
the skin remain unchanged during all computations of � , 
that is, only objects in working membranes can be changed). 
An object a ∈ O is called a divider if a can divide working 
membranes, that is, R contains a division rule with left-hand 
side [a]

1
 . Likewise, an object a ∈ O is called a dissolver if R 

contains a dissolution rule with left-hand side [a]
1
.

3  Results

In this paper we consider only halting sdd P systems. In the 
rest of this section � is always a halting sdd P system of the 
form � = (O, {1, s}, [[ ]1]s,�1, R) , where O = {a1,… , a

n
} 

(n ∈ ℕ) and �
1
= a

i
1

… a
i
m

 ( m ≥ 1 and i1,… , i
m
∈ [n]).

In this section we show that the multiset content of 
the skin membrane of � at the end of so-called division-

driven computations can be computed in polynomial time 
in nm. In a division-driven computation division rules 
have priority over dissolution rules and there is a certain 
order between the division rules too. To specify these 
computations precisely we need some preparation.

Consider a halting computation C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t
 

of �  . We first assign to each occurrence of an object 
occurring in a working membrane a label defined induc-
tively as follows. The label of an object a

i
�
 (� ∈ [m]) in �

1
 

in C
0
 is � . Now, let M be a working membrane in C

i
 , for 

some i ∈ [0, t − 1] , and consider an occurrence of an object 
a in M with label � (� ∈ [m]) . Then we have exactly one 
of the following three cases: (i) this occurrence of a is not 
involved in the application of any rule, or (ii) it is involved 
in the application of a division rule r ∶ [a]

1
→ [b]

1
[c]

1
 , or 

(iii) it is involved in the application of a dissolution rule 
during C

i
⇒ C

i+1
 . In Case (i) the same occurrence of a 

occurs in C
i+1

 too. Then let the label of this occurrence 
of a in C

i+1
 be � . In Case (ii) r divides M into two new 

membranes in C
i+1

 . Then let the label of the occurrences 
of b and c introduced by r in these two new membranes be 
� . In Case (iii) no objects are introduced in the working 
membranes by the considered occurrence of a, thus no 
labelling is necessary in this case. If a is an object with 
label � , then we will often denote this by a(�).

Notice that the multiset content of a working membrane 
in C  always has the form a

(1)

j
1

… a
(m)

jm
 ,  for some 

j1,… , jm ∈ [n] . Using the labels of the objects we can 
define now division-driven computations as follows.

Definition 2 Let � be a halting sdd P system with object 
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 . 
A halting computation C of � is called division-driven if the 
following conditions hold.

1. If � can apply both division and dissolution rules to a 
membrane in C , then � applies a division rule, and

2. when a division rule is applied to a membrane 
M in C with an object a

(�)

i
 on the left-hand side 

(i ∈ [n],� ∈ [m]) , then M contains no dividers with label 
�
′
< �.

Intuitively, in a division-driven computation C of � the 
computation goes as follows. Assume that the labels of 
those objects in �

1
 that can divide working membranes 

are 𝓁
1
< ⋯ < 𝓁

k
 , for some k ∈ [m] . Then first objects with 

label �
1
 are used to divide working membranes, then those 

objects which have label �
2
 , and so on until at the end 

those objects are used which have label �
k
 . Then those 

objects are used which can dissolve working membranes, 
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and if no more working membranes can be dissolved, 
the computation terminates. Notice that if a non-divider 
object with label � occurs in a working membrane, then 
this object remains unchanged until the computation halts.

Example 1 Let �
ex
= ({a1, a2, a3, a4}, {1, s}, [[ ]1]s, a

(1)

1
a
(2)

1
, R) , 

where

Figure 1 shows a division-driven computation of �
ex

 . Recall 
that the numbers in parentheses are the labels of the corre-
sponding objects. Notice that each working membrane con-
tains two objects with label 1 and 2, respectively. One can 
see that this computation is indeed a division-driven one. In 
the first step, a(1)

1
 is used to divide the working membrane. 

Then, in the second step the upper working membrane is 
divided by a(1)

2
 and the other working membrane is divided 

by a(2)

1
 (no dividers with label 1 are present in this mem-

brane). In the third step, the upper two working membranes 
are divided by a(2)

1
 , the working membrane containing a(1)

3
a
(2)

2
 

is divided by a(2)

2
 , and the remaining working membrane is 

unchanged. Then, the computation continues according to 
the definition of division-driven computations: dividers have 
priority over dissolvers and dividers (resp. dissolvers) with 
label 1 have priority over dividers (resp. dissolvers) with 
label 2.   ◻

As it is mentioned in the introduction, our work is based 
on the concept of object division polynomials. To define 
this concept precisely we first define object division trees 

R = {[a1]1 → [a2]1[a3]1, [a2]1 → [a4]1[a4]1, [a4]1 → a4}.

similarly as object division graphs were defined, for exam-
ple, in [32]. Let � be a halting sdd P system with object 
alphabet O = {a1,… , a

n
} . The object division tree of a

i
 

( i ∈ [n] ), denoted by odt
a

i

 , is the smallest binary tree sat-
isfying the following conditions:

• the root of odt
a

i

 is labelled by a
i
 , and

• if a node N of odt
a

i

 is labelled by aj ( j ∈ [n] ) and 
[aj]1 → [ak]1[al]1 (k, l ∈ [n]) is a rule of � , then N has 
exactly two children with labels a

k
 and a

l
 , respectively.

Since � is an sdd P system, it does not have different divi-
sion rules with the same left-hand side. Thus odt

a
i

 is well 
defined. Notice that in odt

a
i

 a subtree with a root labelled 
by an object aj (j ∈ [n]) is equal to odtaj

 . The height of odt
a

i

 , 

denoted by h(odt
a

i
) , is defined inductively as follows. If 

odt
a

i

 is a single node labelled by a
i
 , then h(odt

a
i
) = 0 . Oth-

erwise let h
max

 be the maximum of the heights of subtrees 
of the root in odt

a
i

 . Then h(odt
a

i
) = h

max
+ 1.

Example 2 Consider again �
ex

 from Example 1. The tree 
odt

a
1
 can be seen in Fig. 2. Notice that odt

a
2
 and odt

a
3
 are 

equal to the first and second subtrees of odt
a

1
 , respectively, 

and odt
a

4
 is equal, for example, to the first subtree of odt

a
2
 .  

 ◻

Next we show a useful property of object division trees.

Lemma 1 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
 . Let i ∈ [n] such 

that a
i
 occurs in �

1
 . Then h(odt

a
i
) < n.

Fig. 1  A division-driven 
computation of �

ex
 from 

Example 1. Grey areas are the 
working membranes. Working 
membranes appearing closer 
to each other are results of a 
membrane division
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Proof We give an indirect proof. Assume that h(odt
a

i
) ≥ n . 

Then there exists a path P in odt
a

i

 with length at least n. Due 
to the pigeonhole principle, there exists j ∈ [n] such that aj 
occurs at least twice in P. Let N

1
 and N

2
 be the first two 

nodes of P (counted from the root) labelled by aj . Let t
1
 and 

t
2
 be the subtrees of odt

a
i

 with roots N
1
 and N

2
 , respectively. 

Clearly, t
2
 is a proper subtree of t

1
 . Moreover, by our above 

note t
1
= t

2
= odtaj

 . This implies that odt
a

i

 is infinite, which 

further implies that a division-driven computation will never 
halt. However, this contradicts to the fact that � is a halting 
sdd P system, proving our statement.   ◻

Every object division tree defines an object division poly-

nomial as follows.

Definition 3 Consider a halting sdd P system � with object 
alphabet O = {a1,… , a

n
} . Let V = {x

i
∣ i ∈ [n]} ∪ {x} be a 

set of variables. Let moreover i ∈ [n] and l = h(odt
i
) . The 

object division polynomial of a
i
 ( odp

a
i

 for short) is a poly-
nomial with variables in V defined as follows:

where mjk is the number of leaves in odt
a

i

 at depth j labelled 
by a

k
.

Example 3 Consider �
ex

 from Example 1 and the object 
division trees considered in Example 2. The corresponding 
object division polynomials are as follows:

• odp
a1
= 2x4x

2
+ x3x,

• odp
a2
= 2x4x,

• odp
a3
= x3,

• odp
a4
= x4.

  ◻

Next we show that object division polynomials can be 
calculated in polynomial time.

Lemma 2 Consider a halting sdd P system � with object 

alphabet O = {a1,… , a
n
} and let i ∈ [n] . Then the object 

odpai
=

∑

j∈[0,l],k∈[n]

mjk ⋅ xk ⋅ xj,

division polynomial of a
i
 can be computed in polynomial 

time in n.

Proof Let l = h(odt
a

i
) and, for every j ∈ [0, l] , let �j 

be an n-vector such that (�j)k (k ∈ [n]) is the num-
ber of nodes labelled by a

k
 on the j th level of odt

a
i

 . Let 
ndiv = {j ∈ [n] ∣ aj is a non-divider} . As the set of labels of 
leaves in odt

a
i

 is included in the set {aj ∣ j ∈ ndiv} , we get 
that

where �
k
 (k ∈ [n]) is an n-vector defined as follows:

To compute �j (j ∈ [0, l]) let us define, for every k ∈ [n] , the 
n-vector �

k
 as follows: for every � ∈ [n] , if there is a rule r 

of � with a� on the left- and a
k
 on the right-hand side, then 

let (�
k
)� be the number of occurrences of a

k
 on the right-

hand side of r. If there is no such rule of � , then let (�
k
)� 

be 0. It can be clearly seen that if we multiply �T
j
 

(j ∈ [0, l − 1]) with �
k
 (k ∈ [n]) , we get the number of occur-

rences of a
k
 on the (j + 1) th level of odt

a
i

 . Thus, for every 
j ∈ [0, l − 1] , �T

j+1
= �

T
j
� , where � is the n × n matrix 

whose kth column (k ∈ [n]) is �
k
 . Since matrix multiplica-

tion is associative, we get that �T
j
= �

T
0
�

j (j ∈ [l]) . This 
implies that

Notice that since the 0th level of odt
a

i

 contains only the root 
of odt

a
i

 , (�
0
)
k
= 1 if k = i , and (�

0
)
k
= 0 otherwise. There-

fore, the coefficient of a factor xkxj in odp
a

i

 is (�j)ik . Thus, 
we only have to compute �j for every j ∈ [0, l] . Since every 
row in � contains at most two non-zero elements and the 
sum of these elements is two, it is easy to see that the largest 
value in �j is at most 2j . So these values can be stored using 
n bits and thus computing one entry of �j+1 can be done 
in O(n) steps. Since � is an n × n matrix, computing every 
necessary value can be done in polynomial time in n.   ◻

Example 4 Consider odp
a1

 and odp
a2

 given in Exam-
ple  3. According to the proof of Lemma  2, we can 
compute these polynomials as follows. We will use 
�

i
 (i ∈ [4]) and �j (j ∈ [0, 2]) in the computation of 

each polynomial. These have the following values: 
�

T

1
= �

T

2
=

[

0 0 0 0
]

, �T

3
=

[

0 0 1 0
]

, �T

4
=

[

0 0 0 1
]

, and

odpai
=

∑

j∈[0,l],k∈[n]

�j�kxkxj,

(e
k
)� =

{

1 if � = k and k ∈ ndiv

0 otherwise.

odpai
=

∑

j∈[0,l],k∈[n]

�
T
0
�

j
�kxkxj.

Fig. 2  The tree odt
a

1
 from Example 2
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Moreover, in the case of odp
a1

 �T

0
= [1 0 0 0] and l = 2 . 

Clearly,

Thus, in the case of odp
a1

 we get that

On the other hand, in the case of odp
a2

 �T

0
= [0 1 0 0] and 

l = 1 . Thus we get the following calculation.

  ◻

Let � be a halting sdd P system with object alphabet 
O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Consider 
a division-driven computation C ∶ C

0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of 

� . First we specify certain working membranes of C , then 
show how to use object division polynomials to calculate the 
multiset contents of these working membranes.

�
0
=

⎡
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

, �
1
=

⎡
⎢
⎢
⎢
⎣

0 1 1 0

0 0 0 2

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎦

, �
2
=

⎡
⎢
⎢
⎢
⎣

0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

∑

j∈[0,2],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

�
T
0
�

0
�kxk +

∑

k∈[4]

�
T
0
�

1
�kxkx +

∑

k∈[4]

�
T
0
�

2
�kxkx2

.

∑

j∈[0,2],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

[1 0 0 0]�kxk +
∑

k∈[4]

[0 1 1 0]�kxkx

+
∑

k∈[4]

[0 0 0 2]�kxkx2 = (0x1 + 0x2 + 0x3 + 0x4)

+ (0x1x + 0x2x + 1x3x + 0x4x)

+ (0x1x2 + 0x2x2 + 0x3x2 + 2x4x2)

= 2x4x2 + x3x = odpa1
.

∑

j∈[0,1],k∈[4]

�
T
0
�

j
�kxkxj

=
∑

k∈[4]

[0 1 0 0]�kxk +
∑

k∈[4]

[0 0 0 2]�kxkx

= (0x1 + 0x2 + 0x3 + 0x4)

+ (0x1x + 0x2x + 0x3x + 2x4x)

= 2x4x = odpa2
.

Let M be a working membrane in C and � ∈ [m] . If M 
contains no dividers with label �′ ≤ � , then M is called �
-divider-stable. Moreover, m-divider-stable working mem-
branes are called non-dividing. Consider an �-divider-stable 
membrane M in C

i
 (� ∈ [m], i ∈ [t]) . M is called primary 

if either i = 0 or the following holds. Let N be that mem-
brane in C

i−1
 from which � derives M. Then N is not �

-divider-stable.

Example 5 Let �
ex

 be the P system given in Example 1 and 
consider the working membrane M containing a(1)

3
a
(2)

2
 in C

2
 . 

Then M is 1-divider-stable, as the only object in M having 
label 1 or less is a

3
 which is a non-divider. However, this 

M is not 2-divider-stable, since it contains a
2
 having label 

2 and a
2
 is a divider. M is neither primary, as M is derived 

from the working membrane N in C
1
 containing a(1)

3
a
(2)

1
 , but 

N is 1-divider-stable too. However, N is primary, since it 
is derived from the working membrane in C

0
 containing 

a
(1)

1
a
(2)

2
 , which is not 1-divider-stable.

The only working membrane in C
5
 is non-dividing, as it 

is 2-divider-stable, and 2 is the greatest label in this exam-
ple. Notice that non-dividing working membranes are those 
which do not contain dividers.   ◻

Let C be a division-driven computation of � . To calculate 
the multiset contents of primary non-dividing working mem-
branes of C , we extend first the definition of object division 
polynomials to objects having labels.

Definition 4 Consider a halting sdd P system � with object 
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 . 
Let i ∈ [n] , � ∈ [m] , and consider the object division poly-
nomial odpai

=
∑

j∈[0,l],k∈[n] mjkxkxj of a
i
.

The labelled object division polynomial of a(�)

i
 ( lodp

a
(�)

i

 

for short) is the polynomial 
∑

j∈[0,l],k∈[n] mjkx
�kxj (that is, we 

added � to the indices of certain variables of odp
a

i

 , referring 
this way to the label of the corresponding object).

Next we define a product of labelled object division poly-
nomials of objects in �

1
.

Definition 5 Let � be a halting sdd P system with object 
alphabet O = {a1,… , a

n
} and initial multiset �

1
= a

i
1

… a
i
m

 . 
The �

1
-product of � is

It is easy to see that all monomials in P
�

1

 have the form 
�x

1j
1

… xmjm
xj , for some �, j ∈ ℕ and j1,… , jm ∈ [n] . Using 

the next lemma we can determine the multiset contents of 
primary non-dividing working membranes of the computa-
tion C by calculating the monomials of P

�
1

.

P
�1

=
∏

�∈[m]

lodp
a
(�)

i�

.
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Lemma 3 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Con-

sider the �
1
-product P

�
1

 and a division-driven computation 

C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of � . Let moreover j1,… , jm ∈ [n] 

and j ∈ [0, t] . Then the coefficient of x
1j

1

… xmjm
xj in P

�
1

 

equals to the number of those primary non-dividing working 

membranes in Cj which contain a
(1)

j
1

… a
(m)

jm
.

Proof We show the statement by induction on m. If m = 1 , 
then P

�1
= lodp

a
(1)

i1

 . Then, by Definitions 3 and 4, P
�

1

 con-

tains a monomial mjkx
1kxj if and only if the number of leaves 

in odt
a

1
 at depth j labelled by a

k
 is mjk . Thus, the number of 

those non-dividing working membranes in Cj which contain 
a
(1)

k
 equals to the coefficient of x

1kxj in P
�

1

 . Then the state-
ment follows taking into consideration that every non-divid-
ing working membrane in C is primary.

Now assume that the statement holds if m = m
� , for some 

m
′ ≥ 1 . We show it for m = m

�
+ 1 . Let � be the coefficient 

of a monomial x
1j

1

… xmjm
xj in P

�
1

 . Let moreover �̂� be the 
number of those primary m-divider-stable working mem-
branes in Cj which contain a(1)

j
1

… a
(m)

jm
 . We show that 𝛼 = �̂�.

Let ��

1
= a

i
1

… a
i
m�

 and P
�
�
1
=
∏

�∈[m�] lodp
a
(�)

i�

 . Clearly, 

P
�1

= P
�
�
1
lodp

a
(m)

im

 . Let us denote by �j′ and �j′′ (j
�
, j�� ∈ [t]) the 

coefficients of x
1j

1

… xm�jm�
xj� in P

�
′

1

 and xmjm
xj′′ in lodp

a
(m)

im

 , 

respectively. One can see that � can be calculated by sum-
ming up the products �j′�j′′ , for every j�, j�� ∈ [t] with 
j� + j�� = j.

On the other hand, let j�, j�� ∈ [t] and denote �̂�j′ the num-
ber of those primary m′-divider-stable working membranes 
in Cj′ which contain a(1)

j
1

… a
(m�)

jm�
 . Denote, moreover, 𝛽j′′ the 

number of leaves labelled by ajm
 in odt

a
im

 at depth j′′ . Con-

sider now a membrane M in Cj containing a(1)

j
1

… a
(m)

jm
 . One 

can see that the only way for � to create M is the following. 
First � creates a membrane N containing a(1)

j
1

… a
(m�)

jm�
a
(m)

im
 in 

j′ steps ( j� ∈ [t] ) using only dividers having labels m′ or less. 
Then, using dividers with label m, � creates M in j�� = j − j� 
steps. Thus �̂� can be calculated by summing up the products 
�̂�j′𝛽j′′ , for every j�, j�� ∈ [t] with j� + j�� = j.

By induction hypothesis, 𝛼j� = �̂�j� , for every j� ∈ [t] . 
Moreover, by the definition of object division polynomials, 
𝛽j�� = 𝛽j�� , for every j�� ∈ [t] . Thus we have that

which finishes the proof of the lemma.   ◻

We show now through an example how to use the �
1

-product P
�

1

 to calculate multiset contents of primary non-
dividing working membranes.

Example 6 Consider �
ex

 from Example 1 and the computa-
tion C given in Fig.  1. From Example  3 we know that 
odp

a1
= 2x4x

2
+ x3x  . Thus lodp

a
(1)

1

= 2x14x
2 + x13x  and 

lodp
a
(2)

1

= 2x24x
2 + x23x . As P

a
(1)

1
a
(2)

1

= lodp
a
(1)

1

lodp
a
(2)

1

 we get 

that

Figure 3 shows the correspondence between the monomials 
of P

a
(1)

1
a
(2)

1

 and the primary non-dividing working membranes 

of C . Notice that the variables xij (i ∈ [2], j ∈ [4]) correspond 
to objects a(i)

j
 , the coefficient of a monomial corresponds to 

the number of the corresponding membranes, and the power 
of x shows the index of the corresponding configuration.  
 ◻

Consider a halting sdd � , the �
1
-product P

�
1

 of � , and 
a division-driven computation C of � . As we have seen, 
the multiset content of the primary non-dividing working 
membranes of C can be calculated by determining the mono-
mials of P

�
1

 . Clearly, if we know these multisets, then we 
can tell which and how many objects are released to the skin 
(by applying membrane dissolution rules) in each step of C . 
However, the size of P

�
1

 can be exponential in nm, which 

𝛼 =
∑

j�, j�� ∈ [t],

j� + j�� = j

𝛼j�𝛽j�� =
∑

j�, j�� ∈ [t],

j� + j�� = j

�̂�j�𝛽j�� = �̂�,

P
a
(1)

1
a
(2)

1

= (2x
14

x
2 + x

13
x)(2x

24
x

2 + x
23

x)

= 4x
14

x
24

x
4 + 2x

14
x

23
x

3 + 2x
13

x
24

x
3 + x

13
x

23
x

2
.

Fig. 3  Representing primary 
non-dividing working mem-
branes of �

ex
 by monomials
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means that we cannot use P
�

1

 directly to calculate efficiently 
the number of these objects. Instead, we will use another 
polynomial yielded by using the next definition.

Definition 6 Consider a halting sdd P system �  with 
object alphabet O = {a1,… , a

n
} and initial multiset 

�
1
= a

i
1

… a
i
m

 . Let P be a polynomial over the variables 
V = ({x

�k
∣ � ∈ [m], k ∈ [n]} ∪ {x}) . Let moreover i ∈ [n] 

and y be a new variable not occurring in V. The i-reduction 

of P is the polynomial P⟨i⟩ which we get from P using the 
following operations. First, for every � ∈ [m], k ∈ [n] with 
k ≠ i , we substitute x

�k
 in P with z, where

Let the given new polynomial be P′ and let P⟨i⟩ be the poly-
nomial created from P′ by substituting x

�i
 with x

i
 , for every 

� ∈ [m].

Example 7 The i-reductions ( i ∈ [4] ) of P
a
(1)

1
a
(2)

1

 given in 

Example 6 are as follows:

P
⟨1⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2y1x3 + 2 ⋅ 1yx3 + 1 ⋅ 1x2 = 4y2x4

+4yx
3
+ x

2,
P
⟨2⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2y1x3 + 2 ⋅ 1yx3 + 1 ⋅ 1x2 = 4y2x4

+4yx
3
+ x

2,
P
⟨3⟩

a
(1)

1
a
(2)

1

= 4yyx4 + 2yx
3
x3 + 2x

3
yx3 + x

3
x

3
x2 = 4y2x4

+4yx
3
x

3
+ x

2

3
x

2,
P
⟨4⟩

a
(1)

1
a
(2)

1

= 4x
4
x

4
x

4 + 2x
4
1x

3 + 2 ⋅ 1x
4
x

3 + 1 ⋅ 1x
2 = 4x

2

4
x

4

+4x
4
x

3
+ x

2.

Lemma 4 Let � be a halting sdd P system with object alpha-

bet O = {a1,… , a
n
} and initial multiset �

1
= a

i
1

… a
i
m

 . Con-

sider the �
1
-product P

�
1

 of � . Let moreover i ∈ [n] . Then 

the i-reduction of P
�

1

 can be calculated in polynomial time 

in nm.

Proof One can see using basic properties of polynomials that

where P⟨i⟩
�

1
 and odp⟨i⟩

a
i�

 denote the i-reductions of P
�

1

 and 

lodp
a
(�)

i�

 , respectively. By Lemma 2, we can compute odp
a

i�

 , 

and in turn odp⟨i⟩
a

i�

 as well, in polynomial time in n. Moreover, 

odp⟨i⟩
a

i�

 contains only at most three variables, x
i
, x , and y, for 

every � ∈ [m] . Thus, multiplying these polynomials can be 
done in polynomial time in nm.   ◻

z =

{

y, if a
(�)

k
can dissolve working membranes, and

1, otherwise.

P
⟨i⟩
�1

=
�

�∈[m]

odp⟨i⟩
a

i�

,

Using the i-reduction of P
�

1

 we can compute which and 
how many objects are released to the skin membrane during 
a division-driven computation of � as follows.

Theorem  1 Let �  be a halting sdd P system with 

object alphabet O = {a1,… , a
n
} and initial multi-

set �
1
= a

i
1

… a
i
m

 . Consider a division-driven com-

putation C ∶ C
0
⇒ C

1
⇒ ⋯ ⇒ C

t
 of �  . Let moreover 

i ∈ [n], j ∈ [0, t − 1] and denote Nij the number of copies of 

a
i
 released to the skin membrane by dissolutions of elemen-

tary membranes during the step Cj ⇒ Cj+1
 . Then Nij can be 

computed in polynomial time in nm.

Proof Let P
�

1

 be the �
1
-product of � and P⟨i⟩

�
1
 be the i-reduc-

tion of P
�

1

 . Clearly, P⟨i⟩
�

1
 can be written in the form

Using Lemma 3 and the definition of i-reductions, we get 
the following. A monomial m

��jx
�

i
y�xj in P⟨i⟩

�
1
 represents that 

there are m
��j primary m-divider-stable membranes in Cj 

containing � copies of a
i
 and � copies of such objects differ-

ent from a
i
 which can dissolve the membrane. Distinguish-

ing between the cases whether a
i
 is a dissolver or not, we get 

the following equations.

if a
i
 is a non-dissolver, and

otherwise. As we have seen in Lemma 4, P⟨i⟩
�

1
 can be com-

puted in polynomial time in nm. Thus, the corresponding 
(polynomial number of) coefficients of the monomials in the 
sums (1) and (2) can be calculated in polynomial time in nm 
as well.   ◻

Example 8 Consider Example 1 and the computation shown 
in Fig. 1. Let, for every i ∈ [4], j ∈ [0, 4] , Nij be the value 
defined in Theorem 1. Then Nij = 0 , for i ∈ [2], j ∈ [0, 4] 
and i ∈ [3, 4], j ∈ [0, 2] . Moreover, N

33
= N

43
= 4 , N

34
= 0 , 

and N
44

= 8.
We show that these values can be calculated using the 

i-reductions given in Example 7 and the equations (1) and 
(2) given in the proof of Theorem 1. If i ∈ [2] , then a

i
 is a 

P⟨i⟩
�1

=
�

�, � ∈ [0, m],� + � ≤ m

j ∈ [0, mn]

m
��jx

�

i
y�xj

.

(1)
Nij =

∑

�, � ∈ [0, m], � ≥ 1

� + � ≤ m

m
��j�,

(2)
Nij =

∑

�, � ∈ [0, m]

� + � ≤ m

m
��j�
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non-dissolver, thus we have to use Eq. (1) in this case. How-
ever, the monomials in P⟨i⟩

a
(1)

1
a
(2)

1

 do not contain x
i
 , hence in this 

case � is 0, for each monomial. Therefore the sum equals to 
0, for every j ∈ [0, 4] . Now let i = 3 . Since a

3
 is a non-dis-

solver, we should use again Eq. (1) in this case. Now the 
only monomial which contains both x

3
 and y is 4yx

3
x

3 , which 
means that N

33
= 4 ⋅ 1 = 4 and N

3j = 0 , for every 
j ∈ {0, 1, 2, 4} . Lastly, let i = 4 . Since a

4
 is a dissolver, we 

should use Eq. (2) in this case. Now the monomials that 
contain x

4
 are 4x

2

4
x

4 and 4x
4
x

3 . Therefore N
44

= 4 ⋅ 2 = 8 , 
N

43
= 4 ⋅ 1 = 4 , and N

4j = 0 , for every j ∈ [0, 2] .   ◻

From Theorem 1 we immediately get the following result.

Corollary 1 Let �  be a halting sdd P system with 

object alphabet O = {a1,… , a
n
} and initial multiset 

�
1
= a

i
1

… a
i
m

 . Consider a division-driven computation 

C ∶ C
0
⇒ C

1
⇒ … ⇒ C

t
 of � . Then the multiset content of 

the skin in C
t
 can be computed in polynomial time in nm.

Proof Let i ∈ [n] . It can be clearly seen that the number N
i
 of 

occurrences of a
i
 in the skin membrane in C

t
 is 

∑

j∈[0,t−1]
Nij , 

where Nij is the number defined in Theorem 1. By Theo-
rem 1, Nij can be calculated in polynomial time in nm. Thus, 
to see the statement it is enough to show that t ≤ nm.

On the one hand, �
1
 contains m objects. On the other 

hand, by Lemma 1, for every � ∈ [m] , h(odt
a

i�

) < n . This 

means that there are at most n − 1 steps in C where objects 
with label � are used to divide working membranes. Thus 
there are at most m(n − 1) steps where division rules are 
applied, and there is at most one step, where only dissolution 
rules are applied. Thus, t ≤ m(n − 1) + 1 ≤ mn .   ◻

4  Conclusions

In this paper we proposed a polynomial-time method for 
calculating the number of each object occurring in the skin 
membrane at the end of a division-driven computation of a 
halting sdd P system � . To calculate these numbers we used 
multiplications of certain polynomials which were created 
from the object division polynomials of the objects initially 
contained in the working membrane of �.

Although our method considers only division-driven 
computations of halting sdd P systems, we can use it to 
simulate recognizer P systems too. Recognizer P systems 
[28] are common tools in membrane computing to solve 
decision problems with P systems. They have only halt-
ing computations and they are confluent, which means that 
all of their computations yield the same result. That is, a 

division-driven computation gives the same result as that of 
the other computations.

By definition, sdd P systems have no different rules with 
the same left-hand side. In fact, we can safely assume that 
a recognizer P system having only dissolution and division 
rules possesses this property, too. To see this consider such 
a recognizer P system � . If � has two different rules r

1
 and 

r
2
 with the same left-hand side, then there is a computa-

tion of � where in each situation when r
2
 is applicable, � 

applies r
1
 instead (clearly, if r

2
 is applicable, then r

1
 should 

be applicable, too). That is, if we remove r
2
 from � , then 

the remaining part of � will still compute the same result 
as before.

Concerning the future work, we would like to extend our 
method to P systems having other types of rules or differ-
ent initial membrane structures. The method can easily be 
extended to the case when the dissolution rules can have 
arbitrary objects in their right-hand sides. Indeed, in this 
case we only need to change the calculation of the value Nij 
in the proof of Theorem 1 accordingly.

It seems that we can extend our method to send-out com-
munication rules too. To this end, we need to extend the 
definition of division-driven computations, for example such 
that send-out communication rules have less priority than 
that of dissolution rules. Moreover, in the calculation of Nij 
in the proof of Theorem 1 we should add a case where a

i
 is 

a non-dissolver but can trigger a send-out communication 
rule. Notice that a working membrane can contain more than 
one occurrence of such an object a which can trigger send-
out communication rules. However, during one step only 
one a can be used by a rule. Therefore, in the computation 
of Nij we might need to consider such monomials too which 
contain xj′ , for some j′ < j.

Moreover, our method seems to be suitable for generali-
sation to such P systems which initially have more than one 
working membranes (possibly with different labels). On the 
other hand, to extend it to such P systems where the initial 
membrane structure is deeper than one is not so trivial. Con-
sider for example a P system � having an initial membrane 
structure of the form [… [ [ ]

1
]
2
…]

n
 , where n ≥ 3 and n is 

the skin. Assume also that the other properties of � corre-
spond to those of the sdd P systems. Since membranes with 
label i > 1 cannot be divided until membranes with label 1 are 
present, we could use our method to calculate the number of 
objects in the regions of � until the last membrane with label 
1 is dissolved. Assume that at this point the elementary mem-
brane has label i, for some i ∈ [2, n] . We can use our method 
again to calculate the number of objects in the regions of � 
until the last membrane with label i is dissolved. Continu-
ing this way the application of our method, we can calculate 
the number of objects occurring in the skin membrane when 
the computation of � halts. However, we cannot assume that 
the above-described computation is efficient because of the 
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following reasons. Consider that point of the computation 
when the last membrane with label 1 is dissolved and the new 
elementary membrane is the one with label i. Then this mem-
brane can contain exponentially many objects, which means 
that to apply our method we should multiply exponentially 
many polynomials. Nevertheless, it is more or less clear that 
if � works in polynomial time, then only a polynomially large 
number of these objects are used by � during the computa-
tion. This means that we can apply our method taking into 
consideration only a polynomially large number of objects.
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