A New Mode of Operation for Block Ciphers and Length-Preserving MACs

Yevgeniy Dodis New York University

Krzysztof Pietrzak CWI Amsterdam

Prashant Puniya New York University

April 15, 2008

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Modes of Operation

Construction of a Variable Input Length (VIL) primitive from a Fixed Input Length (FIL) primitive.

- ▶ VIL primitives: MAC, PRF, Random Oracle (RO),
- ► FIL primitive(s): by far, most dominant is a block-cipher.
 - well understood, standardized (AES).
 - directly used in the CBC mode.
 - indirectly used in the Merkle-Damgård (MD) mode: the compression function of SHA/MD5 is instantiated via Davies-Myers $h(x, y) = E_x(y) \oplus y$.

Subject of this talk: building VIL-primitives from block ciphers (more generally, *length-preserving functions*).

A mode of operation for block-ciphers?

Construction C[f], based on a block-cipher f, should be:

- Efficient: no re-keying, constant rate.
- MAC preserving: C[f] is a VIL-MAC if f is a FIL-MAC.
- ▶ PRF preserving: C[f] is a VIL-PRF if f is a FIL-PRF.
- RO preserving: C[f] is indifferentiable from a VIL-RO if f is a FIL-RO.
 - ▶ in particular, C[f] is collision-resistant (if f is a FIL-RO).

What about existing constructions?

Good News:

Bad News:

Good News:

PRF preserving [BKR94]: if f is a PRF then CBC[f] with prefix-free encoding is a VIL-PRF.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Bad News:

Good News:

PRF preserving [BKR94]: if f is a PRF then CBC[f] with prefix-free encoding is a VIL-PRF.

Bad News:

► *CBC*[*f*] is not always a MAC, even if *f* is a MAC [AB'99].

イロン 不同と イヨン イロン

э

Good News:

PRF preserving [BKR94]: if f is a PRF then CBC[f] with prefix-free encoding is a VIL-PRF.

Bad News:

- ► *CBC*[*f*] is not always a MAC, even if *f* is a MAC [AB'99].
- ► *CBC*[*f*] is never collision resistant, for any *f*.

Good News:

PRF preserving [BKR94]: if f is a PRF then CBC[f] with prefix-free encoding is a VIL-PRF.

Bad News:

- ► *CBC*[*f*] is not always a MAC, even if *f* is a MAC [AB'99].
- ► *CBC*[*f*] is never collision resistant, for any *f*.
- In particular, CBC[f] is not a VIL-RO if f is a FIL-RO.

Merkle-Damgård Mode

"Plain Merkle-Damgård" $MD[f]: \{0,1\}^* \rightarrow \{0,1\}^n$. Uses a compression function $h: \{0,1\}^{n+t} \rightarrow \{0,1\}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のの(?)

Merkle-Damgård Mode

"Plain Merkle-Damgård" $MD[f]: \{0,1\}^* \rightarrow \{0,1\}^n$. Uses a compression function $h: \{0,1\}^{n+t} \rightarrow \{0,1\}^n$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Good News: Although "plain MD" is too simple, minor variants of it preserve PRF, MAC [AB99] and RO [CDMP05].

Merkle-Damgård Mode

"Plain Merkle-Damgård" $MD[f]: \{0,1\}^* \rightarrow \{0,1\}^n$. Uses a compression function $h: \{0,1\}^{n+t} \rightarrow \{0,1\}^n$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Good News: Although "plain MD" is too simple, minor variants of it preserve PRF, MAC [AB99] and RO [CDMP05].

Bad News: Need a compression function h.

Can we build a compression function from a block-cipher?

Compression function from a block-cipher?

Davies-Meyers h(x, y) = E_x(y) ⊕ y works for RO [CDMP'05], but uses re-keying. Doesn't make sense for keyed primitives (PRF, MAC).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Compression function from a block-cipher?

- Davies-Meyers h(x, y) = E_x(y) ⊕ y works for RO [CDMP'05], but uses re-keying. Doesn't make sense for keyed primitives (PRF, MAC).
- Chopping (i.e. ignoring some bits of the output) works, but terrible security, especially for MACs.

Compression function from a block-cipher?

- Davies-Meyers h(x, y) = E_x(y) ⊕ y works for RO [CDMP'05], but uses re-keying. Doesn't make sense for keyed primitives (PRF, MAC).
- Chopping (i.e. ignoring some bits of the output) works, but terrible security, especially for MACs.
- Best previous construction for MACs is Luby-Rackoff with superlogarithmic number of rounds [DP'07].
 - Open before this work: constant rate VIL-MAC from a length preserving MAC.

Enciphered CBC

 $f_i = f(k_i, .)$ with k_1, k_2, k_3 independent keys.

Figure: $H[f_1, f_2, f_3]$, the basic three-key enciphered CBC construction

 $H[f_1, f_2, f_3]$ a VIL-PRF/MAC/RO if f is a length-preserving PRF/MAC/RO. Rate is 2.

Outline

- Proof sketch of MAC property.
- Proof sketch of RO property.
- ▶ The RO property and invertability.
- ► In the paper: Variant having just one key.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

・ロト ・聞ト ・ヨト ・ヨト

臣

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

Proof structure for MAC/RO

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

Proof structure for MAC/RO

 Define appropriate notion of "collision resistance" CR (different for MAC and RO).

▲日▼▲□▼▲□▼▲□▼ □ のので

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

Proof structure for MAC/RO

 Define appropriate notion of "collision resistance" CR (different for MAC and RO).

▲日▼▲□▼▲□▼▲□▼ □ のので

• Prove that $h(x||x') = f_1(x) \oplus f_2(x')$ is FIL-CR.

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

Proof structure for MAC/RO

 Define appropriate notion of "collision resistance" CR (different for MAC and RO).

▲日▼▲□▼▲□▼▲□▼ □ のので

- Prove that $h(x||x') = f_1(x) \oplus f_2(x')$ is FIL-CR.
- Show that MD is preserving for CR: MD[FIL-CR]→VIL-CR.

Can view this construction as $f_3(MD[h])$ where $h(x||x') = f_1(x) \oplus f_2(x')$.

Proof structure for MAC/RO

- Define appropriate notion of "collision resistance" CR (different for MAC and RO).
- Prove that $h(x||x') = f_1(x) \oplus f_2(x')$ is FIL-CR.
- Show that MD is preserving for CR: MD[FIL-CR]→VIL-CR.
- Show that FIL-MAC(VIL-CR)→VIL-MAC and similarly FIL-RO(VIL-CR)→VIL-RO.

Message Authentication Codes $\{0,1\}^{x} \stackrel{\text{def}}{=} \{0,1\}^{x}$ Definition (FIL-MAC)

A family of functions $f : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^n$ is a (t,q,ϵ) secure Fixed-Input-Length Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making at most q queries

 $\Pr[K \leftarrow \{0,1\}^k; A^{f(K,.)} \to (M,\phi); f(K,M) = \phi] \le \epsilon$

▲日▼▲□▼▲□▼▲□▼ □ のので

Message Authentication Codes $\{0,1\}^{x} \stackrel{\text{def}}{=} \{0,1\}^{x}$ Definition (FIL-MAC)

A family of functions $f : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^n$ is a (t,q,ϵ) secure Fixed-Input-Length Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making at most q queries

$$\Pr[K \leftarrow \{0,1\}^k; A^{f(K,.)} \to (M,\phi); f(K,M) = \phi] \le \epsilon$$

Definition (VIL-MAC)

A family of functions $f : \{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^n$ is a (t, q, ϵ) secure Variable-Input-Length Message-Authentication-Code (FIL-MAC) if for every adversary A of size t making queries of total length at most qblocks Theorem (Enciphered CBC is MAC preserving) If $f : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a (t,q,ε) -secure FIL-MAC, then enciphered CBC instantiated with f is a $(t',q,\varepsilon \cdot q^4)$ -secure variable input-length MAC, where t' = t - O(qn).

Weak Collision Resistance [AB'99]

Definition

A family of functions $f : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^n$ is (t,q,ϵ) weakly collision-resistant (WCR) if for any adversary A of size t making at most q queries

$$\Pr[K \leftarrow \{0,1\}^k; A^{f(K,.)} \to (M \neq M'); f(K,M) = f(K,M')] \le \epsilon$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Weak Collision Resistance [AB'99]

Definition

A family of functions $f : \{0,1\}^k \times \{0,1\}^m \rightarrow \{0,1\}^n$ is (t,q,ϵ) weakly collision-resistant (WCR) if for any adversary A of size t making at most q queries

$$\Pr[K \leftarrow \{0,1\}^k; A^{f(K,.)} \to (M \neq M'); f(K,M) = f(K,M')] \le \epsilon$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Lemma (AB'99)

- ► FIL-MAC→FIL-WCR
- ► MD[FIL-WCR]→VIL-WCR
- ► FIL-MAC(VIL-WCR)→VIL-MAC

Lemma Let $f : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Define $h : \{0,1\}^{2k} \times \{0,1\}^{2n} \to \{0,1\}^n$

$$h(k_1, k_2, x || x') = f(k_1, x) \oplus f(k_2, x')$$

▲日▼▲□▼▲□▼▲□▼ □ のので

If f is a (t, q, ϵ) -secure MAC, then h is $(t', q, \epsilon \cdot q^4)$ -weakly collision-resistant.

Proof.

Lemma Let $f : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Define $h : \{0,1\}^{2k} \times \{0,1\}^{2n} \to \{0,1\}^n$

$$h(k_1, k_2, x || x') = f(k_1, x) \oplus f(k_2, x')$$

If f is a (t, q, ϵ) -secure MAC, then h is $(t', q, \epsilon \cdot q^4)$ -weakly collision-resistant.

Proof.

• Assume $\Pr[A^{f_1, f_2} \text{ finds a collision with } q \text{ queries}] > \delta$.

Lemma Let $f : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Define $h : \{0,1\}^{2k} \times \{0,1\}^{2n} \to \{0,1\}^n$

$$h(k_1, k_2, x || x') = f(k_1, x) \oplus f(k_2, x')$$

If f is a (t, q, ϵ) -secure MAC, then h is $(t', q, \epsilon \cdot q^4)$ -weakly collision-resistant.

Proof.

- Assume $\Pr[A^{f_1, f_2} \text{ finds a collision with } q \text{ queries}] > \delta$.
- ▶ To forge f_{K} : Guess $1 \le j_1 < j_2 < j_3 < j_4 \le 2q$ run A^{f_1, f_2} with $f_2 = f_K$ (or $f_1 = f_K$).

Lemma Let $f : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Define $h : \{0,1\}^{2k} \times \{0,1\}^{2n} \to \{0,1\}^n$

$$h(k_1, k_2, x || x') = f(k_1, x) \oplus f(k_2, x')$$

If f is a (t, q, ϵ) -secure MAC, then h is $(t', q, \epsilon \cdot q^4)$ -weakly collision-resistant.

Proof.

- Assume $Pr[A^{f_1, f_2} \text{ finds a collision with } q \text{ queries}] > \delta$.
- ▶ To forge f_{K} : Guess $1 \le j_1 < j_2 < j_3 < j_4 \le 2q$ run A^{f_1, f_2} with $f_2 = f_K$ (or $f_1 = f_K$).
- ▶ Stop when A makes j_4 'th query x_{j_4} and output forgery guess $(x_{j_4}, f_1(x_{j_1}) \oplus f_2(x_{j_2}) \oplus f_1(x_{j_3}))$ for $f_2 = f_K$.

Lemma Let $f : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Define $h : \{0,1\}^{2k} \times \{0,1\}^{2n} \to \{0,1\}^n$

$$h(k_1, k_2, x || x') = f(k_1, x) \oplus f(k_2, x')$$

If f is a (t, q, ϵ) -secure MAC, then h is $(t', q, \epsilon \cdot q^4)$ -weakly collision-resistant.

Proof.

- Assume $\Pr[A^{f_1, f_2} \text{ finds a collision with } q \text{ queries}] > \delta$.
- ▶ To forge f_{K} : Guess $1 \le j_1 < j_2 < j_3 < j_4 \le 2q$ run A^{f_1, f_2} with $f_2 = f_K$ (or $f_1 = f_K$).
- ▶ Stop when A makes j_4 'th query x_{j_4} and output forgery guess $(x_{j_4}, f_1(x_{j_1}) \oplus f_2(x_{j_2}) \oplus f_1(x_{j_3}))$ for $f_2 = f_K$.
- ▶ Forgery correct if $f_1(x_{j_1}) \oplus f_2(x_{j_2}) = f_1(x_{j_3}) \oplus f_2(x_{j_4}).$

Indifferentiability [MRH'04],[CDMP'05]

Theorem

 $H[f_1, f_2, f_3]$ is $\frac{q^4}{2^n}$ indifferentiable from a VIL-RO (here q is the number of queries the distinguisher is allowed to make).

Right notion of collision resistance:

We say h(x₁||x₂) = f₁(x₁) ⊕ f₂(x₂) is ε-extractable (EX), if there's an efficient E s.t. for all A₁, A₂

- $A_1^{f_1,f_2} \rightarrow (y,\phi)$
- $E(y, \text{oracle calls of } A_1^{f_1, f_2}) \rightarrow z$

•
$$A_2^{t_1,t_2}(\phi) \rightarrow z'$$

• $\Pr[z \neq z' \land h(z') = y] \leq \epsilon.$

Lemma

- $MD[FIL-EX] \rightarrow VIL-EX$
- ► FIL-RO(VIL-EX)→VIL-RO

$f_1 \oplus f_2$ is extractable

Lemma

If f_1, f_2 are FIL-RO then $h(x_1 || x_2) = f_1(x_1) \oplus f_2(x_2)$ is $q^4/2^n$ FIL-EX.

Lemma

If f_1, f_2 are FIL-RO then $h(x_1 || x_2) = f_1(x_1) \oplus f_2(x_2)$ is $q^4/2^n$ FIL-EX.

 $E(y, \text{oracle calls of } A_1^{f_1, f_2})$ finds oracle calls x_1, x_2 s.t. $f_1(x_1) \oplus f_2(x_2) = y$. If x_1, x_2 unique output them, otherwise "give up".

▲日▼▲□▼▲□▼▲□▼ □ のので

Indifferentiability from Permutations

▶ $H[f_1, f_2, f_3]$ is indifferentiable from a random oracle if $f_i : \{0, 1\}^n \rightarrow \{0, 1\}^n$ are random functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Indifferentiability from Permutations

- *H*[*f*₁, *f*₂, *f*₃] is indifferentiable from a random oracle if *f_i* : {0, 1}ⁿ → {0, 1}ⁿ are random functions.
- In practice, one would instantiate f_i with a block-cipher with a fixed key, but then not only f_i but also its inverse f_i⁻¹ can be evaluated by the attacker.

Indifferentiability from Permutations

- *H*[*f*₁, *f*₂, *f*₃] is indifferentiable from a random oracle if *f_i* : {0, 1}ⁿ → {0, 1}ⁿ are random functions.
- ► In practice, one would instantiate f_i with a block-cipher with a fixed key, but then not only f_i but also its inverse f_i⁻¹ can be evaluated by the attacker.
- Unfortunately H[π₁, π₂, π₃] is not indifferentiable if the π_i's are random permutations where the attacker gets access to π_i and its inverse π_i⁻¹.

Indifferentiability from Permutations

This construction is indifferentiable from a random oracle if instantiated with random permutations π_1, π_2, π_3 over $\{0, 1\}^n$ where the adversary can query π_i and π_i^{-1} .

Note that this is $H[f_1, f_2, f_3]$ with $f_1(x_1) = \pi_1(x_1) \oplus x_1$, $f_2(x_2) = \pi_2(x_2) \oplus x_2$, $f_3(x_3) = \pi_3(x_3) \oplus \pi_3^{-1}(x_3)$

Indifferentiability from Permutations cont.

$$f_1(x_1) = \pi_1(x_1) \oplus x_1, \ f_2(x_2) = \pi_2(x_2) \oplus x_2, \ f_3(x_3) = \pi_3(x_3) \oplus \pi_3^{-1}(x_3)$$

Lemma

 $f_3(x_3) = \pi_3(x_3) \oplus \pi_3^{-1}(x_3)$ is indifferentiable from a FIL-RO.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Indifferentiability from Permutations cont.

$$f_1(x_1) = \pi_1(x_1) \oplus x_1, f_2(x_2) = \pi_2(x_2) \oplus x_2, f_3(x_3) = \pi_3(x_3) \oplus \pi_3^{-1}(x_3)$$

Lemma

 $f_3(x_3) = \pi_3(x_3) \oplus \pi_3^{-1}(x_3)$ is indifferentiable from a FIL-RO.

Lemma

 $f_1(x_1)\oplus f_2(x_2)=\pi_1(x_1)\oplus x_1\oplus \pi_2(x_2)\oplus x_2$ is extractable.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusions

 Mode of operations for length preserving primitives preserving MAC, PRF, RO.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a *PRF* we get a *PRF*, if its only a *MAC* we're guaranteed to get a MAC.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a *PRF* we get a *PRF*, if its only a *MAC* we're guaranteed to get a MAC.

Open Problems

Security loss of reduction for MAC and indifferentiability is q⁴ (compared to q² achieved by An-Bellare for shrinking MACs), can this be improved?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Conclusions

- Mode of operations for length preserving primitives preserving MAC, PRF, RO.
- First domain expansion for length-preserving MACs with constant rate.
- Hedge against security of underlying primitive: if its a *PRF* we get a *PRF*, if its only a *MAC* we're guaranteed to get a MAC.

Open Problems

- Security loss of reduction for MAC and indifferentiability is q⁴ (compared to q² achieved by An-Bellare for shrinking MACs), can this be improved?
- We achieve rate 2, is this optimal? Is there an efficiency/security trade-off as Rogaway & Steinberger (next talk!) prove for constructions of CRHF from random permutations.

any questions?

One-key Construction

We can replace f' also with f, and the mode still stays secure for MACs when we prepend (and not append) the length $\langle \ell \rangle$. This can be a problem as the message length must be known before processing begins.

< 17 ▶

- ∢ ⊒ →

Two-key Construction

The basic three-key construction

Can replace $f_2(.)$ with $\alpha \odot f_2(.)$ where α is a constant (not 0 or 1) in $\mathbb{GF}(2^n)$. With $\alpha = 2$ multiplication is very efficient (one shift and at most one XOR).

イロト 不同 トイヨト イヨト

э