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A NEW MIXED FINITE ELEMENT METHOD

FOR THE TIMOSHENKO BEAM PROBLEM (*)

Leopoldo P. FRANCA O, Abimael F. D. LOULA O

Communicated by J. DOUGLAS

Abstract. — The Timoshenko beam problem, with shear for ce and rotation as primai variables
and displacement as Lagrange multiplier, is examined under the gênerai hypotheses of Brezzi's
theorem concerning existence and uniqueness of saddle point problems. A new finite element
approximation is proposed and shown to be convergent for varions combinations of interp-
olations for the three variables.

Résumé. — Le problème de la poutre de Timoshenko, avec pour variables primales la force de
cisaillement et la rotation, et comme multiplicateur de Lagrange le déplacement, est examiné sous
les hypothèses générales du théorème de Brezzi relatives à l'existence et l'unicité des problèmes de
points-selles. Une nouvelle approximation par éléments finis est proposée ici, et nous prouvons la
convergence pour des combinaisons variées d'espaces d'interpolation sur les trois variables.

1. INTRODUCTION

In [1] a mixed formulation for the Timoshenko problem was considered
based upon the Heiiinger-Reissner principie, with bending moment and
shear force as primai variables and displacement and rotation as multipliers.
Existence and uniqueness of solution was established using Brezzi's
corollary [2] on the analysis of saddle-point problems which requires the
satisfaction of two conditions : AT-ellipticity and the Babuska-Brezzi con-
dition. The latter condition is easily fulfilled while the former is more subtle
to be satisfied in this formulation. By dropping the moment variable from
this problem and admitting the shear force and rotation as primai variables,
the resulting mixed formulation does not satisfy X-ellipticity but a more
gênerai inf-sup condition on K which is part of the generality of Brezzi's

(*) Received in March 1990.
(') Laboratório Nacional de Computaçâo Cientifïca, Rua Lauro Muller 455, 22290 - Rio de

Janeiro, RJ - Brasil.
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562 L. P. FRANCA, A. F. D. LOULA

theorem. As far as the authors are aware, this is the fîrst time that this
hypothesis has been applied to this problem. The convergence proof of the
approximation considered also employs the gênerai inf-sup condition. The
resulting fînite element method is valid for various combinations of
interpolations of shear, rotation and displacement.

The paper is organized as foliows. In Section 2 the differential équations
governing this problem are presented, a mixed variational formulation in
terms of nondimensional variables is derived and its analysis is shown in
Proposition 2. L In Section 3 we describe a finite element approximation
and prove its convergence for a rather gênerai family of finite element
interpolations.

2. VARIATIONAL FORMULATION

According to the Timoshenko beam theory, the in-plane bending of a
clamped uniform beam of length L, cross section A, moment of inertia I,
Young's modulus E and shear modulus G, subjected to a distributed load
p(x), with x e (0, L ) representing the independent variable, is governed by
the following System of differential équations :

-¥=P. (D
dx

-£ƒ 5Z-e=0, (2)
djc

- fi + ^ - e = o (3)

where Q(x) is the shear force; 6(x) is the cross-sectional rotation;
w(x) is the transverse displacement ; K is the shear correction factor. For
simplicity we consider the following boundary conditions :

w(0) = w ( L ) = 0 , (4)
6(0) = 9(1.) = 0 . (5)

To show the dependence of this problem on the small parameter

we introducé the following

ux

<*i

change

w

QL2

EI '

of variables :

u2 --

f -

= e,

PL3

Er '

(7)

(8)
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FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 563

which reduces the original problem to finding u^{x), u2(x) and cr^x),
x e (0, 1 ) satisfying,

- * { = ƒ , (9)
- K2" - <x, = 0 , (10)

-e2a1 + u[-u2 = 0, (11)

with boundary conditions,

= tt1(l) = 0, (12)
= M2(1) = 0 , (13)

where the prime superscript dénotes differentiation with respect to the
dimensionless variable x = x/L. We observe that the dimensionless problem
above dépends explicitly on a parameter E, proportional to the ratio of
thickness to length. In many applications e <ë 1. In this limit the construction
of finite element approximations is delicate.

We wish to consider the following variational formulation for (9)-(13) ;
Given ƒ G H~'(O, 1 ), fmd (<r, u) e WxV such that

a («r , r ) + 6(T,ii) = 0, V r e l f , (14)

b(<r,v) = ƒ (» ) , Vee F , (15)

where the bilinear forms a : W x W -+ R and Z? : Ĥ  x V -• î  are defined by

a(«r, r ) = - 82(al5 T l) - (ab v2) - (T1S W2) + («2> üi) V<r
5 ^ 6 ^ , (16)

ft(r,if)= (Tb«ï) VTGfF, Vi /eK s (17)

and

ƒ ( , ) = (ƒ,!?!) V » e K , (18)

with

Ù ) i (19)

(20)

Herein, cr= (crl,w2}ris the primai variable and u = {t^} r i s the Lagrange
multiplier ; L2(0, 1 ) dénotes the space of square-integrable functions on the
unit interval with the inner product

(f,9) = [fgdi, Vf,geL2{0,l); (21)
Jo

^ 3 ( 0 , 1 ) = {geL2(0,l);g'eL2(0,l);g(0) = g(l) = 0} , (22)
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564 L P. FRANCA, A. F. D. LOULA

and H' 1 is the dual of //^(O, 1 ). The norms on L2(0, 1 ), iïJ(0, 1 ), PFand V
are denoted by (respectively)

11/11 = (f,f)m, V/eZ, 2 (0 , 1 ) , (23)
112 ^ ) , (24)

y Î (25)

Mv = ll»illi. V » 6 F . (26)

PROPOSITION 2.1 : For bounded thickness, i.e., e « C < oo, problem
(16)-(17) satisfies the gênerai hypotheses of Brezzi's theorem given by

(Al) : Continuity of a : W x W ->• iî,

| a ( « r , T ) | = s C 1 | | c r | | H , | | T | | H , > V«r, T e »F, (27)

(A2) : Continuity of b : W x V -+R,

\b(T,v)\^C2\\r\\w\\v\\v, VreW, V» e V, (28)

(Hl) : Stability of a,

sup I ^ Y ^ I ^ a || T || y , VTGA:, (29)

I °" III w

where
K= {TE W;b{r, v) = 0, V» e F } , (30)

(H2) : Babuska-Brezzi condition,

/f/î constants C l5 C2, a, P > 0, independent of e.

Proo/:
(Al) :

|a , | | ||v21| +

I I )2| | « 2 | | + II " 2 II II f 2 I I ) 2 -
Thus,
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FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 565

t h e r e f o r e

e 2 } ( K ||2 + | | u | | 2 ) ( | | T | | 2 + \\v\\2){ 1 , e 2 } ( K ||2 + | | u 2 | | 2 ) ( | |T l | |
2 + \\v2\\

2
x)

Vo- ,T6 W9 (32)

which proves (Al) with Cx — \ / 3max {1, C } .

(A2):

^ ( T . r ) ! * ^ , ! ! ! ! » ! ! ! * | | T | U M | „ V r e i r , V r e K . (33)

Thus (A2) follows with C2 = 1.

(Hl) : For each r e K, T, = T? = constant. Select «f = { - 2 T ? , « 2 -
T? 4>/12} e K with <(> = 6 x( l - JC). Then

| a ( * , T ) | = | 2 e 2 | | T ? | | 2 + ( T ? > t ; 2 ) + | |T? | | 2 (* ,

+ IKU2-T?(4>',t;2)/12| =

From Poincare inequality, we have

| f l«F,r)| ^^ l lTÏf + l l l ^ l l ^ l l i r l l ^ VreK,

with

T h u s ,

I w

which yields (Hl) with a = 1/30.

(H2) : Select V» E V, f = {»,', 0 } r . Then f e W and

T II — I S r

reW \\T\\w \\T\\W
 Ó

Thus (H2) follows with p - 2/3.

Remarks :
1. (Hl) is a rather gênerai condition. In most applications (Hl) is

replaced by a stronger condition, namely .K-ellipticity

|a(T,T) | S ! a| |T| | 2 V r e X . (34)

vol. 25, n 5, 1991



566 L. P. FRANCA, A. F. D. LOULA

As far as the authors are aware, this is the flrst time the gênerai hypothesis
(Hl) of Brezzi's theorem has been applied in the analysis of this model
problem. The analysis indicates how to handle stability of the finite element
approximation presented next.

2. Studying the same model problem, Arnold [3] considered & =
{uu u2}

 T as primai variable and û = {o-j} as Lagrange multiplier. For this
arrangement the abstract form (15) is replaced by

- £ 2 ( a 1 , T 1 ) + ( T i , « i - M 2 ) = 0 . (35)

Due to the présence of the - e2(crls T^-term in (35), in this case the analysis
cannot be carried out employing Brezzi's theorem. Arnold [3] proved
another result of his own to deal with this arrangement of variables. On the
other hand, by insisting on the classical mixed formulation format of this
problem, we were able to prove well-posedness of our model problem using
Brezzi's theorem.

3. FINITE ELEMENT APPROXIMATION

Consider a partition of the unit interval 0 = x0 < xx <:•••< xn = 1 where
xe is the coordinate of the end point of the eth-element and nel is the total
number of éléments. The domain of each element e is fie = (xe_u

xe), e = 1, 2, ..., nel and the mesh parameter is denoted by h =
max (He), e = 1, 2, ..., nel. Consider the set of all polynomials of degree not
greater than k and dénote its restriction to H by Pk(CL). Let Ö A ( ^ ) be the
space of C" 1 piecewise polynomial interpolations of degree k, i.e.,

e * ( " ) = {9k i 9e e Pk(to
e)> e=h2, ..., nel) (36)

with ge denoting the restriction of gh to Oe. Let S?h(Q,) be the space of
C° piecewise polynomial of degree / with zero value at x = 0 and
x = 1, i.e-,

^(ft) = Ö*(")n ^d(o,i). (37)

To simplify the convergence analysis we will assume herein quasiuniformi-
ty of each partition considered.

The finite element approximation we wish to consider is given by
Given ƒ e H~l(09 1 ), and Wh = Q%xSl

h<= W, Vh = Sl
hcz F, find

(<rA, ah) e Wh x Vh, such that

tfaO/p rh) + 6 ( T A , uh) = gh(rh), Vrhe Wh, (38)

b(<rh,vh)=f(vk)9 Vvhe Vh, (39)

M2AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 567

where,

«*(«**. rk) = a(trh, rh) - 8*2(oJi, TJ,)* , (40)

2 (41)

in which ô is a dirnensionless positive scalar parameter, and (.,. \ is defined
by

fV * (42)

where \xe and -ne are the restrictions of \x,h and -x\h to element e. For
8 = 0, (38)-(41) reduces to the Galerkin method which, for fc > / — 1, lacks
stability of the shear variable <rhl as E -• 0. Addition of the 8-term enhances
the stability of this variable in almost the whole space Q%9 even for
k > / - 1. In gênerai we may assert only that

Ô / Î
2 | | T ^ | | 2 ^ 2 Ô | | T M | | 2 V T ^ G Ô ^ . (43)

In other words, the additional ô-term controls all functions in Q% modulo
piecewise constants. Convergence of this finite element method is proven
next.

PROPOSITION 3.1 : For fc s* ƒ - 1, <r e Hk+l(0, l)x(Hl + l(0, 1 ) n
Hl

0(O, 1 )) and u e Hl + ^ 0 , 1 ) n flJCO, 1 ) the finite element method (38)-(41)
has a unique solution («rhi uh) e Wh x Vh, and the following error estimate
holds :

\\<r-<rh\\KW+ \\u-uh\\Y*C{<r9u)hl
9 (44)

in which

This result holds for 5^1/4 and h^ljl.

Before proving Proposition 3.1 let us establish some preliminary results.

LEMMA 3.1 : Characterization of the Shear Component, TA1 of rh =
(Jk\> vhi) e Kh where

Kh = {rh eWh;b (T A , vh) = 0, V*A G F , } . (46)

vol. 25, n° 5S 1991



568 L. P. FRANCA, A. F. D. LOULA

Let T^ dénote the mean value of the component TA1 of rh e Kh, Le.,

T2I = \ l rhl <% . (47)

Jo

Défi ne

T £ = T H - T V (48)

Ql
h,

H'T*X ^ dx = 0 , e= 1,2,.,.,/irf (49)
o

where Te* û ?/re restriction ofr*i G Q% to element e, and \xe is the restriction of
JJLA to element e.

Proof : By définition (46) for rh e Kh

\hlv'hldï = 0, VvhleSl
h. (50)

o

It follows from (47) and (48) that

f T ^ M 4 = 0 , Vi?A1GSi. (51)
o

Given any |xA e Ql
h, there exists üA1 e Sl

h and a constant c such that

^1 = K + c (52)

where vel is the restriction of vhx to element ^. Substituting (52) into (51)
yields

\ \ (53)
Jo

By (47) and (48)

T**id| = 0 (54)
)o

and therefore

(55)
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FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 569

Invoking the independence of \x,'e on each element, it follows that each
term in the sum vanishes, which complètes the proof of the lemma.

COROLLARY 3.1 : It follows from (55), by selecting JUL̂  an arbitrary
constant on each element, that

r
Jo

e = 1 , 2 , . . . , « « , / . (56)

The existence of local constant modes is precluded by Corollary 3.L

COROLLARY 3.2 (Shear Stability) : With T^ as defined in Lemma 3.1,

\ 2||TA1 f , VrA G Kh/R . (57)

VrheKh. (58)

Proof: From (48) and (56) we can use the Poincaré inequality in each
element to get

:— IK*I|2 '

and (58) follows by summing over éléments. The only constant mode in
Kh is the global constant T°hl to be controlled through the Galerkin terms.

We now state the theorem in which the proof of Proposition 3.1 is based
upon.

THEOREM 3.1 (Generalization of Brezzi's theorem) : Assume :

(Al) : (Continuity of a : W x W -• R and b : W x V -• R). There exist
constants 0 < C l 5 C2 < oo such that

(59)

(60)| è ( T , » ) | ^ C 2 | | T | | ^ | | I ) | | K , V T Ê ( T , V I E K

(A2) : (Consistency). The exact solution (<r, u) satisfies

b(<r,vh)=f(vh), VvheVh.

(61)

(62)

77ze following stability conditions must also hold :

(Hl)/, : (ah-stability on Kh). There exists a constant ah > 0 such that

sup w VrheKh9 (63)
| w

vol. 25, n 5, 1991



570 L. P. FRANCA, A. F. D. LOULA

(H2)h : (Discrete Babuska-Brezzi condition), There exists a constant
$k > 0 such that

\b(Tfa Vh)\ D M M w jr {rA\

*P\\*\\ V » A e K A , ( 6 4 )p
rh e Wh H *h II W

(IE) : There exists a constant y > 0 such that

» (65)

Then the finite element method (38)-(41) has a unique solution (tr h,
uii) e ^A x Vh and tne following estimate holds :

Wh, VvheVh, (66)

with ||. || h w as defined in (45) and Ch>0 constant.

(A3) : Let â-he Wh and uh G Vh be interpolants of a and u. Assume that
the interpolation errors <r — ârh and u— uh satisfy

l l l l ^ (67)
\\u-üh\\v^C{u)hl, (68)

and, if in addition ah and $h are independent of h, then,

\\<r-<rh\\hw+ \\a-ah\\v*C(<r,u)h*9 (69)

with p — min {k + 1, / } .

Proof: See [4].

Proof of Proposition 3.1 : We show that the finite element approximation
(38)-(41) satisfîes the hypotheses of Theorem 3.1.

(Al) was checked in Proposition 2.1 with

Cx = V3max {1,8} , C2 = 1 . (70)

(A2) is impKcit in the scheme.
(A3) follows from the assumed smoothness of the exact solution

(a, if).

(IE) is simply a particular resuit of the inverse estimate found in Ciarlet
[5],

M2AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 571

(H2)A : For k 3= l - 1, V»A e Vh select fh = {v'ku 0} T. Then rh e Wh and

sup W i ^ , J w ^ = lKJl!,2 , . ; .„„ (72)
»i l l n l l | | T | | | | v A | | 3

yielding $h = P = 2/3.

(H1)A : (aA-stability on ^TA). Lemma 3.1 characterizes rh e Kh. Select for
each Th = {th\,vhl}

Tz Kh

9h = {- 2 T „ , »ffl - T2, <)>A/12}
 r 6 ^ (73)

where <)>/, e 5 | is such that

<+*» M-*) = (+'.M.i) V ^ £ 5 j ; , (74)

and satisfies

(<}>,, 1 ) * ( 1 - ^ 2 ) , (75)

| | ^ | | 2 ^ | |< |> ' | | 2 = 12, (76)

||<t>A||2=£||<HI2=l-2- (77)

Combining the above results we get

h ( * * . T » ) | = 2 E2 | |TA1 II2 + 2(TA 1 , D „ ) - (T M , »M - TJ, <

i, Tg! d>A/12)

On the other hand,

. (79)
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572 L. P. FRANCA, A. F. D. LOULA

Combining (78) and (79) yields

1 . f 19-20*2

l

sup

240 - 4 8

Thus (H1)A follows taking 8 > 1/4 and h < 1/2.

Remarks :
1. From Proposition 3.1 we observe that the finite element approximation

(38)-(41) is stable and convergent for equal-order interpolation for ail three
variables. This combination of interpolation finite éléments, based on the
classical Galerkin method is well known to have poor stability properties. In
the case of linear éléments « locking » of the kinematic variables and
spurious oscillations in the shear force are typical pathological phenomena
observed in the Galerkin approximation for thin beams. Arnold [3] has
shown that optimal rates of convergence for this method is obtained only
when h <: e, which indicates the inappropriateness of Galerkin finite
element approximations with equal-order interpolations.

4. NUMERICAL RESULTS

Numerical results for equal-order linear and quadratic éléments (shear
discontinuous on element interfaces) were obtained for the Galerkin and
the PG methods (PG for Perturbation of the Galerkin method). In figure 1
the Galerkin method with 8 linear éléments is plotted and compared to the
exact solution of a clamped beam subjected to unit uniform load. Notice the
« locking » (trivial solution) of the displacement and rotation variables, and
the pathological behaviour of the shear variable with spurious oscillations
throughout the domain. In figure 2 the same problem is tested employing
the PG method. The erratic behaviour of the three variables is now
precluded, and the comparison to the exact solution is very good.

In figure 3 the Galerkin method with 4 quadratic éléments is compared to
the exact solution of the same problem. The displacement and rotation
variables no longer lock, but their values are far from the désirable exact
solution values. Note the persistence of spurious oscillations in the shear
variable. In figure 4 we observe an excellent agreement between the PG
method solution and the exact solution for these quadratic éléments.

In figure 5 we perforai an error study for a clamped beam subjected to
linear load (f = x). The Z,2-norm and //rseminorm are plotted for the PG
method employing equal-order two and three-node éléments. Optimal rates

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



FINITE ELEMENT FOR THE TIMOSHENKO BEAM PROBLEM 573

3.

2.

0.

. 1 .

-z
-3 .

- 4

,\
V
\

• \

• *

•

1 / »^

r

;\
^ i %

\
\
\
\

}

0 2 3 .4 .5 .6 .7 .8 .9 1.0
X

.010

0 .1 2 .3 4 3 .8 7 8 9 1.0

Figure 1. — Equai-order linear éléments for a beam with both ends clamped subjected
to unit uniform load.
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0 I .2 .3 .4 .5 6 .1 .8 .9 1.0

2 .3 .4 .5 .6 .7 .8 .9 1.0

.010

.0 .1 2 3 .4 .5 .6 .7 .8

Figure 2. — Equal-order linear éléments for a beam with both ends clamped subjected
to unit uniform load.
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Figure 3. — Equal-order quadratic éléments for a beam with both ends clamped subjected
to unit uniform load.
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.0 I .2 -.3 .4 .5 6 .7 .8 -9 1.0

.0 .1 .2 3 4 5 6 7 8 9 1.0

.0 A 2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 4. — Equal-order quadratîc éléments for a beam with both ends clamped subjected
to unit uniform load.
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SHEAR DISPLACEMENT ROTATION

0 1 Z 3 0 t 2 3 0 1 23
(A) Two Node Element

2 . 3. O. I. 2 . 3O. I. 2 . 3 O.

(B) Thret Node Element

- e - L2norm

- • " Hl seminorm

Figure 5. — Convergence study for a beam with both ends clamped subjected
to linear load (f = x).
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are obtained except for shear using the three-node element in which
convergence has a gap one as predicted in the analysis.

5. CONCLUSIONS

In this paper we presented :
i) an analysis of existence and uniqueness for the Timoshenko problem

employing the gênerai theorem of Brezzi for saddle point problems ;
ii) a PG method which is convergent for a variety of combinations of

fïnite element interpolations ;
iii) numerical results that confirm the numerical analysis of the proposed

method.
We believe the analysis presented here may prove itself useful in the

analysis of mixed variational formulations with more than two variables.
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