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Abstract—Due to the special structure of current carrying planar
spiral coils, precise calculation of the forces between them is
complicated and time-consuming. To overcome these problems, in
this paper a new and fast method is proposed for calculation of the
magnetic forces between planar spiral coils. The advantage of the
proposed method is that just by having the external dimension of coils
and their number of turns, the force between them at different distances
and with different currents can be calculated. The results obtained
by direct and proposed calculation methods show the efficiency of the
latter in simplicity and calculation time. The precision of the proposed
method has been confirmed by experimental tests done on constructed
coils.

1. INTRODUCTION

Regarding the extensive application of planar spiral coils in
communication and robotics, determination of magnetic fields around
them and forces between these coils are interesting for engineers.
In these systems, to have a high inductance and flat configuration,
spiral windings are used [1–3]. Besides, these coils have an extensive
application in power electronics and dc/dc converters due to their
flatness and special configuration; so they are better replacement for
the ordinary inductances to reduce the volume of the converter [4–7].

In recent decades, spiral coils have been employed in casting
industries to form the thin metal sheets. In[8], the finite difference
method is employed to calculate the force between them; furthermore
in this reference to calculate the force, spiral coils are replaced by

Corresponding author: A. Shiri (abbas shiri@iust.ac.ir).



40 Shiri and Shoulaie

concentric rings, but there is no study and discussion on the precision
of the method. In [3], these forces have just been obtained by test. In
[9, 10] the force between circular coaxial coils has been investigated. So,
there is not enough investigation about calculation of the force between
spiral coils in literature. In this paper, a new approach is presented to
calculate the magnetic force between spiral coils. The aim of this work
is to reduce the force calculation complexity and computational time
in such coils. Using the results obtained by the numerical solution
of direct force calculations, the precision of the proposed method is
investigated and finally compared with experimental results.

2. CALCULATION OF THE MAGNETIC FORCE
BETWEEN TWO PLANAR SPIRAL COILS

Suppose two spiral coils as shown in Figure 1. To calculate the
magnetic force between them, first we calculate the vector magnetic
potential resulting from one of the coils in any given point like P
(Figure 2).

Vector magnetic potential of spiral coil 1 in any given point P is
obtained by the following equation [11]:

A =
µ0I1

4π

∫
dl′

R1
(1)

where I1, is the current of coil 1, dl′ is the longitudinal differential
component and R1 is the distance between this differential component
and point P , which in Cartesian coordinates is equal to:

R1 =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (2)

Coil 2

Coil 1

Z

Figure 1. Two spiral coils in z distance of each other.
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Figure 2. Calculation of vector magnetic potential of spiral coils in
any given point P .

The coordinates marked by prime are related to the source. With
suitable substitution for dl′, the following equation for vector magnetic
potential is obtained [12, 13]:

A=
µ0I1

4π

∫
[−ax sinφ′+ay cosφ′]r′dφ′+[ax cosφ′+ay sinφ′]dr′

R1
(3)

To calculate the integral in Equation (3), one of the integral variables
must be replaced by another according to the relations between them.
The variables φ′ and r′ have a linear relation, so we can write [12, 14]:

φ′ = K1r
′ (4)

where K1, is a constant coefficient that is called “compression factor”
of coil 1 in this paper. This factor is dependent on the diameter of the
wire used and the structure of the coil and determines its compression.
Having the vector magnetic potential, magnetic field is calculated using
the following equation [11]:

B = ∇×A (5)

Substituting A from Equation (3) in Equation (5) and simplifying the
equation, we have:

B = axBx + ayBy + azBz (6)
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where:

Bx = −∂Ay

∂z
(7)

By =
∂Ax

∂z
(8)

Bz =
∂Ay

∂x
− ∂Ax

∂y
(9)

The force acting on the coil 2 is [11]:

F21 = I2

∮

C2

dl2 ×B (10)

In the above equation, dl2 is longitudinal differential component on
coil 2.

Substituting proper expression for dl2 and employing Equation (6)
in Equation (10) and doing some mathematical calculations, we get:

F21 = axfx + ayfy + azfz (11)

where fx, fy and fz are the components of the force in directions x, y
and z, respectively and are equal to:

fx =
µ0I1I2

4π

r2∫

r1

r′2∫

r′1

( [
r sin(K2r −K1r

′)−K1rr
′ cos(K2r −K1r

′)
+K1r

′2][ sin(K2r) + K2r cos(K2r)
]

)

(
[(r cos(K2r)− r′ cos(K1r

′))2

+(r sin(K2r)− r′ sin(K1r
′))2 + z2]3/2

) dr′dr (12)

fy =
µ0I1I2

4π

r2∫

r1

r′2∫

r′1

( [
r sin(K2r −K1r

′)−K1rr
′ cos(K2r −K1r

′)
+K1r

′2][ cos(K2r) + K2r sin(K2r)
]

)

(
[(r cos(K2r)− r′ cos(K1r

′))2

+(r sin(K2r)− r′ sin(K1r
′))2 + z2]3/2

) dr′dr (13)

fz =
µ0I1I2

4π
z

r2∫

r1

r′2∫

r′1

(
(1 + K1K2rr

′) cos(K2r −K1r
′)

−(K2r −K1r
′) sin(K2r −K1r

′)

)

(
[(r cos(K2r)− r′ cos(K1r

′))2

+(r sin(K2r)− r′ sin(K1r
′))2 + z2]3/2

)dr′dr (14)

In the above equations, the parameters r′1 and r1 are the inner radii of
coils 1 and 2, respectively, and r′2 and r2 are the outer radii of coils 1
and 2, respectively. Also, the following equation has been used:

φ = K2r (15)

where, K2 is compression factor of coil 2 which is determined with
regard to the compression of the coil and the diameter of the wire used
in it.



Progress In Electromagnetics Research, PIER 95, 2009 43

3. CALCULATION OF THE MAGNETIC FORCES
BETWEEN TWO CONCENTRIC CIRCULAR
FILAMENTS

Suppose a system of two current carrying rings as shown in Figure 3.
To calculate the force between them, we use the concept of vector
magnetic potential. The vector magnetic potential of ring 1 in any
point P on ring 2, like Equation (1), is equal to [11]:

A =
µ0I1

4π

∮

C1

dl′

R1
(16)

where µ0 is the vacuum permeability, I1 and C1 are the current and
the length of ring 1, respectively, and R1, as shown in Figure 4, is the
distance between the differential component of the source dl′ at point
P ′ and the field point P .

With appropriate substitutions for dl′ and R1 in Equation (16),
the vector magnetic potential will be as follow [12]:

A = aφf(R, θ) (17)

where the function f(R, θ) is equal to:

f(R, θ) =
µ0I1

4π

∫ 2π

0

a sinφ′√
R2 + a2 − 2aR sin θ sinφ′

dφ′ (18)

Figure 3. Two current carrying concentric rings.
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Figure 4. Determination of vector potential of a current carrying ring
in any given point P .

In the above equation, a is the radius of ring 1. By obtaining the vector
magnetic potential, the magnetic field is calculated using Equation (5).

Substituting Equations (17) and (18) in Equation (5) and doing
some manipulations, we can get [12, 13]:

B = aRg1(R, θ) + aθg2(R, θ) (19)

where g1(R, θ) and g2(R, θ) are:

g1(R, θ) =
1

R sin θ

[
cos θf(R, θ) + sin θ

∂

∂θ
f(R, θ)

]
(20)

g2(R, θ) = − 1
R

[
f(R, θ) + R

∂

∂R
f(R, θ)

]
(21)

To calculate the force of ring 1 exerted on ring 2, Equation (10) is
employed. Using Equations (18), (19), (20) and (21) in Equation (10)
and also substituting an appropriate expression for dl2 and doing some
simple mathematical calculations, the following equation for the force
is obtained:

F21 = −az
µ0abI1I2z

2

∫ 2π

0

sinφ′

[z2 + a2 + b2 − 2ab sinφ′]3/2
dφ′ (22)

In the above equation b is the radius of ring 2 and z is the axial distance
between the two rings. The obtained force in Equation (22) has no



Progress In Electromagnetics Research, PIER 95, 2009 45

analytical solution, so we can use numerical integration methods to
solve it. By replacing the variable φ′ by 3π

2 + 2θ in Equation (22), the
following equation for the force is obtained [12]:

F21 = az

(
µ0I1I2zk

2
√

ab(1− k2)

)[
(1− k2)K(k)− (1− (1/2)k2)E(k)

]
(23)

In the above equation, k (0 < k < 1) is a constant coefficient and is
equal to:

k =

√
4ab

(a + b)2 + z2
(24)

And K(k) and E(k) are first and second order Elliptic Integrals
respectively, which are defined as:

K(k) =
∫ π

2

0

dθ

(1− k2 sin2 θ)1/2
(25)

E(k) =
∫ π

2

0
(1− k2 sin2 θ)1/2dθ (26)

In some references, special numerical and recursive methods are
presented to solve the above integrals [15].

4. THE PROPOSED METHOD TO CALCULATE THE
MAGNETIC FORCE BETWEEN TWO COILS

To calculate the force between two coils, we can use direct method
presented in Section 2. But, using this method is complicated and time-
consuming and also, requires knowledge of the compression factors in
each coil [12]. Therefore, proposing a method to calculate the force
between these types of coils is interesting for engineers. So, in this
section, we propose a new simple and effective approach to calculate
the force between two coils just by having the external specifications
of the latter. The calculation time in the proposed method is very
satisfactory.

Suppose the coils 1 and 2 with the turn numbers of N1 and N2,
respectively. A cross-section of the coils is shown in Figure 5, where
r1, 0 and r2, 0 are the inner radii; b1 and b2 are the radial thicknesses;
a1 and a2 are the height of the coils 1 and 2, respectively.

As shown in Figure 5, the cross-section of each coil is divided
into several segments. In this figure, coil 1 is divided into nr1 × na1

cells, and coil 2 is divided into nr2 × na2 cells. To calculate the force
between these coils, the force between different filaments (in Figure 5,
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each filament is specified with two cells in both sides) of both coils is
calculated and added together. Therefore, the force between the coils
is calculated by the following equation:

F21 =
nr2−1∑

k=0

nr1−1∑

j=0

na2−1∑

l=0

na1−1∑

i=0

f(k, j, l, i) (27)

where, regarding the equation derived for the force between two
filaments (Equation (23)), f(k, j, l, i) is equal to:

f(k, j, l, i)=az

(
µ0i1i2zilk

′

2√rkrj(1−k′2)

)[
(1−k′2)K(k′)−(1−(1/2)k′2)E(k′)

]

(28)
The above equation is the force between two filaments of the two coils,
in which the current of each filament is supposed to concentrate at
its center and the current density of the whole coil is supposed to be
uniform and i1 and i2 are the currents of each filament in coils 1 and
2 respectively, which can be calculated using the following equations:

i1 =
N1I1

nr1 × na1
(29)

i2 =
N2I2

nr2 × na2
(30)

In the above equations, I1 and I2 are the currents of coils 1 and 2

na1

na2

segment

segment

nr2 segment

nr1 segment

z

b1

b2

a2

a1

1,0r

2,0r

Figure 5. Division of the coils into different meshes to calculate the
force between them.
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respectively. Also, other parameters of Equation (28) are defined as:

rk =r2, 0 +
(

1
2

+ k

)(
b2

nr2

)
(31)

rj =r1, 0 +
(

1
2

+ j

)(
b1

nr1

)
(32)

zil=z −
[(a2

2

)
+

(a1

2

)]
+

(
1
2

+ i

)(
a1

na1

)
+

(
1
2

+ l

)(
a2

na2

)
(33)

k′=

√
4rkrl

(rk + rl)2 + zil
2

(34)

z in Equation (33), is the distance between the two centers of the two
coils.

5. CALCULATION RESULTS

In Section 2, the force between two spiral coils was analytically
obtained (Equation (11)). Supposing that the compression factor of
the coils is high. In other words, the radial growth of rings in each
coil in any turn is not much more than the diameter of the wires used;
then the force values in x and y directions are almost zero; just the
component of the force in z direction is non-zero [12, 13], which is
shown in Equation (14). The force in this equation is the force exerted
on the upper coil (coil 2) from the lower coil (coil 1) as shown in Figure
1. It can be observed that, when the currents of the two coils have the
same direction, the force between them is attractive, and by changing
the direction of one of the currents, the force changes to a repelling
type.

Although we use precise analytical relations to obtain the force in
Equation (14), its integral has no analytical solution, and numerical
integration techniques must be used to solve it. The integrand of
the Equation (14) has some “semi-poles” which are dependent on the
value of the coefficients K1 and K2. The curve of the integrand versus
variables r and r′ is shown in Figure 6 for variation of r and r′ from 0
to 0.01. As seen in the figure, by increasing the value of r and r′ from
zero, the value of the integrand produces some sharp peaks (the semi-
pole points). It is clear that integration of these surfaces is much more
difficult, since for higher precisions, we need to increase the number of
iterations of numerical integration intensively which, in turn, requires
much longer computation time to solve such a problem.
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Now we compare the results of the direct method of the calculation
of the force using Equation (14) with that of proposed method
(Equation (27)). To calculate the integral in Equation (14) we used
recursive adaptive Simpson quadrature method. To calculate the force
between two coils in Equation (27), the cross-section of the coils has
to be divided into several segments. In order to investigate the effect
of the number of divisions on precision of the calculations, the force
between two spiral coils have been calculated by dividing their cross-
section into different segments in radial directions. The results are
summarized in Tables 1 and 2. In these tables, the force between two
coils is calculated at different distances. In each distance, the force is
calculated by direct method and compared with proposed method for a
100 turn numbers of the coils. The current in both coils is 10Amperes;
the diameter of wires used is 1 mm; the compression factor for both
coils is assumed as 2π

d , where d is the diameter of the wires in both coils,
meaning that for each turn of coils or for change of 2π Radians in the
value of variable φ in cylindrical coordinates, the change in the value
of variable r (the radial growth of coils) is equal to diameter of the
wires used in the coils. Table 1 presents the results for the coils with
inner radii and compression factor of 0 and 2π

0.001 , respectively. In the
3rd column of Table 1, both of the coils are divided into 100 segments.
In this case, the results are the same up to 4 decimal integers, and
so the force error is zero. In the next column, both of the coils are
divided radially into 50 segments. The force error is −0.015% in this
case, but the calculation time is a quarter of the calculation time in the
previous case. As the number of divisions decreases, the calculation
time also decreases, while the error increases. Consequently, one can
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Figure 6. The integrand in the force equation for 10 turns in each
coil.
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decrease the number of divisions in order to save the computational
time for a given force error range. In the next rows of Table 1, the force
calculation is carried out for other distances between two coils. The
results show that the more is the distance between two coils, the less is
the calculated force error between them. In other words, dividing the
cross-section of the coils generates less error at far distances between
two coils. As a result, for a specified force error, one can use less
division at far distances. The error has been calculated as follow:

%error =
fd − fp

fd
× 100 (35)

where fp, is the calculated force by using the proposed method and fd,
is the force calculated by direct method.

Table 1. Comparison of the force between two coils with different
divisions (inner radii and compression factor of the coils are 0 and

2π
0.001 , respectively).

divisions for
coil 1 

divisions for
coil 2 

Force (N) 1.3653 1.3655 1.3702 1.3828 1.5834 3.0422 

Z=1 cm

Force error(%) 0 -0.015 -0.36 -1.28 -15.97 -122.82 

divisions for
coil 1 

divisions for
coil 2 

Force (N) 0.4481 0.4481 0.4484 0.4486 0.4504 0.4769 

Z=5 cm

Force error(%) 0 0 -0.067 -0.112 -0.51 -6.42

divisions for
coil 1 

divisions for
coil 2 

Force (N) 0.1403 0.1403 0.1403 0.1402 0.1400 0.1390

Z=10 cm

Force error(%) 0 0 0 +0.07 +0.21 +0.93 
(calculation

(calculation 3×10
-3

7.5×10
-4

1.5×10
-4

3×10
-5

7.5×10 1.2×10
-6-6

Number of

Number of

Number of

Number of

Number of

Number of

time)/

direct method)

(direct method:0.1403 N)

(direct method:0.4481 N)

(direct method:1.3653 N)

time of the

100

100

50

10 10

10

50

50

5

5

2

2

2

2

2

2

5

5

5

5

1010

10

10

10

10

50

50

50

50

50

50

100

100

100

100
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Table 2. Comparison of the force between two coils with different
divisions (inner radii and compression factor of the coils are 1 cm and

2π
0.001 , respectively).

divisions for
coil 1 

divisions for
coil 2 

Force (N) 1.6909 1.6912 1.6975 1.7134 1.9575 3.7192 

Z=1 cm

Force error(%) 0 -0.018 -0.39 -1.33 -15.77 -119.95 

divisions for
coil 1 

divisions for
coil 2 

Force (N) 0.6070 0.6071 0.6076 0.6082 0.6120 0.6559 

Z=5 cm

Force error(%) 0 -0.016 -0.10 -0.20 -0.82 -8.06

divisions for
coil 1 

divisions for
coil 2 

Force (N) 0.2061 0.2061 0.2061 0.2062 0.2064 0.2092

Z=10 cm

Force error(%) 0 0 0 -0.05 -0.15 -1.50 
(calculation

(calculation 3×10
-3

7.5×10
-4

1.5×10
-4

3×10
-5

7.5×10 1.2×10
-6-6

Number of

Number of

Number of

Number of

Number of

Number of

time)/

direct method)

(direct method:0.2061 N)

(direct method:0.6070 N)

(direct method:1.6909 N)

time of the

100

100

50

10 10

10

50

50

5

5

2

2

2

2

2

2

5

5

5

5

1010

10

10

10

10

50

50

50

50

50

50

100

100

100

100

In Table 2, the same calculations have been done as for Table 1
but for 1 cm inner radii of coils 1 and 2. As can be seen in this
table, the errors are quite negligible for divisions more than 10 for both
coils. According to the results obtained, one can reduce the number of
divisions in order to save calculation time, without having significant
error in calculations.

It should be mentioned that the sign change in the calculated force
error in Tables 1 and 2 is because of the changes of the radii of any
parts of the coils involved in the calculations. The change of the radii
of the coils changes the maximum amount of the force and its position
in the distance axis.

In Tables 3 and 4, the results of calculation of the force with
two methods for different turn numbers and distance of the coils are
compared. In these tables, the current of the coils and diameter of
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the wires used are the same as previous case. For better comparison
between the results of the direct method and the proposed one in
Tables 3 and 4, the number of divisions is supposed to be the same as
the number of turns of the coils. In Table 3, it is assumed that the
coils start to grow from point (0, 0). Comparing the results of the two
methods in this table, one can see that for the fewer number of turns the
error is high, but by increasing the number of turns, the error gradually
decreases and when the turn number approaches to 100, the error
becomes zero. In Tables 3 and 4, the precision of the calculations is
adjusted according to the numerical value of the results. For instance,
for the first column of Table 3 the calculated forces are in the range of
10−16 (their minimum); to have better comparison between the results
of two methods, the precision of the calculations is chosen to be 10−16.
To compare the calculation time in two methods, it suffices to mention
that the required calculation time using the adaptive Simpson method
for 100 turns in Table 3 for precision of 10−4, is 28000 times more
than that of using proposed method. As it is seen from the table, the
results are equal up to four decimal digits. Another interesting point
about Tables 3 and 4 is that by increasing the distance between the two
coils, the calculation error increases, showing that in large distances,
the proposed method does not present a proper approximation of the
force for lower turn numbers.

Table 3. Comparison of the force between two coils with different
divisions (inner radii and compression factor of the coils are 0 and

2π
0.001 , respectively).

Number of
Turns or Rings 

Per Coil 
1 2 5 10 100 

Direct Method 
(N) 

1.0453×10
-7

7.4636×10
-7

5.9312×10
-5

0.1409×10
-2

1.3653

Proposed
Method (N)

3.6553×10
-9

3.3540×10
-7

5.6863×10
-5

0.1402×10
-2

1.3653
Z=1 cm

Error (%) 96.5 55.1 1.4 0.5 0.0 
Direct Method 

(N) 
4.0074×10

-9
1.6615×10

-8
2.5756×10

-7
9.7620×10

-6
0.4481

Proposed
Method (N)

5.9188×10
-12

5.8976×10
-10

1.5662×10
-7

9.3511×10
-6

0.4481
Z=5 cm

Error (%) 99.8 96.5 39.2 4.2 0.0 
Direct Method 

(N) 
1.0005×10

-9
4.0386×10

-9
3.5066×10

-8
7.3663×10

-7
0.1403

Proposed
Method (N)

3.7006×10
-12

3.6973×10
-11

1.0003×10
-8

6.3569×10 0.1403
Z=10 cm

Error (%) 100 99.1 71.5 13.7 0 

-7

* Precision of the calculations in numerical integration for rings of 1 to 100 turns are

 0.5×10     ,0.5×10     ,0.5×10     ,0.5×10      and 0.5×10   , respectively.
-16 -15 -12 -11 -4
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Table 4. Comparison of the force between two coils with different
divisions (inner radii and compression factor of the coils are 1 cm and

2π
0.001 , respectively).

Number of
Turns or Rings 

Per Coil 
1 2 5 10 100 

Direct Method 
(N) 

7.8358×10
-5

3.3733×10
-4

2.4909×10
-2

1.1712×10
-2

1.6909

Proposed
Method (N)

7.8384×10
-5

3.3745×10
-4

2.4916×10
-2

1.1714×10
-2

1.6909
Z=1 cm

Error (%) 0.0 
Direct Method 

(N) 
9.4323×10

-7
4.4683×10

-6
4.4231×10

-5
3.3155×10

-4
0.6070

Proposed
Method (N)

9.3905×10
-7

4.4517×10
-6

4.4129×10
-5

3.3117×10
-4

0.6070
Z=5 cm

Error (%) 0.44 0. 37 0.23 0.11 0.0 
Direct Method 

(N) 
6.9227×10

-8
3.3218×10

-7
3.4467×10

-6
2.8509×10

-5
0.2061

Proposed
Method (N)

6.8194×10
-8

3.2804×10
-7

3.4207×10
-6

2.8404×10 0.2061
Z=10 cm

Error (%) 1.5 1.3 0.76 0.37 0.0 

-5

* Precision of the calculations in numerical integration for rings of 1 to 100 turns are

0.5×10     ,0.5×10     ,0.5×10     ,0.5×10      and 0.5×10   , respectively.
-12 -12 -10 -10 -4

-3.3×10
-2

-3.6×10
-2

-2.8×10
-2

-1.7×10
-2

In Table 4, the comparison between two methods is made for the
case in which the inner radius of two coils are equal to 1 cm; in other
words, the coils start to wind from r = 1 cm. As it can be seen
from the results of the table, the errors in this case are less than the
corresponding errors in Table 3. For example, the force error for 1 turn
coil in distance of 10 cm is reduced from 100% in Table 3 to 1.5% in
Table 4. This fewer error for lower turn numbers, decreases to zero by
increasing the turn numbers.

According to the results of Tables 3 and 4, generally for turn
numbers higher than 10 turns in each coil, using the proposed method
presents good approximations; while having much simpler and faster
calculations compared to the direct method and using Equation (14).

Now suppose the case in which we have smaller compression factor
for the coils compared with previous cases; i.e., for each turn of coils or
for change of 2π Radians in the value of variable φ, the change in the
value of variable r is more than the diameter of the wires used in the
coils. For example, suppose that the growth of r is equal to 5 mm, in
this case the compression factor for both coils will be: K1 = K2 = 2π

0.005 .
The results of the calculations of the force with the above

mentioned conditions and by two methods of direct and proposed one
are presented in Table 5. In this table, like the previous cases, the
current of the coils is 10 Amperes.

It is interesting to compare the results of the Tables 3 and 5. In



Progress In Electromagnetics Research, PIER 95, 2009 53

Table 5. Comparison of the force between two coils with different
divisions (inner radii and compression factor of the coils are 0 and

2π
0.005 , respectively).

Number of
Turns or Rings 

Per Coil 
1 2 5 10 100 

Direct Method 
(N) 

4.2719×10
-6

6.2280×10
-5

1.4744×10
-2

1.0132×10
-2

1.8028

Proposed
Method (N)

1.7467×10
-6

5.5591×10
-5

1.4611×10
-2

1.0114×10
-2

1.8028
Z=1 cm

Error (%) 0.0 
Direct Method 

(N) 
1.0453×10

-7
7.4636×10

-7
5.9312×10

-5
1.4089×10

-2
1.3653

Proposed
Method (N)

3.6553×10
-9

3.3540×10
-7

5.6863×10
-5

1.4023×10
-2

1.3653
Z=5 cm

Error (%) 96.5 55.1 1.4 0.47 0.0 
Direct Method 

(N) 
2.5288×10

-8
1.2347×10

-7
5.9584×10

-6
2.3166×10

-4
1.0081

Proposed
Method (N)

2.3060×10
-10

2.2553×10
-8

5.3127×10
-6

2.2922×10 1.0077
Z=10 cm

Error (%) 99.1 81.7 10.8 1.1 0.04 

-4

* Precision of the calculations in numerical integration for rings of 1 to 100 turns are

0.5×10     , 0.5×10     , 0.5×10     , 0.5×10       and 0.5×10    ,  respectively.
-16 -15 -12 -11 -4

0.210.7 0.959.1

Table 5, the trend of increasing and decreasing of the error with the
increase of the distance between two coils and the number of turns
is the same as Table 3; but in this case, the calculated percentage
of relative error of the force is lower than the corresponding values
in Table 3 (although the absolute error increases). At first, it
seemed that by decreasing the compression factor calculation error
increases, but this assumption is not true because by decreasing the
compression factor, the relative error of calculations with proposed
method decreases. This is also true for smaller compression factors [12].

6. THE EXPERIMENTAL RESULTS

To evaluate the precision of the proposed method in calculating
the force between coils, two coils with different radii were precisely
constructed in the laboratory with the characteristics presented in
Table 6.

In order to precisely measure the repelling and attracting forces
between the coils, a test, as illustrated in Figure 7, is arranged. In
this figure, one of the coils is placed on a fiber board isolator whose
permeability is the same as air, and the other coil is connected to a
digital force meter via four pieces of string and a fiber board isolator.
So, by applying current to the circuit of the two coils, the force exerted
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Table 6. Characteristics of the constructed spiral coils.

Number of
turns

Inner
radius (cm)

Diameter of
wire used (mm)

Coil 1 54 2.15 1.6
Coil 2 55 2.0 1.6

on the higher coil, which is equal to the force on the lower coil, is
measured precisely.

In Table 7, the results of the calculations and experimental results
for different distances are presented. For the calculations in this table,
due to large number of turns and inner radiuses for the coils, the
proposed method with number of divisions equal to 25, is employed.
Regarding the results and the explanations of the previous section,
using this method in this case causes no significant error. As Table 7
shows, the results of the force measurement are in good agreement with
the results of the calculations, validating the precision of the proposed
method.

Figure 7. Measurement of the magnetic force between the two coils.
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Table 7. The experimental results and their comparison with
calculation results of the proposed method.

Current of the Coils (A) 4 6 8 10 12 

Measured Force (N) 0.0981 0.2256 0.3826 0.6180 0.8829
Z=1 cm

Calculated Force (N) 0.0981 0.2208 0.3925 0.6133 0.8832

Measured Force (N) 0.0392 0.0883 0.1373 0.2158 0.3237
Z=5 cm

Calculated Force (N) 0.0349 0.0786 0.1397 0.2182 0.3142

Measured Force (N) 0.0098 0.0294 0.0491 0.0785 0.1079
Z=10 cm

Calculated Force (N) 0.0117 0.0264 0.0469 0.0733 0.1056

7. CONCLUSION

In this paper, a new method for calculation of the force between spiral
coils is proposed. Generally, the direct method is employed in order
to calculate the force between spiral coils. The direct method involves
integrals with no analytical solutions. The numerical solution of these
integrals, due to the fact that the integrands are not smooth, is difficult
and time-consuming. To overcome this problem, in this paper a new
method is developed with simpler calculations and shorter calculation
time.

In this method just knowing the external dimensions and turn
numbers of each coil is sufficient to calculate the force between them,
and it is not necessary to know the arrangement of the turns in different
layers and number of layers in the coils. The effect of the number
of divisions in the cross-section of the coils on the precision of the
calculations is investigated. The results show that one can reduce the
number of divisions in order to save calculation time without having
significant error in the force.

According to the obtained results, the calculation error of the
proposed method for the number of turns more than 10 is negligible,
and the method is effective. These errors are reduced by increasing
the inner radius of spiral coils and have acceptable values even in the
lower turn numbers. The experimental results confirm and validate
the results obtained by the proposed method. The presented method
can be useful and applicable for the calculation of the magnetic forces
between any spiral type coils with different sizes.
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