A New Mode of Operation for Block Ciphers and Length-Preserving MACs

Yevgeniy Dodis
New York University
Krzysztof Pietrzak
CWI Amsterdam
Prashant Puniya
New York University

April 15, 2008

Modes of Operation

Construction of a Variable Input Length (VIL) primitive from a Fixed Input Length (FIL) primitive.

- VIL primitives: MAC, PRF, Random Oracle (RO),
- FIL primitive(s): by far, most dominant is a block-cipher.
- well understood, standardized (AES).
- directly used in the CBC mode.
- indirectly used in the Merkle-Damgård (MD) mode: the compression function of SHA/MD5 is instantiated via Davies-Myers $h(x, y)=E_{x}(y) \oplus y$.
Subject of this talk: building VIL-primitives from block ciphers (more generally, length-preserving functions).

A mode of operation for block-ciphers?

Construction $C[f]$, based on a block-cipher f, should be:

- Efficient: no re-keying, constant rate.
- MAC preserving: $C[f]$ is a VIL-MAC if f is a FIL-MAC.
- PRF preserving: $C[f]$ is a VIL-PRF if f is a FIL-PRF.
- RO preserving: $C[f]$ is indifferentiable from a VIL-RO if f is a FIL-RO.
- in particular, $C[f]$ is collision-resistant (if f is a FIL-RO).

What about existing constructions?

CBC Mode

Good News:

Bad News:

CBC Mode

Good News:

- PRF preserving [BKR94]: if f is a PRF then $C B C[f]$ with prefix-free encoding is a VIL-PRF.
Bad News:

CBC Mode

Good News:

- PRF preserving [BKR94]: if f is a PRF then $C B C[f]$ with prefix-free encoding is a VIL-PRF.
Bad News:
- $C B C[f]$ is not always a MAC, even if f is a MAC [AB'99].

CBC Mode

Good News:

- PRF preserving [BKR94]: if f is a PRF then $C B C[f]$ with prefix-free encoding is a VIL-PRF.
Bad News:
- $C B C[f]$ is not always a MAC, even if f is a MAC [AB'99].
- $C B C[f]$ is never collision resistant, for any f.

CBC Mode

Good News:

- PRF preserving [BKR94]: if f is a PRF then $C B C[f]$ with prefix-free encoding is a VIL-PRF.
Bad News:
- $C B C[f]$ is not always a MAC, even if f is a MAC [AB'99].
- CBC[f] is never collision resistant, for any f.
- In particular, $C B C[f]$ is not a VIL-RO if f is a FIL-RO.

Merkle-Damgård Mode

"Plain Merkle-Damgård" $M D[f]:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$. Uses a compression function $h:\{0,1\}^{n+t} \rightarrow\{0,1\}^{n}$.

Merkle-Damgård Mode

"Plain Merkle-Damgård" $M D[f]:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$. Uses a compression function $h:\{0,1\}^{n+t} \rightarrow\{0,1\}^{n}$.

Good News: Although "plain MD" is too simple, minor variants of it preserve PRF, MAC [AB99] and RO [CDMP05].

Merkle-Damgård Mode

"Plain Merkle-Damgår"" $M D[f]:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$. Uses a compression function $h:\{0,1\}^{n+t} \rightarrow\{0,1\}^{n}$.

Good News: Although "plain MD" is too simple, minor variants of it preserve PRF, MAC [AB99] and RO [CDMP05].

Bad News: Need a compression function h.
Can we build a compression function from a block-cipher?

Compression function from a block-cipher?

- Davies-Meyers $h(x, y)=E_{x}(y) \oplus y$ works for RO [CDMP'05], but uses re-keying.
Doesn't make sense for keyed primitives (PRF, MAC).

Compression function from a block-cipher?

- Davies-Meyers $h(x, y)=E_{x}(y) \oplus y$ works for RO [CDMP'05], but uses re-keying. Doesn't make sense for keyed primitives (PRF, MAC).
- Chopping (i.e. ignoring some bits of the output) works, but terrible security, especially for MACs.

Compression function from a block-cipher?

- Davies-Meyers $h(x, y)=E_{x}(y) \oplus y$ works for RO [CDMP'05], but uses re-keying. Doesn't make sense for keyed primitives (PRF, MAC).
- Chopping (i.e. ignoring some bits of the output) works, but terrible security, especially for MACs.
- Best previous construction for MACs is Luby-Rackoff with superlogarithmic number of rounds [DP'07].
- Open before this work: constant rate VIL-MAC from a length preserving MAC.

Enciphered CBC

$f_{i}=f\left(k_{i},.\right)$ with k_{1}, k_{2}, k_{3} independent keys.

Figure: $H\left[f_{1}, f_{2}, f_{3}\right]$, the basic three-key enciphered CBC construction
$H\left[f_{1}, f_{2}, f_{3}\right]$ a VIL-PRF/MAC/RO if f is a length-preserving PRF/MAC/RO.
Rate is 2 .

Outline

- Proof sketch of MAC property.
- Proof sketch of RO property.
- The RO property and invertability.
- In the paper: Variant having just one key.

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

Proof structure for MAC/RO

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

Proof structure for MAC/RO

- Define appropriate notion of "collision resistance" CR (different for MAC and RO).

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

Proof structure for MAC/RO

- Define appropriate notion of "collision resistance" CR (different for MAC and RO).
- Prove that $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$ is FIL-CR.

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

Proof structure for MAC/RO

- Define appropriate notion of "collision resistance" CR (different for MAC and RO).
- Prove that $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$ is FIL-CR.
- Show that MD is preserving for CR: MD $[$ FIL-CR $] \rightarrow$ VIL-CR.

A High Level View

Can view this construction as $f_{3}(M D[h])$ where $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$.

Proof structure for MAC/RO

- Define appropriate notion of "collision resistance" CR (different for MAC and RO).
- Prove that $h\left(x \| x^{\prime}\right)=f_{1}(x) \oplus f_{2}\left(x^{\prime}\right)$ is FIL-CR.
- Show that MD is preserving for CR: MD[FIL-CR] \rightarrow VIL-CR.
- Show that FIL-MAC(VIL-CR) \rightarrow VIL-MAC and similarly FIL-RO (VIL-CR) \rightarrow VIL-RO.

Message Authentication Codes

$\{0,1\}^{\times} \stackrel{\text { def }}{=}\{0,1\}^{\times}$
Definition (FIL-MAC)
A family of functions $f:\{0,1\}^{k} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ is a (t, q, ϵ) secure Fixed-Input-Length Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making at most q queries

$$
\operatorname{Pr}\left[K \leftarrow\{0,1\}^{k} ; A^{f(K, .)} \rightarrow(M, \phi) ; f(K, M)=\phi\right] \leq \epsilon
$$

Message Authentication Codes

$\{0,1\}^{\times} \stackrel{\text { def }}{=}\{0,1\}^{\times}$
Definition (FIL-MAC)
A family of functions $f:\{0,1\}^{k} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ is a (t, q, ϵ) secure Fixed-Input-Length Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making at most q queries

$$
\operatorname{Pr}\left[K \leftarrow\{0,1\}^{k} ; A^{f(K, .)} \rightarrow(M, \phi) ; f(K, M)=\phi\right] \leq \epsilon
$$

Definition (VIL-MAC)
A family of functions $f:\{0,1\}^{k} \times\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is a (t, q, ϵ) secure Variable-Input-Length
Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making queries of total length at most q blocks

Theorem (Enciphered CBC is MAC preserving) If $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a (t, q, ε)-secure FIL-MAC, then enciphered CBC instantiated with f is a ($t^{\prime}, q, \varepsilon \cdot q^{4}$)-secure variable input-length MAC, where $t^{\prime}=t-O(q n)$.

Weak Collision Resistance [AB'99]

Definition
A family of functions $f:\{0,1\}^{k} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ is
(t, q, ϵ) weakly collision-resistant (WCR) if for any adversary A of size t making at most q queries

$$
\operatorname{Pr}\left[K \leftarrow\{0,1\}^{k} ; A^{f(K, .)} \rightarrow\left(M \neq M^{\prime}\right) ; f(K, M)=f\left(K, M^{\prime}\right)\right] \leq \epsilon
$$

Weak Collision Resistance [AB'09]

Definition
A family of functions $f:\{0,1\}^{k} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ is
(t, q, ϵ) weakly collision-resistant (WCR) if for any adversary A of size t making at most q queries

$$
\operatorname{Pr}\left[K \leftarrow\{0,1\}^{k} ; A^{f(K, .)} \rightarrow\left(M \neq M^{\prime}\right) ; f(K, M)=f\left(K, M^{\prime}\right)\right] \leq \epsilon
$$

Lemma (AB'99)

- FIL-MAC \rightarrow FIL-WCR
- MD[FIL-WCR] \rightarrow VIL-WCR
- FIL-MAC(VIL-WCR) \rightarrow VIL-MAC

Weak collision resistance of $f_{1} \oplus f_{2}$

Lemma

Let $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions. Define $h:\{0,1\}^{2 k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

$$
h\left(k_{1}, k_{2}, x \| x^{\prime}\right)=f\left(k_{1}, x\right) \oplus f\left(k_{2}, x^{\prime}\right)
$$

If f is a (t, q, ϵ)-secure MAC, then h is $\left(t^{\prime}, q, \epsilon \cdot q^{4}\right)$-weakly collision-resistant.
Proof.

Weak collision resistance of $f_{1} \oplus f_{2}$

Lemma

Let $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions. Define $h:\{0,1\}^{2 k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

$$
h\left(k_{1}, k_{2}, x \| x^{\prime}\right)=f\left(k_{1}, x\right) \oplus f\left(k_{2}, x^{\prime}\right)
$$

If f is a (t, q, ϵ)-secure MAC, then h is $\left(t^{\prime}, q, \epsilon \cdot q^{4}\right)$-weakly collision-resistant.
Proof.

- Assume $\operatorname{Pr}\left[A^{f_{1}, f_{2}}\right.$ finds a collision with q queries $]>\delta$.

Weak collision resistance of $f_{1} \oplus f_{2}$

Lemma

Let $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions. Define $h:\{0,1\}^{2 k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

$$
h\left(k_{1}, k_{2}, x \| x^{\prime}\right)=f\left(k_{1}, x\right) \oplus f\left(k_{2}, x^{\prime}\right)
$$

If f is a (t, q, ϵ)-secure MAC, then h is $\left(t^{\prime}, q, \epsilon \cdot q^{4}\right)$-weakly collision-resistant.

Proof.

- Assume $\operatorname{Pr}\left[A^{f_{1}, f_{2}}\right.$ finds a collision with q queries $]>\delta$.
- To forge f_{K} : Guess $1 \leq j_{1}<j_{2}<j_{3}<j_{4} \leq 2 q$ run $A^{f_{1}, f_{2}}$ with $f_{2}=f_{K}\left(\right.$ or $\left.f_{1}=f_{K}\right)$.

Weak collision resistance of $f_{1} \oplus f_{2}$

Lemma

Let $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions. Define $h:\{0,1\}^{2 k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

$$
h\left(k_{1}, k_{2}, x \| x^{\prime}\right)=f\left(k_{1}, x\right) \oplus f\left(k_{2}, x^{\prime}\right)
$$

If f is a (t, q, ϵ)-secure MAC, then h is $\left(t^{\prime}, q, \epsilon \cdot q^{4}\right)$-weakly collision-resistant.

Proof.

- Assume $\operatorname{Pr}\left[A^{f_{1}, f_{2}}\right.$ finds a collision with q queries $]>\delta$.
- To forge f_{K} : Guess $1 \leq j_{1}<j_{2}<j_{3}<j_{4} \leq 2 q$ run $A^{f_{1}, f_{2}}$ with $f_{2}=f_{K}\left(\right.$ or $\left.f_{1}=f_{K}\right)$.
- Stop when A makes j_{4} 'th query $x_{j_{4}}$ and output forgery guess $\left(x_{j_{4}}, f_{1}\left(x_{j_{1}}\right) \oplus f_{2}\left(x_{j_{2}}\right) \oplus f_{1}\left(x_{j_{3}}\right)\right)$ for $f_{2}=f_{k}$.

Weak collision resistance of $f_{1} \oplus f_{2}$

Lemma

Let $f:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a family of functions. Define $h:\{0,1\}^{2 k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

$$
h\left(k_{1}, k_{2}, x \| x^{\prime}\right)=f\left(k_{1}, x\right) \oplus f\left(k_{2}, x^{\prime}\right)
$$

If f is a (t, q, ϵ)-secure MAC, then h is $\left(t^{\prime}, q, \epsilon \cdot q^{4}\right)$-weakly collision-resistant.

Proof.

- Assume $\operatorname{Pr}\left[A^{f_{1}, f_{2}}\right.$ finds a collision with q queries $]>\delta$.
- To forge f_{K} : Guess $1 \leq j_{1}<j_{2}<j_{3}<j_{4} \leq 2 q$ run $A^{f_{1}, f_{2}}$ with $f_{2}=f_{K}\left(\right.$ or $\left.f_{1}=f_{K}\right)$.
- Stop when A makes j_{4} 'th query $x_{j_{4}}$ and output forgery guess $\left(x_{j_{4}}, f_{1}\left(x_{j_{1}}\right) \oplus f_{2}\left(x_{j_{2}}\right) \oplus f_{1}\left(x_{j_{3}}\right)\right)$ for $f_{2}=f_{k}$.
- Forgery correct if $f_{1}\left(x_{j_{1}}\right) \oplus f_{2}\left(x_{j_{2}}\right)=f_{1}\left(x_{j_{3}}\right) \oplus f_{2}\left(x_{j_{4}}\right)$.

Indifferentiability [MRH'04],[CDMP'05]

Theorem

$H\left[f_{1}, f_{2}, f_{3}\right]$ is $\frac{q^{4}}{2^{n}}$ indifferentiable from a VIL-RO (here q is the number of queries the distinguisher is allowed to make).
Right notion of collision resistance:

- We say $h\left(x_{1} \| x_{2}\right)=f_{1}\left(x_{1}\right) \oplus f_{2}\left(x_{2}\right)$ is ϵ-extractable (EX), if there's an efficient E s.t. for all A_{1}, A_{2}
- $A_{1}^{f_{1}, f_{2}} \rightarrow(y, \phi)$
- $E\left(y\right.$, oracle calls of $\left.A_{1}^{f_{1}, f_{2}}\right) \rightarrow z$
- $A_{2}^{f_{1}, f_{2}}(\phi) \rightarrow z^{\prime}$
- $\operatorname{Pr}\left[z \neq z^{\prime} \wedge h\left(z^{\prime}\right)=y\right] \leq \epsilon$.

Lemma

- MD[FIL-EX] \rightarrow VIL-EX
- FIL-RO(VIL-EX) \rightarrow VIL-RO

$f_{1} \oplus f_{2}$ is extractable

Lemma
If f_{1}, f_{2} are FIL-RO then $h\left(x_{1} \| x_{2}\right)=f_{1}\left(x_{1}\right) \oplus f_{2}\left(x_{2}\right)$ is $q^{4} / 2^{n}$ FIL-EX.

$f_{1} \oplus f_{2}$ is extractable

Lemma

If f_{1}, f_{2} are FIL-RO then $h\left(x_{1} \| x_{2}\right)=f_{1}\left(x_{1}\right) \oplus f_{2}\left(x_{2}\right)$ is $q^{4} / 2^{n}$ FIL-EX.
$E\left(y\right.$, oracle calls of $\left.A_{1}^{f_{1}, f_{2}}\right)$ finds oracle calls x_{1}, x_{2} s.t. $f_{1}\left(x_{1}\right) \oplus f_{2}\left(x_{2}\right)=y$. If x_{1}, x_{2} unique output them, otherwise "give up".

Indifferentiability from Permutations

- $H\left[f_{1}, f_{2}, f_{3}\right]$ is indifferentiable from a random oracle if $f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are random functions.

Indifferentiability from Permutations

- $H\left[f_{1}, f_{2}, f_{3}\right]$ is indifferentiable from a random oracle if $f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are random functions.
- In practice, one would instantiate f_{i} with a block-cipher with a fixed key, but then not only f_{i} but also its inverse f_{i}^{-1} can be evaluated by the attacker.

Indifferentiability from Permutations

- $H\left[f_{1}, f_{2}, f_{3}\right]$ is indifferentiable from a random oracle if $f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are random functions.
- In practice, one would instantiate f_{i} with a block-cipher with a fixed key, but then not only f_{i} but also its inverse f_{i}^{-1} can be evaluated by the attacker.
- Unfortunately $H\left[\pi_{1}, \pi_{2}, \pi_{3}\right]$ is not indifferentiable if the π_{i} 's are random permutations where the attacker gets access to π_{i} and its inverse π_{i}^{-1}.

Indifferentiability from Permutations

This construction is indifferentiable from a random oracle if instantiated with random permutations $\pi_{1}, \pi_{2}, \pi_{3}$ over $\{0,1\}^{n}$ where the adversary can query π_{i} and π_{i}^{-1}.

Note that this is $H\left[f_{1}, f_{2}, f_{3}\right]$ with $f_{1}\left(x_{1}\right)=\pi_{1}\left(x_{1}\right) \oplus x_{1}$, $f_{2}\left(x_{2}\right)=\pi_{2}\left(x_{2}\right) \oplus x_{2}, f_{3}\left(x_{3}\right)=\pi_{3}\left(x_{3}\right) \oplus \pi_{3}^{-1}\left(x_{3}\right)$

Indifferentiability from Permutations cont.

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)=\pi_{1}\left(x_{1}\right) \oplus x_{1}, f_{2}\left(x_{2}\right)=\pi_{2}\left(x_{2}\right) \oplus x_{2}, \\
& f_{3}\left(x_{3}\right)=\pi_{3}\left(x_{3}\right) \oplus \pi_{3}^{-1}\left(x_{3}\right) \\
& \text { Lemma }
\end{aligned}
$$

$f_{3}\left(x_{3}\right)=\pi_{3}\left(x_{3}\right) \oplus \pi_{3}^{-1}\left(x_{3}\right)$ is indifferentiable from a FIL-RO.

Indifferentiability from Permutations cont.

$f_{1}\left(x_{1}\right)=\pi_{1}\left(x_{1}\right) \oplus x_{1}, f_{2}\left(x_{2}\right)=\pi_{2}\left(x_{2}\right) \oplus x_{2}$,
$f_{3}\left(x_{3}\right)=\pi_{3}\left(x_{3}\right) \oplus \pi_{3}^{-1}\left(x_{3}\right)$
Lemma
$f_{3}\left(x_{3}\right)=\pi_{3}\left(x_{3}\right) \oplus \pi_{3}^{-1}\left(x_{3}\right)$ is indifferentiable from a FIL-RO.
Lemma
$f_{1}\left(x_{1}\right) \oplus f_{2}\left(x_{2}\right)=\pi_{1}\left(x_{1}\right) \oplus x_{1} \oplus \pi_{2}\left(x_{2}\right) \oplus x_{2}$ is extractable.

Conclusions and Open Problems

Conclusions

- Mode of operations for length preserving primitives preserving $M A C, P R F, R O$.

Conclusions and Open Problems

Conclusions

- Mode of operations for length preserving primitives preserving $M A C, P R F, R O$.
- First domain expansion for length-preserving MACs with constant rate.

Conclusions and Open Problems

Conclusions

- Mode of operations for length preserving primitives preserving $M A C, P R F, R O$.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a PRF we get a PRF, if its only a MAC we're guaranteed to get a MAC.

Conclusions and Open Problems

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a $P R F$ we get a $P R F$, if its only a MAC we're guaranteed to get a MAC.
Open Problems
- Security loss of reduction for MAC and indifferentiability is q^{4} (compared to q^{2} achieved by An-Bellare for shrinking MACs), can this be improved?

Conclusions and Open Problems

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a $P R F$ we get a $P R F$, if its only a MAC we're guaranteed to get a MAC.
Open Problems
- Security loss of reduction for MAC and indifferentiability is q^{4} (compared to q^{2} achieved by An-Bellare for shrinking MACs), can this be improved?
- We achieve rate 2, is this optimal? Is there an efficiency/security trade-off as Rogaway \& Steinberger (next talk!) prove for constructions of CRHF from random permutations.

any questions?

One-key Construction

We can replace f^{\prime} also with f, and the mode still stays secure for MACs when we prepend (and not append) the length $\langle\ell\rangle$. This can be a problem as the message length must be known before processing begins.

Two-key Construction

The basic three-key construction

Can replace $f_{2}($.$) with \alpha \odot f_{2}($.$) where \alpha$ is a constant (not 0 or 1) in $\mathbb{G F}\left(2^{n}\right)$. With $\alpha=2$ multiplication is very efficient (one shift and at most one XOR).

