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ABSTRACT 

 

Additive Manufacturing (AM) maturity allows diffusion of this technology in conventional 

production environments. In the decision to adopt a new technology, production costs are one of 

the most important factors to analyse, even if it is not developed enough yet. Several cost models 

for AM have been proposed, but each of them focuses on a specific aspect of the process, lacking 

the ability to consider the effective costs associated with AM, i.e. regarding AM as part of a more 

general production context. This study develops a cost model that evaluates process costs of AM 

for relevant technologies such as stereolithography, selective laser sintering and electron beam 

melting. The proposed cost model allows estimation of the total cost per part; it is worth noting 

that the parts produced have different sizes, quantities and complexity characteristics, but the 

objects are all fabricated in the same build job. Nevertheless, it is important to note that the 

proposed cost model not only considers the AM working costs but also the pre- and post-

processing steps directly linked to the AM building phase. The integration of AM on the shop floor 

is witnessed by the introduction of an index such as the Overall Equipment Effectiveness (OEE) 

index, which allows this evaluation to be more connected to real production system issues. At the 

end of the paper, an experiment to compare the results of the proposed model with those of 

previous studies is reported. 

Keywords: Additive Manufacturing, Additive manufacturing cost model 

 

 

INTRODUCTION  

Additive manufacturing is a layer-by-layer fabrication 

technology that allows the formation of solid objects 

typically by using a laser beam or an electron beam. The 

American Society for Testing and Materials (ASTM) 

defines AM as a collection of technologies able to ‘join 

materials to make objects from 3D model data, usually 

layer upon layer, as opposed to the subtractive 

manufacturing methodologies’ (ASTM, 2012). The idea 

to create solid objects layer by layer comes from Charles 

Hull who, in 1986, obtained a patent for production of 3D 

objects using stereo-lithography (Hull, 1986).  

Prototyping was the first application of this new 

technology. Originally AM allowed only the production 

of polymeric, resin or wood objects. Mechanical 

performances, dimensional and surface accuracy were 

low in quality. For this reason, it was possible to use the 

technology only for functional tests, aesthetic effect 

verification, ergonomics, easy handling and workability. 

Due to AM, the prototyping work became Rapid 

Prototyping (RP), which aims to realize prototypes 

quickly using additive technologies. ‘Rapid’ is related to 

the possibility of realizing objects in a shorter time than 

traditional systems and a subsequent time to market 

reduction for the development of new products. 

From the beginning of this technology, it is possible to 

individuate materials such as the polymeric ones, with 

which the comparison with traditional production 

methods was first studied. AM in the first years of the 

new century was compared with injection moulding (IM) 

of polymeric objects. Hopkinson and Dickens showed 

that, for some geometrical analysis, it is more economical 

to use layer manufacturing methods than traditional 

approaches for production (Hopkinson and Dickens, 

2003). 



Over time, the growth of AM mechanical performances 

(Brugo et al., 2016; Huynh et al., 2016; List et al., 2014; 

Ma et al., 2016; Ordás et al., 2015; Park et al., 2014; 

Shamsaei et al., 2015; Thompson et al., 2015; Wang et 

al., 2015, 2016; Witherell et al., 2016; Yang et al., 2015) 

and the possibility of using other materials like metals 

(Bartkowiak et al., 2011; Baufeld et al., 2010; Gu et al., 

2012; Kruth et al., 1998; Mazumdar, 2001; Murr et al., 

2010, 2012a, 2012b; Quan et al., 2016; Travitzky et al., 

2014; Williams et al., 2011) moved the comparison to 

metal subtracting manufacturing technologies. Subtractive 

manufacturing (SM) includes various processes that allow 

the cutting of solid raw materials to obtain the desired 

final shape.  

A paper by Lindemann et al., 2012 identified some of the 

advantages and disadvantages of AM. Some advantages 

of AM are as follows: more flexible development, 

freedom of design and construction, less assembly, no 

production tools necessary, less spare parts in stock, less 

complexity in business because of fewer parts to manage, 

less time to market for products and faster deployment of 

changes. Some of the disadvantages are as follows: 

machine and material costs are high, the quality of parts is 

in need of improvement, rework is often necessary 

(support structures) and build time depends on the height 

of the part in the building chamber. Related to the 

advantages and disadvantages, it is important to 

understand that AM technologies have a deep impact on 

production systems. Production costs, lead time, energy 

consumption, production scheduling and production 

mixing are some of the most important aspects by AM. 

Diffusion of AM requires a clear understanding of its 

economic aspects; further, this work aims to focus on 

those aspects by exploring the most relevant cost models 

defined on the argument and the building of a new cost 

model that is able to exploit the strengths of existing cost 

models, while avoiding their weaknesses or attempting to 

convert them into opportunities. 

 

LITERATURE REVIEW 

Several cost models have been proposed in the past. In 

this section, we analyse the main existing cost models in 

order to give an overview of the approaches used by each 

author, while trying to understand the present limits on 

this issue.  

 

Hopkinson and Dickens, 2003 (HD) carried out an 

analysis of the rapid tooling (RT) and rapid 

manufacturing (RM) costs. The authors developed a 

technology that allows for the realization of finished 

products on a large scale. Hopkinson and Dickens 

reported a cost analysis that compares the traditional 

manufacturing method of injection moulding with layer 

manufacturing processes (stereolithography, fused 

deposition modelling and laser sintering) in terms of the 

unit cost for parts made in various quantities. The results 

showed that, for some geometries, up to relatively high 

production volumes (in an order of a thousand pieces), it 

is more advantageous to use the layer manufacturing 

methods. The costs of the parts were broken down into 

machine costs, labour costs and material costs. Energy 

was neglected for its low impact on costs. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡

= 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡

+ 𝐿𝑎𝑏𝑜𝑢𝑟 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡

+ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑟𝑡 

(1) 

 

The proposed model provides a first approximation of the 

production costs. The work was realized when the 

technology had not matured; different aspects of 

Hopkinson and Dickens’ research were further developed 

by other researchers. 

The hypothesis of a large-scale production shifts the focus 

away from prototyping to manufacturing usage of 

additive technologies. The roughness of the economic 

model is probably due to the incomplete understanding of 

technology potential and its low performances.  

Later, Ruffo et al. (Ruffo et al., 2006a) analysed the 

production costs of the same object (lever) used by HD 

and obtained by laser sintering. Their cost model offers a 

breakdown of the cost structure in various activities 

(activity based costing). This approach comprises a 

definition of the involved activities, calculation of the 

costs of each activity and summing of each cost. Activity 

costs are then split into direct and indirect costs. Material 

is grouped as a direct cost. Labour, machine, production 

overhead and administration overhead are indirectly 

allocated. The total cost of a single build is the sum of 

direct and indirect costs. The direct costs depend on the 

amount of material used and indirect costs depend on the 

duration of the process:  

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑏𝑢𝑖𝑙𝑑 = 𝐷𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡𝑠

+ 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡𝑠 

 

(2) 

Build time estimation is performed using an empirical 

estimation algorithm for the SLS process (Ruffo et al., 

2006b). This approach is correct only in the case of 

production of several copies of the same geometry.  

In their subsequent work, Ruffo et al. defined a new 

approach to calculate the cost per part in the case of 

mixed production of different parts in the same build 

chamber (Ruffo and Hague, 2007). They proposed three 

ways to calculate the unit cost of the parts: the first based 

on the parts volume, the second based on the cost of 

building a single part and the third based on the cost of a 

part built in high-volume production. These approaches 

allow for the allocation of the building costs of each of 

the different parts in the same build job.  

Ruffo and Hague used a single allocation criterion to split 

build costs between each part; we think it is more 

accurate to use different allocation criteria to allocate 

costs of each productive step for each part. Rickenbacher 

et al. will use this approach in their cost model. 



Baumers et al. (Baumers, 2012; Baumers et al.), 

(Baumers et al., 2012) were the first to examine the 

economic and energetic aspects and also the time 

necessary to realize the AM construction. The highlights 

of his work are enumerated below: 

 Activity-based cost estimator of the type devised by 

Ruffo et al., 2006a;  

 Energy costs grouped as direct; 

 Estimate of total build time;  

 Accurate analysis of energy consumption. 

According to Baumers, indirect costs of AM and the 

presence of a fixed element of time consumption (for each 

layer and for each build) make the analysis of the build’s 

unused capacity problem very important. HD assumes 

that there is no excess of capacity because the chamber of 

the machine is always full of objects. Ruffo et al. also 

based their model on the assumption that any excess 

capacity remains unused. Another important observation 

of Baumers et al. is that break-even cost models may not 

be able to capture the capabilities of geometrically less 

restrictive manufacturing processes to create a complex 

product. Furthermore, AM faces the disadvantage of not 

being able to offer the scale economies available to 

conventional manufacturing systems. Baumers et al. 

employed an activity-based cost estimator of the type 

devised by Ruffo et al. The cost estimate for the build is 

constructed by combining data on the total indirect and 

direct costs incurred. Unlike Ruffo et al., energy cost is 

grouped as a direct cost. The total cost for each build can 

be expressed as follows: 

𝐶𝑏𝑢𝑖𝑙𝑑 = (�̇�𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡  ×  𝑇𝐵𝑢𝑖𝑙𝑑)

+ (𝑤 × 𝑃𝑅𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

+ (𝐸𝐵𝑢𝑖𝑙𝑑 ×  𝑃𝐸𝑛𝑒𝑟𝑔𝑦) 

(3) 

 

where 

�̇�𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡: Indirect machine cost per hour [£/h]; 

𝑇𝐵𝑢𝑖𝑙𝑑 :  Total build time [h]; 

𝑤:  Total weight of the part in the build 

(including support structure) [kg]; 

𝑃𝑅𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙: Price per kg of raw material [£/kg]; 

𝐸𝐵𝑢𝑖𝑙𝑑 :  Total energy consumption per build [MJ]; 

𝑃𝐸𝑛𝑒𝑟𝑔𝑦:  Mean price of electricity [£/MJ]. 

 

The time and energy estimator, and the grouping of 

energy in direct costs, make the cost model more accurate 

than previous ones. Baumers et al., however, do not 

consider other activities that are indirectly connected to 

the phase of building but are still relevant from the 

economic point of view (post-processing and material 

removal). 

The estimate of the building time is obtained by 

combining fixed time consumption per build (warm-up 

and cool-down), layer dependent time consumption (time 

necessary to add powder) and laser deposition time for the 

sintering of the powder: 

 

𝑇𝐵𝑢𝑖𝑙𝑑 = 𝑇𝐽𝑜𝑏 + (𝑇𝐿𝑎𝑦𝑒𝑟 × 𝑛)

+ ∑ ∑ ∑ 𝑇𝑉𝑜𝑣𝑒𝑙 𝑥𝑦𝑥

𝑥

𝑥=1

𝑦

𝑦=1

𝑧

𝑧=1

 

 

(4) 

where 

𝑇𝐽𝑜𝑏:  Fixed time consumption per build [h/build]; 

𝑛:  Number of layers [-]; 

𝑇𝐿𝑎𝑦𝑒𝑟:  Fixed time consumption per layer [h/layer]; 

𝑇𝑉𝑜𝑥𝑒𝑙 𝑥𝑦𝑧:  Time needed to process each voxel [h/voxel]; 

 

In the analysis of energy consumption, Baumers et al. 

divided the total energy between consumption for each 

job, single layer energy consumption, geometry 

dependent energy consumption and a constant base line 

level of energy consumption throughout the build: 

𝐸𝐵𝑢𝑖𝑙𝑑 = 𝐸𝐽𝑜𝑏 + (�̇�𝑇𝑖𝑚𝑒 × 𝑇𝐵𝑢𝑖𝑙𝑑)

+ (𝐸𝐿𝑎𝑦𝑒𝑟 × 𝑙)

+ ∑ ∑ ∑ 𝐸𝑉𝑜𝑣𝑒𝑙 𝑥𝑦𝑥

𝑥

𝑥=1

𝑦

𝑦=1

𝑧

𝑧=1

 

 

(5) 

 

where 

𝐸𝐽𝑜𝑏:  Fixed energy consumption per build  

  [MJ/build]; 

�̇�𝑇𝑖𝑚𝑒:  Fixed energy consumption rate [MJ/h]; 

𝐸𝐿𝑎𝑦𝑒𝑟 :  Fixed energy consumption per layer  

  [MJ/layer]; 

𝑙:  Number of layer [-]; 

𝐸𝑉𝑜𝑥𝑒𝑙 𝑥𝑦𝑧:  Energy required to process each voxel  

  [MJ/voxel]; 

 

Lindemann et al. (Lindemann et al., 2012) investigated 

and modelled with Event-driven Process Chains all of the 

relevant cost processes of the AM production process. As 

a calculation method, they adopted a ‘Time Driven 

Activity-based Costing’ approach according to the 

duration of the activities. Lindemann et al. defined four 

main process phases as follows: 

 Building job preparation; 

 Building job production; 

 Sample parts and support manual removal; 

 Post processing to enhance material properties. 

Lindemann et al. identified some things lacking in 

previous cost models and included the post-processing 

activity in their costing model, for example, quality 

control, surface treatment and support removal. The idea 

of considering the cost of the post processing helps to 

better understand the economic aspects related to the AM 

technology. 

Rickenbacher et al., 2013 asserted that AM processes are 

interesting candidates for the replacement of conventional 

production processes like cutting or casting. The 



integration of AM processes into a production 

environment requires a cost-model that allows for the 

estimation of the real costs of a single part, although it 

might be produced in the same build job together with 

other parts of different geometries. The highlights of the 

proposed cost model are listed below: 

 Cost calculation of a single part in a build also in case 

of a contemporary production of different parts. 

 Analysis of the steps involved in the process. 

 Cost model including all pre- and post- processing 

steps. 

 Algorithm to calculate the time fraction for each part 

in the build job. 

 Build time estimator derived by a linear regression on 

24 different build jobs. 

Rickenbaker et al.’s cost model is based on the generic 

cost model by Alexander et al. (Alexander et al., 1998). 

The cost of the single part (Pi) is obtained by summing 

the costs of the seven process steps which as defined 

below: 

 

𝐶𝑡𝑜𝑡(𝑃𝑖) = 𝐶𝑃𝑟𝑒𝑝(𝑃𝑖) + 𝐶𝐵𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝑃𝑖)

+ 𝐶𝑆𝑒𝑡𝑢𝑝(𝑃𝑖) + 𝐶𝐵𝑢𝑖𝑙𝑑(𝑃𝑖)

+ 𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖)
+ 𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖) + 𝐶𝑃𝑜𝑠𝑡𝑝(𝑃𝑖) 

 

(6) 

where 

𝐶𝑡𝑜𝑡(𝑃𝑖):  Total manufacturing costs [€]. 

𝑃𝑖:  Part with i
th

 geometry [-]. 

𝐶𝑃𝑟𝑒𝑝(𝑃𝑖):  Cost for preparing geometry data 

(orientation and support structures) [€]. 

𝐶𝐵𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝑃𝑖):  Cost for build job assembly [€]. 

𝐶𝑆𝑒𝑡𝑢𝑝(𝑃𝑖):  Machine set up costs [€]. 

𝐶𝐵𝑢𝑖𝑙𝑑(𝑃𝑖):  Cost for building up the part [€]. 

𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙(𝑃𝑖):  Cost for removing the part from the SLM 

machine [€]. 

𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒(𝑃𝑖):  Cost to separate parts from substrate plate 

[€]. 

𝐶𝑃𝑜𝑠𝑡𝑝(𝑃𝑖):  Cost for post-processing [€]. 

 

Rickenbacher et al. developed an algorithm to calculate 

the time fraction for each part in the build job, although 

various heights are involved. In the Coating time 

allocation section, we will use this approach to allocate 

coating time for each part in the build job. 

To estimate build time, Rickenbacher et al. use a linear 

regression model derived from 24 different build jobs. 

Our observations on their work are listed below: 

 Even if the cost model includes a detailed analysis of 

the pre- and post-processing related to the AM 

process, a possible material removal step has not 

been included. 

 Simple and effective algorithm to allocate the time 

fraction of the total build time to each part is realized.  

 Energy consumption and its costs are not taken into 

account. Because of its impact on costs, this item is 

not negligible in metal AM processes. For this 

reason, we disagree with this approach. 

 The authors do not explain which cost items are 

included in the machine’s cost per hour. Because of 

the big impact of the cost item we think it is correct 

to clarify this aspect. 

 The authors predict the building time through a 

formula of estimation that is calculated with 

parameters that are very different among themselves. 

Moreover, in the equation used for the total build 

time, the calculation does not take into account 

explicit possible warm-up and cool-down times. 

These elements could have a big impact on time 

consumption, for this reason, we think that it is 

correct to analyse them. 

Even if we have doubts on the quality of the time 

estimator, the deep analysis of pre- and post-processing 

and the algorithm defined to calculate the time fraction 

for each part in the build job are important tools for AM 

technology, and it represents a good step forward in the 

effectiveness of cost estimation. 

The model by Schröder et al. (2015) is the last model to 

be analysed. To develop their business model, Schröder et 

al. (2015) use an activity based cost. The relevant 

activities are defined using interviews submitted to a 

group of experts (small and medium companies having 

experience on AM technologies) and researchers on AM. 

The following seven main process steps were identified: 

 Design & planning; 

 Material processing; 

 Machine preparation; 

 Manufacturing; 

 Post-processing; 

 Administration and sales; 

 Quality. 

Schröder et al. increased the number of relevant activities 

included in the cost model. Design and planning have 

never been included in each of the cost models that have 

been analysed. AM, in fact, compared with subtractive 

technologies, requires extra design phases. AM is able to 

realize complex geometries that are not achievable using a 

material removal technique, in this case, costs of redesign 

have to be considered.  

The relevant activities included in the cost model, not 

directly related to the building phase, give an overview on 

additive processes. We are unsure of the definition of 

administrations and sales activities. The cost model for 

AM should include only industrial costs. Administrative 

and sales costs should be included with all other overhead 

costs because they do not depend on the adopted 

technology.  

Regardless of the technology in question (DMLS, EBM, 

LS, SLA and FDM), we can identify similar process 



phases that allow for the definition of a single cost model 

that is valid for each of them. Labour, machine, material, 

power source, warm-up time, build rate and energy 

consumption are the main activities involved in having an 

impact on finished product costs. Over time, every author 

adds something to the previous cost model, increasing its 

accuracy. Scarce understanding of the technology led 

older models to not effectively consider all the involved 

variables (energy consumption and labour). Nowadays, 

we have more accurate business models. 

It is important to make some considerations about energy 

consumption. HD assumed energy consumption costs to 

be negligible for its low effect on total cost. This is due to 

the fact that the additive processes were only suitable to 

realize polycarbonate and polypropylene objects. 

Subsequently, energy costs were inserted between 

overhead costs (Ruffo et al., 2006a). Because of the 

higher energy consumption necessary to realize metallic 

objects, it was essential to take into account this cost item: 

Baumers, 2012 analysed the theme and inserted energy 

between direct costs.  

Older cost models do not consider any post processing 

steps (Baumers, 2012; Hopkinson and Dickens, 2003; 

Ruffo et al., 2006a). However, Rickenbacher et al., 2013; 

Lindemann et al., 2012; Schröder et al., 2015 considered 

post-processing activities like surface treatments and 

quality controls. In some cases, AM can be a substitute of 

SM, whereas in other cases, after the building process 

using AM, some mechanical characteristics of the parts 

need to be enhanced (i.e. surface finish and tolerances) 

(Atzeni and Salmi, 2012). Existing cost models consider 

the activities directly connected to the building process of 

AM; however, due to the fact that AM allows the 

production of end use products, it is important to analyse  

all the activities involved in the cost model for the 

calculation of the full cost of a finished part like, for 

example, redesign costs ( Atzeni et al., 2010; Hague et al., 

2003) and material removal costs (Manogharan et al., 

2016). For this reason, we consider it appropriate to 

define a production model that includes the post-

processing cost of AM (Campbell et al., 2012; 

Manogharan et al., 2015). 

Among all the cost models analysed, only Ruffo and 

Hague, 2007 and Rickenbacher et al., 2013 analysed the 

production cost in the case of production of a different 

geometry in the same build job. Contemporary production 

of different parts is one of the most important strengths of 

AM and, for this reason, we think that a cost model 

should be suitable for this production mode. 

All the observations on the existing cost models, and the 

synthesis of their strengths and weaknesses, can lay the 

foundations to define and build a new cost model that will 

help solve the open issues analysed here. 

 

COST ANALYSIS MODEL INTRODUCTION 

The AM process includes several activities characterized 

by different cost items, and for this reason, our model 

calculates the unit cost per part, including support 

structures, by summing costs of each process step. 

In this section, we introduce MiProCAMAM (Mixed 

Production Cost Allocation Model for Additive 

Manufacturing). Before analysing MiProCAMAM, we 

list its highlights as follows:  

 The structure and the coating time allocation 

algorithm of the type proposed by Rickenbacher et al. 

( Rickenbacher et al., 2013) is re-used, even if 

changed in several parts. 

 Possibility to calculate unit cost in case of production 

of different geometry in the same build job. 

 The build time estimator of the type devised by 

Baumers et al. (Baumers et al., 2012) is the starting 

point for our work. 

 Models including pre- and post-processes activities 

like geometry preparation, build job assembly, 

machine setup, parts and substrate plate removal are 

considered. 

 Post-processing activities such as thermal and surface 

treatments, material removal and quality control are 

considered but neglected in the cost calculation. A 

single mathematical formulation for all possible post 

processing could not be exhaustive and out of the 

scope of the present paper, which aims to analyse 

cost of production of a part manufactured with the 

AM.    

 The operator hourly cost is based on different skills 

required for each step. 

 Computation of the effect of material change and 

additional work of using an inert gas during the 

building step ( Rickenbacher et al., 2013) are 

included in the general calculation. 

 Introduction of a waste factor for powder, to consider 

the possibility of re-using a part of the powder, used 

in the production. 

 Time consumption estimator is modified by the 

Overall Equipment Effectiveness (OEE), to let the 

estimator better assess the effective production rate. 

We identify, for a generic AM process, 5 process steps:  

 Preparation; 

 Build job; 

 Setup; 

 Building; 

 Removal. 

Afterwards, we will analyse each of them and define their 

unit cost per part with ith geometry. 

MiProCAMAM allows for the calculation of the unit cost 

of different geometries (𝐺𝑖), with their quantity (𝑁𝑖), in 

the same build job.  

MODEL FORMULATION 

Let us introduce the new model presented here. In Error! 
Reference source not found., the MiProCAMAM 

method structure is shown: Process & geometries 

information are the input information; Build time 



estimator and Cost calculator sections are the 

computational part of the model and Process times and 

performances and Production cost are the output of the 

model. Afterwards, we show the mathematical 

formulation of the computational parts and structure of 

the Cost calculation tool developed. 

  

 

Figure 1: MiProCAMAM structure 

 

Before describing the approach used to calculate the 

production cost, it is worth making some considerations 

about the building time. We have to specify that this 

study’s aim is not to define a build time estimator for AM 

technologies, but to create a valid tool for the production 

cost estimator. A build time estimator is presently 

included in many of the AM machines or software 

solutions, respectively (Rickenbacher et al., 2013); 

moreover, several authors proposed methods to 

approximate the building time (Byun and Lee *, 2005; 

Pham and Wang, 2000; Ruffo et al., 2006b). For this 

reason, in our cost model an existing approach of other 

authors who focused their attention on the building time 

calculation theme will be used. 

Total build time 

Because different cost items are involved in each AM 

production phase, it is necessary to define the duration of 

each of them to correctly allocate costs on each part of the 

build job. The total build time is obtained by summing the 

four time consumption phases: 

 Warm up; 

 Scanning; 

 Coating; 

 Cool down. 

 

𝑇𝑏𝑢𝑖𝑙𝑑(𝐺𝑖) = (𝑊. 𝑢𝑝(𝐺𝑖) + 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔(𝐺𝑖)

+ 𝐶𝑜𝑎𝑡𝑖𝑛𝑔(𝐺𝑖)

+ 𝐶. 𝑑𝑜𝑤𝑛(𝐺𝑖)) ∗
1

𝑂𝐸𝐸
 

(7) 

where 

𝑇𝑏𝑢𝑖𝑙𝑑: Total building time [h]. 

𝐺𝑖: ith geometry [-]. 

𝑊. 𝑢𝑝: Warm up time [h]. 

𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔: Scanning time [h]. 

𝐶𝑜𝑎ting: Coating time [h]. 

𝐶. 𝑑𝑜𝑤𝑛: Cool down time [h]. 

𝑂𝐸𝐸: Overall equipment effectiveness [%]. 

 

Warm up, cool down and coating phases are fixed time 

consumption steps for each build job: coating time 

depends on the number of layers involved, and warm up 

and cool down depend on machine settings. The only 

active phase during the building is the scanning one. In 

this phase, the machine adds material to each object slice. 

All time consumption phases are adapted by considering 

the OEE index. Older cost models and build time 

estimators only considered the uptime of the machine, 

neglecting, for example, performance and quality losses. 

Nakajima and Bodek, 1988 defined six big losses that can 

have a negative impact on a manufacturing process:  

 Planned Downtime and Breakdowns that impact 

the Availability of the system; 

 Minor Stops and Speed Loss that impact system 

Performances; 

 Production Rejects and Rejects on Start-up that 

impact quality of the products.  

These disturbances can be chronic or sporadic according 

to their frequency of occurrence (Patrik Jonsson and 

Magnus Lesshammar, 1999). Similar to all manufacturing 

systems or sub-systems, AM is also affected by losses and 

disturbances, although two of the six losses defined for 

generic manufacturing systems do not impact AM: speed 

loss and rejects on start up.  

In a conventional manufacturing system, speed losses 

depend on the theoretical cycle time and actual cycle 

time. AM processes, instead, are not affected by these 

kinds of losses because the cycle time is always the 

theoretical one set before beginning the work (i.e. warm-

up time, coating time and scan speed). 

Also rejects on start-up do not affect AM. Additive 

processes, in fact, have no transitory phases in which 

production quality is lower. Like conventional 

manufacturing systems, AM is also affected by losses 

like: planned downtime, breakdowns, minor stops and 

production rejects. 

Even if we assume an impact of OEE on the AM process, 

this paper does not aim to develop a specific 

mathematical formulation of the OEE calculation. 
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Generic formulation to adapt ideal time consumption by 

considering OEE impact is as provided below: 

𝑇𝑟𝑒𝑎𝑙 =
𝑇𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑂𝐸𝐸
 

 

(8) 

Previous formulation is valid also for Setup step (𝑇𝑠𝑒𝑡𝑢𝑝), 

Build job assembly step (𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏) and Removal step 

(𝑇𝑟𝑒𝑚𝑜𝑣𝑎𝑙). 

This cost model provides an analytical computation for 

Setup time and its cost. For this reason, in OEE 

computation, we have to neglect the effect that impacts 

Planned Downtime. 

 

Warm-up time 

Warm-up time is the fixed time consumption for each 

build that is necessary to warm-up the chamber of the 

machine and generate correct atmospheric conditions 

before starting the building step. Allocation criterion of 

warm-up time is the volume of the part: 

𝑊. 𝑢𝑝(𝐺𝑖) = 𝑊. 𝑢𝑝. 𝑏𝑢𝑖𝑙𝑑 ∗
𝑉(𝐺𝑖)

∑ 𝑉(𝐺𝑖) ∗ 𝑁𝑖𝑖

 

 

(9) 

where 

𝑊. 𝑢𝑝: Warm-up time [h]. 

𝑊. 𝑢𝑝. 𝑏𝑢𝑖𝑙𝑑: Build warm-up time [h]. 

𝐺𝑖:  ith geometry [-]. 

𝑉: Volume of the geometry [cm
3
] 

𝑁𝑖: Quantity of part with ith geometry [-] 

 

Scanning time 

Scanning time is the time spent to aggregate the powder 

following the coating phase of each layer. To define the 

length of this time we use a parameter (𝑎) that represents 

the average time to scan a unit area. This parameter, 

dependent on many machine parameters (such as beam 

diameter, hatch and laser speed), is obtained from a least 

squares regression of the time consumption data recorded 

during the deposition of each layer, using the area 

scanned per layer as the independent variable (Baumers et 

al., 2013). Although regression is an approximation of 

recorded data, we decided to use Baumers et al. approach 

for its effectiveness. 

Scanning time also depends on the number of layers to 

realise and the average cross section of the part. The 

number of layers is obtained by dividing the height of the 

part and layer thickness. In this model, we assume that 

layer thickness is fixed. The average cross section is 

obtained by dividing part volume and its height. The 

calculation mode of scanning times makes no necessary 

allocation for criteria at this time for a single part. 

𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔(𝐺𝑖) =
𝑁𝐿(𝐺𝑖) ∗ 𝐴𝑣. 𝑐𝑠(𝐺𝑖) ∗ 𝑎

3600
 

 

(10) 

where 

𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔: Scanning time [h]. 

𝐺𝑖: ith geometry [-]. 

𝑁𝐿: Number of layers [-]. 

𝐴𝑣. 𝑐𝑠: Average cross section [mm
2
]. 

𝑎: Time to scanning unit area [s/mm
2
]. 

 

𝑁𝐿(𝐺𝑖) =
ℎ(𝐺𝑖)

𝑙𝑡
 

 

(11) 

and   

𝐴𝑣. 𝑐𝑠(𝐺𝑖) =
𝑉(𝐺𝑖)

ℎ(𝐺𝑖)
∗ 1000 

 

(12) 

where 

𝑁𝐿: Number of layers [-]. 

𝐺𝑖: ith geometry [-]. 

ℎ: Height of the geometry [mm]. 

𝑙𝑡: Layer thickness [mm]. 

𝐴𝑣. 𝑐𝑠: Average cross section [mm
2
]. 

𝑉: Volume of the geometry [cm
3
]. 

 

Coating time 

 

For the definition of 𝐶𝑜𝑎𝑡𝑖𝑛𝑔(𝐺𝑖) see Coating time 

allocation section. 

 

Cool down time 

Cool down time is the fixed time consumption for each 

build necessary to cool down objects and the machine 

chamber before the removal step. The duration of this 

phase directly impacts the mechanical characteristics of 

the objects realized. The allocation criterion of the cool 

down time is the volume of the part. Its formulation is the 

same as defined for ‘Warm-up time’. 

 

Coating time algorithm 

Coating time is the time spent to add powder on each 

layer of the build job, and it has to be allocated according 

to the height of each part. If all parts in the build job have 

the same height, allocation would be easily realise: it 

would be correct to allocate the time consumption equally 

on each part. In the case of building parts with different 

heights, the best solution it is to use the following 

algorithm developed by Rickenbacher et al. 

(Rickenbacher et al., 2013): 

1. Ordering of the parts by increasing height. 

2. Calculation of the time fraction resulting from the 

amount of layers up to the smallest part height and 

dividing it equally among all parts. Another approach 

would be to divide it in proportion to the 

corresponding cross-section. This would require a 

layer-wise analysis of each part resulting in a more 

complex algorithm inappropriate for industrial use. 

Therefore, the first approach was chosen. 

3. Choosing the next taller part. 



4. Calculation of the time for the remaining part of the 

element that has to be printed, after the smallest one. 

5. Division of the calculated time equally on all parts 

with a part height equal to or greater than the actual 

part’s height. 

6. Repetition of steps 3–5 until all the parts are 

processed. 

Coating time allocation 

In their paper, Rickenbacher et al., 2013 defined the 

algorithm to calculate the time fraction for each part 

without writing its mathematical formulation. This section 

aims to define it. 

First, we have to define 𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑏𝑢𝑖𝑙𝑑 that is the total 

coating time of the build that depends on the following 

aspects:  

 Maximum height of the parts in the build;  

 Layer thickness: 

 Coating time for each layer.  

As for the scanning time calculation, we decided to use 

Baumers et al., 2013 approach to define the coating time 

for each layer (𝑏). 

Subsequently, we have to define the 𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑟𝑎𝑡𝑖𝑜𝑘, that 

is, the time fraction of the total coating time for allocation 

to each class of the different heights of parts in the 

chamber. Example in Error! Reference source not 
found. shows three classes of height (𝑘 = 3).  

Finally, we are able to define 𝐶𝑜𝑎𝑡𝑖𝑛𝑔(𝐺𝑖), that is, the 

coating time, for each geometry, obtained by summing  

all the classes of different heights, the ratio between 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑟𝑎𝑡𝑖𝑜𝑘  and the number of parts, for each 

geometry, present in the k-class.  

𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑏𝑢𝑖𝑙𝑑 =
ℎ. 𝑚𝑎𝑥

𝑙𝑡
∗

𝑏

3600
 

 

(13) 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑟𝑎𝑡𝑖𝑜𝑘 = 𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑏𝑢𝑖𝑙𝑑

∗
ℎ𝑘 − ℎ𝑘−1

ℎ𝑚𝑎𝑥

 

 

(14) 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔(𝐺𝑖) = ∑
𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑟𝑎𝑡𝑖𝑜𝑘

𝑛. 𝑖𝑛𝑣𝑘

𝑛.𝑐𝑙𝑎𝑠𝑠

1

 

 

(15) 

where 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑏𝑢𝑖𝑙𝑑: Build coating time [h].  
ℎ. 𝑚𝑎𝑥: Maximum height among all the 

  geometries in the build [mm]. 

𝑏: Coating time for each layer [s]. 

𝑙𝑡: Layer thickness [mm]. 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔. 𝑟𝑎𝑡𝑖𝑜𝑘:  Time fraction of coating ratio for 

each   

  class of different height [h]. 

𝑘: Class of different heights of the  

  geometries in the build [-]. 

ℎ𝑘: Height of each geometry sorted in  

  ascending order [mm]. 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔(𝐺𝑖): Coating time for each geometry [h]. 

𝑛. 𝑐𝑙𝑎𝑠𝑠: Number of different heights (classes)   

  of the geometries [-]. 

𝑛. 𝑖𝑛𝑣𝑘: Number of parts, for each geometry,  

  present in the k-class [-]. 

 

 
Figure 2: Simultaneous build-up of multiple parts with 

different heights (adapted by Rickenbacher) 

 

Completion time  

One of the innovative characteristics of this work is the 

definition of the completion time for each geometry. In 

this section we define it as the sum of the following 

aspects: 

 Build job assembly time necessary to arrange all 

parts into a build job; 

 Setup time; 

 Total build time obtained by summing Warm-up, 

Scanning, Coating and Cool-down times; 

 Removal Time necessary to remove objects and 

substrate plate from the machine chamber. 

Substrate plate and support structures removal are typical 

AM steps to realize once the building phase is completed. 

In some cases, it could be necessary to realize further post 

processing work, such as thermal treatments or material 

removal. Rickenbacher et al. (Rickenbacher et al., 2013) 

included these phases in their cost model using a generic 

and non-exhaustive formulation of time and costs 

involved, grouping in a single cost item of all possible 

post-processing steps. We think, because of the 

heterogeneity of the post processing steps and the 

machines involved in these steps, it is correct to neglect 

these phases in the cost model and allocate their costs 

subsequently. This work’s objective, in fact, is to 

calculate the times and production costs of AM, that is, a 

single production process phase to achieve a finished 

product. 

In the formulation defined, completion time is rounded up 

to include a superior integer:  

𝐶(𝐺𝑖) = ⌈(𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 + 𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑇𝑟𝑒𝑚𝑜𝑣𝑎𝑙

+ ∑ 𝑇𝑏𝑢𝑖𝑙𝑑(𝐺𝑖)
𝑖

)

∗
1

𝑁𝑤𝑠 ∗ 𝐻𝑤𝑠

⌉ 

 

(16) 



where 

 

𝐶: Completion time [days]. 

𝐺𝑖:  ith geometry [-]. 

𝑇𝑠𝑒𝑡𝑢𝑝: Time required for machine setup [h]. 

𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏  Time required for build job assembly [h]. 

𝑇𝑏𝑢𝑖𝑙𝑑: Total building time [h].  

𝑇𝑟𝑒𝑚𝑜𝑣𝑎𝑙: Time required for removing parts from the   

  machine chamber [h]. 

𝑂𝐸𝐸: Overall equipment effectiveness [%]. 

 𝑗: jth post-processing working. 

𝑁𝑤𝑠: Number of work shifts per day [-/day]. 

𝐻𝑤𝑠: Number of hours for each work shifts [h]. 

 

COST CALCULATOR 

Total manufacturing cost 

Total manufacturing cost, for each geometry, is obtained 

by summing the cost of each step:  

𝐶𝑡𝑜𝑡(𝐺𝑖) = 𝐶𝑝𝑟𝑒𝑝(𝐺𝑖) + 𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝐺𝑖)

+ 𝐶𝑠𝑒𝑡𝑢𝑝(𝐺𝑖) + 𝐶𝑏𝑢𝑖𝑙𝑑(𝐺𝑖)

+ 𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙(𝐺𝑖) 

 

(17) 

where 

𝐶𝑡𝑜𝑡: Total manufacturing cost of each part with 

ith  

  geometry [€/part].  

𝐺𝑖: ith geometry [-]. 

𝐶𝑝𝑟𝑒𝑝: Cost for preparing geometry data 

(orientation,  

                   support structures, etc.) [€/part]. 

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏: Cost for build job assembly [€/part]. 

𝐶𝑠𝑒𝑡𝑢𝑝: Machine setup costs [€/part]. 

𝐶𝑏𝑢𝑖𝑙𝑑: Cost for building up a part with ith geometry  

  [€/part]. 

𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙: Cost for removing the part with ith geometry  

  from the machine chamber [€/part]. 

 

Cost for preparing geometry data 

The preparing geometry data step includes orientation and 

support structure generation for each geometry. Its total 

cost is allocated by dividing the total preparation cost of 

each geometry and its related quantity: 

𝐶𝑝𝑟𝑒𝑝(𝐺𝑖) = (𝐶𝑜𝑝.𝑝𝑟𝑒 + 𝐶𝑃𝐶) ∗
𝑇𝑝𝑟𝑒𝑝(𝐺𝑖)

𝑁𝑖

          
(18) 

 

where 

𝐶𝑝𝑟𝑒𝑝: Cost for preparing geometry data (orientation,  

                   support structures, etc.) [€/part]. 

𝐺𝑖: ith geometry [-]. 

𝐶𝑜𝑝.𝑝𝑟𝑒: Pre-processing operator’s hourly rate [€/h]. 

𝐶𝑃𝐶: Hourly rate of the workstation including costs       

   of required software and tools [€/h]. 

𝑇𝑝𝑟𝑒𝑝: Time required for preparing CAD data [h]. 

𝑁𝑖; Quantity of the part with ith geometry [-] 

 

Cost for building job assembly 

In the build job assembly, the step operator arranges all 

the parts into one build job. Rickenbacher et al. allocated 

this cost equally between all parts; we think it is more 

accurate to use the parts volume like the allocation 

criteria: 

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏(𝐺𝑖) = 𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏 ∗ (𝐶𝑜𝑝.𝑝𝑟𝑒 + 𝐶𝑃𝐶)

∗
𝑉(𝐺𝑖)

∑ 𝑉(𝐺𝑖) ∗ 𝑁𝑖𝑖

 

(19) 

where 

𝐶𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏: Cost for build job assembly [€/part]. 

𝐺𝑖: ith geometry [-]. 

𝑇𝑏𝑢𝑖𝑙𝑑𝑗𝑜𝑏: Time required for build job assembly [h]. 

𝐶𝑜𝑝.𝑝𝑟𝑒: Pre-processing operator’s hourly rate [€/h]. 

𝐶𝑃𝐶: Hourly rate of the workstation including costs       

   of required software and tools [€/h]. 

𝑉: Volume of the geometry [cm
3
]. 

𝑁𝑖: Quantity of part with ith geometry [-]. 

Machine setup costs 

This step includes the data import and machine setup 

phases. During this time, the machine cannot be used, and 

for this reason, we included its hourly cost. Also in this 

case we used the parts volume like the allocation criteria: 

𝐶𝑠𝑒𝑡𝑢𝑝(𝐺𝑖) = (𝐶𝑜𝑝.𝑚𝑎𝑐ℎ + 𝐶𝑚𝑎𝑐ℎ)

∗ (𝑇𝑠𝑒𝑡𝑢𝑝

+ (𝐹𝑚𝑎𝑡.𝑐ℎ ∗ 𝑇𝑚𝑎𝑡.𝑐ℎ))

∗ 𝐹𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠  ∗
𝑉(𝐺𝑖)

∑ 𝑉(𝐺𝑖) ∗ 𝑁𝑖𝑖

 

(20) 

where 

𝐶𝑠𝑒𝑡𝑢𝑝: Machine setup costs [€/part]. 

𝐺𝑖: ith geometry [-]. 

𝐶𝑜𝑝.𝑚𝑎𝑐ℎ: Machine operator’s hourly rate [€/h]. 

𝐶𝑚𝑎𝑐ℎ: Machine cost per hour [€/h]. 

𝑇𝑠𝑒𝑡𝑢𝑝: Time required for machine setup [h]. 

𝐹𝑚𝑎𝑡.𝑐ℎ: Factor to model the frequency of material  

  changes [-]. 

𝑇𝑚𝑎𝑡.𝑐ℎ: Time required to change material [h]. 

𝐹𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠: Factor to model extra effort required for 

  handling in protective gas environment [-]. 

𝑉: Volume of the geometry [cm
3
]. 

𝑁𝑖: Quantity of part with ith geometry [-] 

 

Previous formulations also include a factor to consider the 

effort of extra work in the case of using protective gas 

(𝐹𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠). Its value can either be 1 or 0. The factor to 

consider the additional time needed to change material 

(𝐹𝑚𝑎𝑡.𝑐ℎ) can either be 1 or 0, if there is a material change 

or not, respectively, to assign its cost directly to the build 

job. Furthermore, if the costs have to be divided on more 

build jobs, a fraction can be used in the formulation. For 



example, we can set it on 0.1 if we change the material 

every 10 build jobs. Previous factors are, typically, 

production losses included in OEE formulation. In this 

cost model we decided to provide an explicit formulation 

in order to give more accuracy of their impact on 

production timing. Clearly, to avoid overestimates, their 

effect is not included in OEE computation because they 

are included in the cost model. 

Machine cost per hour is obtained by dividing the 

machine purchase cost by the machine depreciation 

period and its uptime per year: 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒 =
𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑜𝑠𝑡

ℎ ∗ 𝑢𝑝𝑡
 

(21) 

 

where 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑒: Machine cost per hour [€/h]. 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑜𝑠𝑡: Machine purchase cost [€]. 

ℎ: Machine depreciation period [years]. 

𝑢𝑝𝑡: Machine uptime [hours/year]. 

 

Cost for building up a part 

The building step is the active phase of production. In this 

step, the machine concurrently builds all of the parts in 

the chamber. Cost items involved are:  

 Machine; 

 Energy; 

 Material; 

 Gas. 

Building cost formulation also includes a waste factor for 

powder. 

𝐶𝑏𝑢𝑖𝑙𝑑(𝐺𝑖) = 𝑇𝑏𝑢𝑖𝑙𝑑(𝐺𝑖)

∗ (𝐶𝑚𝑎𝑐ℎ + 𝐶𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠

∗ 𝐺𝑎𝑠𝑐𝑜𝑛𝑠 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝑃𝑐𝑜𝑛𝑠

∗ 𝐾𝑢) + 𝑀(𝐺𝑖) ∗ (𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

∗ 𝑊𝑓) 

(22) 

 

where 

𝐶𝑏𝑢𝑖𝑙𝑑: Cost for building up a part with ith geometry 

  [€/part]. 

𝐺𝑖: ith geometry [-]. 

𝑇𝑏𝑢𝑖𝑙𝑑: Total building time [h]. 

𝐶𝑚𝑎𝑐ℎ: Machine cost per hour [€/h].  
𝐶𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠: Cost of inert gas [€/m

3
]. 

𝐺𝑎𝑠𝑐𝑜𝑛𝑠: Average gas consumption [m
3
/h]. 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦: Mean energy cost [€/kWh]. 

𝑃𝑐𝑜𝑛𝑠: Power consumption [kW]. 

𝐾𝑢: Utilization factor [-]. 

𝑀: Mass of the geometry [kg]. 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙: Material costs [€/kg]. 

𝑊𝑓: Waste factor for powder [-]. 

 

 

Cost for removing a part from the machine 

After finishing the building job it is necessary to remove 

the objects and the substrate plate from the machine 

chamber. Also in this case we included a factor to model 

the extra time effort for handling in a protective gas 

environment. The allocation criteria of this cost is based 

on parts volume: 

 

𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙(𝐺𝑖) = 𝑇𝑟𝑒𝑚𝑜𝑣𝑎𝑙

∗ (𝐶𝑜𝑝.𝑚𝑎𝑐ℎ + 𝐶𝑚𝑎𝑐ℎ)

∗
𝑉(𝐺𝑖)

∑ 𝑉(𝐺𝑖) ∗ 𝑁𝑖𝑖

∗ 𝐹𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠  

(23) 

 

where 

𝐶𝑟𝑒𝑚𝑜𝑣𝑎𝑙: Cost for removing the part with ith geometry 

  from the machine chamber [€/part]. 

𝐺𝑖: ith geometry [-]. 

𝑇𝑟𝑒𝑚𝑜𝑣𝑎𝑙: Time required for removing parts from the   

  machine chamber [h]. 

𝐶𝑜𝑝.𝑚𝑎𝑐ℎ: Machine operator’s hourly rate [€/h]. 

𝐶𝑚𝑎𝑐ℎ: Machine cost per hour [€/h]. 

𝑉: Volume of the geometry [cm
3
]. 

𝑁𝑖: Quantity of part with ith geometry [-] 

𝐹𝑖𝑛𝑒𝑟𝑡𝑔𝑎𝑠: Factor to model extra effort required for 

  handling in protective gas environment [-]. 

 

COST CALCULATION TOOL 

MiProCAMAM has been developed in a mixed Excel
®

-

Matlab
®
 environment. In the Excel

®
 part of the model we 

set all input information regard machine, material, objects 

geometries, labour costs etc. The Matlab
®
 scripts, that 

represent the calculation and output area of the model, are 

composed by four sections (see Figure 3): 

 

1. Data import to import all process information 

from Excel
®
 sheets in the Matlab

®
 Workspace.  

2. Build time estimator; 

3. Cost calculator; 

4. Build report. 

 



 

Figure 3: Tool structure 

 

Build time estimator and Cost calculator scripts also show 

four performance indexes of the process. Their simple 

formulations, joined with their strengths, make them very 

useful to measure AM processes. 

 

Build rate 

Build rate is the ratio between the Build volume and the 

Total build time. It measures the volume deposed in a unit 

time: 

𝐵𝑢𝑖𝑙𝑑 𝑟𝑎𝑡𝑒 =
𝐵𝑢𝑖𝑙𝑑 𝑣𝑜𝑙.

𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑖𝑙𝑑 𝑡𝑖𝑚𝑒
 

 

(24) 

 

Capacity utilization 

Capacity utilization is the ratio between the volume of the 

entire build and the chamber volume: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑢𝑡𝑖𝑙. =
𝐵𝑢𝑖𝑙𝑑 𝑣𝑜𝑙.

𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑣𝑜𝑙.
∗ 100 

 

(25) 

 

Capacity utilization adapted 

Capacity utilization adapted has the same structure of 

Capacity utilization previously defined but, the 

denominator is multiplied for the ratio ℎ𝑏𝑢𝑖𝑙𝑑/ℎ𝑐ℎ𝑎𝑚𝑏𝑒𝑟 . 

This formulation, proposed by Baumers et al., 2011, is 

useful to consider the effect of the height occupied in the 

chamber of the machine: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 𝑢𝑡𝑖𝑙. 𝑎𝑑𝑎𝑝𝑡𝑒𝑑 

=
𝐵𝑢𝑖𝑙𝑑 𝑣𝑜𝑙.

𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑣𝑜𝑙.∗
ℎ𝑏𝑢𝑖𝑙𝑑

ℎ𝑐ℎ𝑎𝑚𝑏𝑒𝑟

∗ 100 

 

(26) 

 

Specific build cost 

It is the ratio between the Total build cost and the Build 

volume. It measures the cost of a unit of volume: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡

𝐵𝑢𝑖𝑙𝑑 𝑣𝑜𝑙.
 

 

(27) 

Specific build cost is one of the most important outputs of 

this cost model because it allows us to analyse cost 

performance of the entire build.  

 

RESULTS 

In order to validate MiProCAMAM in a mixed 

production case, we will use information provided by 

Baumers in his doctoral thesis (Baumers, 2012). In the 

B01 experiment (Figure 4), he built, contemporary, 85 

stainless steel objects using an Eos Eosint M270 machine: 

 Venturi pipe (69 parts); 

 End cap (1 part); 

 Belt link (8 parts); 

 Turbine wheel (5 parts); 

 Bearing block (2 parts). 

 

 

Figure 4: Full build configuration, basket parts (image 

source: Baumers) 

 

Figure 5: Venturi pipe (image source: Baumers) 

  

Figure 6: End cap (image source: Baumers) 

Data  
import 

•Process&parts information  
reading from Excel® sheets  

Build time 
estimator 

•Process performances  
summary for each part 

Cost 
calculator 

•Costs detail for each process 
 step and for each geometry 

•Cost detail of CBUILD step  

Final Build 
report 

•Times, costs, configuration  
and performances report  
for the entire build 



 

Figure 7: Belt link (image source: Baumers) 

 

Figure 8: Turbine wheel (image source: Baumers) 

 

Figure 9: Bearing block (image source: Baumers) 

The output of the Build time estimator script (Table 1) 

shows a report of the geometric characteristics, quantity 

and time consumption phases for each geometry. 

The output of the Cost calculator script (Table 2) shows a 

cost detail for each of the 5 process steps defined and for 

each geometry. Furthermore, in Table 3 we report a detail 

of the active building step (CBUILD row in Table 2).  

Table 4 shows a report of characteristics, times, costs and 

performances of the entire build.

 

 

Table 1: Build time estimator Output 

 

 

Table 2: Cost calculator Output 



 

 

Table 3: Building costs detail (CBUILD) 

 

 

Table 4: Build report 

 

AM processes are characterized by fixed time 

consumption elements for each build: warm-up, coating 

and cool down. Also Preparation, Build job assembly, 

Setup and Removal costs are fixed elements for each 

build. With this mind, by increasing the number of parts 

built concurrently, it is possible to have a lower impact of 

these fixed cost items simply by dividing them between 

more objects.  

The previous statement is widely accepted in all previous 

cost models analysed, but we have to underline an 

important aspect related to AM times. As seen in the 

previous example, even if high Capacity utilization has a 

positive impact on production costs, the Total build time 

is very high (about 117 hours); capacity utilization and 

total build time are directly related. In a conventional 

production environment, beyond production costs, it is 

important to respect the due dates of products. For this 

reason, filling  a machine chamber (maximizing Capacity 

utilization) could not be the only rule in the Build job 

assembly step. Companies, in fact, could accept lower 

performances from the economic point of view, in order 

to respect the due dates. Furthermore, MiProCAMAM is 

generally valid at both high and low capacity utilization.  

Figure 10 shows a strong impact (more than 80%) of the 

Scanning time on the Total Build Time, but another 

important observation is related to Coating time. This 

fixed time consumption element is related to the height of 

the objects. For example, above it affects, on average, 

about 8% of the Total build time. As stated by 

Rickenbacher et al. the Coating time algorithm ‘suggests 

optimizing the use of building space by simultaneously 

building up as much geometries with similar part heights 

as possible’. This approach is an effective way to 

minimize production costs through optimizing utilization 

of deposited layers. 

 

Figure 10: Time consumption for each part 

 

In Figure 11 we can see the high impact of the CBUILD 

step, except for the ‘end cap’. In this case we observe a 

strong impact of Preparation costs (about 75%) due to the 

allocation of the total cost item on a single part. Despite 

only two parts being produced, bearing blocks are not 

affected by high preparation costs because their cost is 

higher than that of the end cap. 
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Figure 11: Cost composition for each part 

Due to the high Machine hourly cost, the Building step 

(CBUILD) cost has a large impact on the Total build cost 

(about 75%). In Figure 12 we report a detail of this cost 

item: machine cost affects about 75%. 

 

 

Figure 12: CBUILD detail 

Table 5 shows our model unit costs, for each geometry, 

compared with the Baumers ones. As we can see we have 

higher unit costs (37% for the entire build) due to 

Preparation, Build job, Setup and Removal steps, 

neglected by Baumers. If we consider the active building 

step (CBUILD), deviations are lower (17%).  

To better understand the differences in the cost structure 

between MiProCAMAM and Baumers’ model, a 

summary of the single cost items considered in both 

models  is shown in Table 6 .  

Even if the cost items included in our CBUILD (gas, 

energy, material and machine) step are not the same as 

included in the Baumers et al., 2016 cost model, it is 

nevertheless possible to compare MiProCAMAM with 

the Baumers’ one. In fact, in Table 5 they reported the 

deviations of each product cost. It is worth noting that we 

have always had an increase of the costs, due to the fact 

that MiProCAMAM considers phases not eliminable such 

as all the pre- and post-processing of the build, the OEE 

and a different costs allocation policy. So, it is important 

to see MiProCAMAM as an evolution of the previous 

ones and not as an alternative to them.

 
  

Venturi 

pipe 
End cap Belt link 

Turbine 

wheel 

Bearing 

block 

Total 

build 

Total part 

cost 

Baumers [€]* 7.25 13.35 125.51 155.94 730.96 3759.63 

MiProCAMAM [€] 14.90 66.02 164.84 200.19 875.19 5164.16 

dev [%] 105% 394% 31% 28% 20% 37% 

Building 

cost 

CBUILD [€] 12.42 14.63 145.58 164.03 774.44 4405.28 

dev [%] 71% 10% 16% 5% 6% 17% 

Table 5: Cost comparison for Baumers B01 experiment  

*€/£= 0,85608 

Baumers MiProCAMAM 

Direct costs 

 Material 

Preparation 

• Operator 

 Energy • PC 

Indirect Costs 

 Production overhead 

Build job assembly 

• Operator 
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CBUILD CREMOVAL

GAS 
COST 

8% 

ENERGY 
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3% 

MATERIA
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14% 

MACHIN
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75% 



 Rent, building area 

costs 

 Administration  

Overhead 

 Hardware 

 Software 

 Consumables 

 Labour costs 

 Machine costs 

 DMLS Machine 

 Wire erosion 

machine 

 

• PC 

Setup 

• Operator 

• Machine 

• F. inert gas 

• F. material change 

Building 

• Machine 

• Gas 

• Energy 

• Material 

• Waste factor 

Removal 

• Operator 

• Machine 

• F. inert gas 

Table 6: Costs structures comparison 

 

CONCLUSIONS  

MiProCAMAM allows for the analysis of production 

costs, for each step, in the case of building up various 

geometries simultaneously. This possibility is one of the 

strengths of AM technologies. Production costs analysis, 

for each step and for each geometry, allows identification 

of factors that are the most cost-influencing. 

MiProCAMAM structure allows adapting to various 

additive technologies and materials, simply by setting the 

right process parameters. 

As stated in the initial part of this paper, this work aims to 

define cost models for AM that include strengths of older 

cost models and avoid their weaknesses. None of the 

existing cost models analyses AM from an operations 

management point of view. They measure additive 

systems performances as separate from the production 

systems in which they work: OEE, production mix, 

completion time etc. are not taken into account. For 

example, the hypothesis of large scale production is made 

considering the production volume of an AM machine, 

with no attention to the general market demand. 

Moreover, the hypothesis of cost reduction by increasing 

the capacity utilization of the chamber may be in contrast 

with the delivery time; if a delivery has to be performed, 

it is not possible to wait for the saturation achievement.  

If we want to measure a single process phase, it is correct 

to consider only the additive processes; however, with an 

integration point of view of AM in a conventional 

production system, we think that it is correct to increase 

the number of aspects to analyse. 

One of MiProCAMAM’s steps forward is the definition 

of the completion time. This way we are able to estimate 

how much time is necessary, for each part, to complete 

the production evaluating Build job assembly time, Setup 

time, Total build time and Removal Time. Furthermore, 

the introduction of Overall Equipment Effectiveness in 

completion time calculation focuses our attention on a 

conventional production system environment, taking into 

account the availability, performance and quality losses. 

A weakness of this cost model is related to the 𝑎 and 𝑏 

parameters used to define the scanning and the coating 

time. According to Baumers et al., 2013 they can be 

obtained from a least square regression model on 

measured building time for several layers. Their values 

cannot be obtained from the start, but they have to be 

measured during the process or obtained from historical 

data. 

Defining a cost model is the first step before analysing 

AM from an operations manager point of view. The next 

step is to understand cost performances of AM when it 

works in a conventional production system where we 

have to, for example, satisfy the market demand and  

respect delivery time while optimising production costs.  

In this context we have to analyse the scheduling problem 

of AM. Furthermore, we need future OEE computations. 

MiProCAMAM allows for a better understanding of AM 

performances in terms of costs and times. Also, the 

performance indexes cited, OEE and completion time, 

have an important function because they shift the focus on 

a wider approach to contextualize AM in a conventional 

production environment. 
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