
ORIGINAL ARTICLE

A new model for context-aware transactions in mobile services

Muhammad Younas • Soraya Kouadri Mostéfaoui

Received: 10 December 2010 / Accepted: 5 March 2011 / Published online: 19 April 2011

� Springer-Verlag London Limited 2011

Abstract With the ubiquity of handheld devices (such as

smart phones and PDAs) and the availability of a wide

range of mobile services (such as mobile banking, road

traffic updates, and weather forecast), people can nowadays

access information and conduct online transactions virtu-

ally anywhere and anytime. In such flexible, dynamic but

less reliable environment, transaction management tech-

nology is believed to provide service reliability and data

consistency. Indeed, in mobile and ubiquitous environ-

ments where devices as well as services can seamlessly

join and leave the ubiquitous network; transaction man-

agement can be very helpful during the recovery of ser-

vices from failure. Current transaction models and commit

protocols do not take into account context information.

However, in mobile environments, it is imperative to

consider context information in the commit of a transac-

tion—i.e., a transaction can be successfully completed if it

meets the required context. In this paper, we propose a new

model for context-aware transactions and their perfor-

mance management in mobile environments. Unlike con-

ventional transactions, context-aware transactions adapt to

the required context. By context, we mean the service’s

context as well as the users’ context that includes users’

needs and preferences. This paper designs and develops the

proposed transaction model and evaluates its performance

in terms of time and message complexities as well as

transaction’s throughput.

Keywords Context-aware transaction �
Mobile and ubiquitous services � Transaction model �
Performance � Transaction properties

1 Introduction

Recent developments in mobile technologies, such as

wireless communication networks, handheld devices, and

service standards enable people to access information and

acquire services in a ubiquitous manner. For instance,

Google Mobile provides users with access to a variety of

services from their mobile phones, ranging from simple

web page’s browsing through to products’ prices to driving

directions. The service-oriented computing and web ser-

vices technologies further facilitate the provision and

consumption of mobile services [1]—i.e., find, select, and

develop (or compose) new services from existing ones in

order to provide enhanced functionalities, enable universal

accessibility, and reduce operational and development

costs through service reuse [2]. In the following discussion,

we use the term mobile or M-services (as in [3, 4]) to refer

to web services in the mobile environment.

The work presented in this paper investigates into the

issue of transaction management in M-services. A trans-

action represents an abstract view of a sequence of oper-

ations that are involved in the execution of an application.

Transaction management has been used in a number of

applications such as databases, e-commerce, m-commerce,

and engineering applications [5, 6]. We believe that

transaction management is important for M-services, since

protecting and managing the integrity of M-services’

M. Younas (&)

Department of Computing and Electronics,

Oxford Brookes University, Oxford, UK

e-mail: m.younas@brookes.ac.uk

S. Kouadri Mostéfaoui

Department of Communication and Systems,

The Open University, Milton Keynes, UK

e-mail: s.kouadri@open.ac.uk

123

Pers Ubiquit Comput (2011) 15:821–831

DOI 10.1007/s00779-011-0369-1

outcomes is essential in a ubiquitous environments. Spe-

cifically, from the users’ perspective, transaction manage-

ment should guarantee that services obtained using mobile

devices are consistent with what users request and what

service providers offer. From the M-service providers’

perspective, transaction management must ensure that

transactions are correctly executed, the enterprise has

correct information about the outcomes of those transac-

tions, and information held in an enterprise’s databases is

maintained to provide a truthful and consistent record of

the state of the enterprises.

Various models and protocols have been developed for

mobile transactions. However, they are limited to the

classical commit procedures that do not give attention to

context-awareness. Consider an example where Sofia is

using her iPhone while walking in the Broad Street in

Oxford, UK. Sofia intends to book a table in a nearby

Italian restaurant for a dinner with her friends. Using her

iPhone, she browses mobile services in order to find

appropriate restaurants, check the location of nearby res-

taurants, and also check the menus and prices of those

restaurants. Current approaches will simply commit a

transaction whether the required table is available in a

restaurant. They do not take into account the ‘‘context’’

information such as ‘‘a table should be booked in a res-

taurant which is located nearby’’. Existing literature con-

tains significant work on context-aware systems [7–10].

But to our knowledge, context awareness is not addressed

in the transaction management in general and mobile

transaction management in particular. The philosophy of

context awareness is that systems must automatically adapt

their operations to the environment by taking into account

context information such as current location, time, users’

needs, and other environmental parameters. Thus, in

M-services, it is desirable that a transaction reacts to the

contextual information and adapts its behavior according to

the changes in context. Furthermore, current approaches

are generally based on the conventional ACID (atomicity,

consistency, isolation, and durability) criteria or ETMs

(extended transaction models) [11]. ACID criteria require

that a transaction must not expose its intermediate results

(isolation) and must be atomic (all its actions must be

carried out or none is). ETMs relax the ACID criteria

especially the isolation property. However, neither the

ACID nor the ETMs take into account the context in

transaction management.

The contributions of this paper are defined as follows.

• To develop a new model for context-aware transactions

in mobile services environments.

This paper proposes a new set of transaction correct-

ness criteria, called RACCD (relaxed atomicity, con-

sistency, context, and durability). RACCD criteria

include ‘‘context’’ as one of the main properties of

transactions, which has not been considered in the

existing transaction models. The new criteria are

believed to be more appropriate to the context aware,

more volatile, dynamic, and open nature of transactions

in M-services environment.

• To design and develop a protocol for the execution of

context-aware transactions.

We design and develop a protocol in order to enforce

the RACCD criteria during the execution of context-

aware transactions. The protocol is developed in

multiphases in order to collect service context, reserve

required services, and acquire the required services by

successfully completing (committing) a transaction.

• To implement the proposed model and evaluate its

performance.

We implement the proposed model as a prototype

system, called ‘‘Smart Campus’’. Analytical model is

also developed in order to evaluate the performance of

the proposed model in terms of message and time

complexities and transaction’s throughput

The remainder of the paper is organized as follows.

Section 2 describes the basic definitions of M-services and

analyses their characteristics. Section 3 reviews the related

work and establishes its limitations with respect to the

requirements of M-services transaction management. Sec-

tion 4 presents the proposed context-aware transaction

model. System architecture and the execution protocol are

described in Sect. 5. Section 6 describes the evaluation and

validation of the proposed model. Finally, the paper is

concluded and directions for future work are identified in

Sect. 7.

2 Background

2.1 M-services: basic concepts

M-services are software applications that represent a higher

level abstraction of a set of activities that manipulate dif-

ferent resources in order to fulfill users’ requests [2–4]. The

proposed model requires that M-services are developed

using the service-oriented computing (SOC) architecture

and technologies as they enable dynamic composition of

loosely coupled distributed services in order to facilitate

software reuse, provide enhanced functionality, reduce

operational and development costs, and to enable inter-

organizational collaboration. The most common imple-

mentation technologies of SOC are the XML web services,

which are built using WSDL, SOAP, REST, and UDDI

among others. M-services are published using service

interface definition languages, WSDL, or CWSDL [12, 13],

822 Pers Ubiquit Comput (2011) 15:821–831

123

such that they can be consumed (invoked) by service

consumer applications (or M-services transactions in our

case).

2.2 Context

Based on an instantiation and combination of Dey’s and

Schilit’s definitions [14, 15], context is defined as ‘‘any

information that can be used to describe the situation of

people, resources, and services in a service-oriented envi-

ronment. It may include all other information that can be

considered relevant to the interaction between a user and a

service’’. Context information of M-services can be

obtained into two different ways:

a. Internal context It represents context information

related to the service that can be directly obtained

from the service interface definition, for example,

using the Context-based Web Service Description

Language (CWSDL) [13]. CWSDL was developed in

order to enhance the standard W3C WSDL and to

provide support for context-related information.

CWSDL defines the service profiles and the related

quality metrics for rating, comparing, and selecting the

desired services.

b. External context It represents any context informa-

tion which is external to the service that can be

obtained using external (independent) services. For

example, location service can provide location infor-

mation about a hotel service, and a weather service

can provide weather forecast about a particular

location.

2.3 M-services characteristics

A generalized architecture of mobile systems (in Fig. 1) is

presented in order to illustrate the characteristics of

M-services [16]. In such architecture, M-services may

reside on a fixed host (FH) or on a mobile host such as a

mobile device. Base stations (BSs), controlled by a base

station controllers (BSCs), are capable of communicating

with mobile devices through wireless networks. BSCs are

in turn controlled by the mobile switching center (MSC)

that is connected to the Internet. Each BS covers a par-

ticular area, called a cell. Handoff happens when a mobile

device moves from one cell to another.

Transactions in M-services have different characteristics

than those of static services. In M-services, transactions are

less prescribed, more prone to failure, and open-ended.

Also characteristics specific to mobile devices and net-

works add further complexity. Specifically, the mobility of

the processing units (e.g., PDA) means transactions may

relocate during execution, as their originating devices

move. Also, connection with the mobile devices may be

intermittent. Thus, for example, a transaction may originate

at one site and terminate at another and require frequent

disconnection and reconnections in between. Also, the

bandwidth of mobile networks is currently low in com-

parison to wired networks. Consequently, communication

links may be overloaded by high volume of information

exchange. In addition, mobile processing units are cur-

rently less reliable and with fewer resources, than the

conventional ‘‘stationary’’ units. For example, the limited

power supplies of mobile devices and the relatively limited

resources affect failure resilience of M-services, since they

increase the probability of transaction failure, for example,

due to a flat battery or running out of memory.

In addition to the above, the issue of context aware-

ness further complicates the management of transactions

in M-services. In a restaurant booking example, a con-

text-aware transaction will be considered as failed

(aborted) transaction if it books a table in a restaurant

that is outside the specified location. In this case, the

service is available but it does not meet the desired

context. However, with current transaction management

approaches, a transaction will be successfully processed

(committed) if it can book the table in a restaurant

irrespective of the location. Another example of context-

related failure can be a performance failure, that is, a

transaction will fail if it does not respond within a

specified time interval.

hand
off

BS

BS

BS

MSC Internet

FH

FH

BSC

Fig. 1 Generalized architecture of mobile systems

Pers Ubiquit Comput (2011) 15:821–831 823

123

3 Literature review

There is a scarcity of literature on context-aware transac-

tions in M-services. This section, therefore, reviews only

transaction management techniques that are developed for

mobile database transactions but can be considered for

M-services transactions. Holanda et al. [17] develop an

intelligent transaction scheduler using a combination of

conservative and aggressive concurrency control protocols.

The proposed scheduler is claimed to be context aware in

the sense that it automatically identifies changes in the

computational environment and adapts to the appropriate

concurrency control protocol. The efficiency of the

scheduler is tested using the mobile database community

that represents a set of databases connected through MA-

NET. Rouvoy et al. [18] propose Context-Aware Trans-

action sErvice (CATE) that provides facilities for selecting

appropriate protocol (among the conventional 2PC, PC,

and PA protocols) that meets the execution context. CATE

is claimed to improve performance as compared to using

only one commit protocol. The context is defined in terms

of the commit and abort rates of a transaction. That is,

based on the number of commit and abort transactions, an

appropriate commit protocol is chosen for the processing of

a transaction. However, the above approaches [17, 18] are

limited to the classical concurrency and commit protocols

and do not take into account the context information such

as location, time, and so on.

Kumar et al. [19] define a protocol, called TCOT, for

mobile transactions. TCOT, a variant of the classical two-

phase commit (2PC) protocol, is based on a timeout

mechanism. TCOT is claimed to have improved perfor-

mance and throughput over 2PC protocol in managing

mobile transactions. 2PC protocol enforces classical ACID

criteria [6]. As described above, 2PC and ACID criteria are

inappropriate for M-services transactions. Lee et al. [20]

introduce a mobile transaction model called high commit

mobile transactions (HiCoMo) in order to improve the

commitment rate of mobile transactions. Using HiCoMo

transactions, aggregate data can be updated in a situation

when mobile units are disconnected. The Kangaroo trans-

action (KT) model [21] takes into account the movement

behavior of mobile transactions such that they can hop

from one base station to another as their mobile device

moves. But in certain situations, it may not help in reducing

communication overhead. In summary, the above approa-

ches are limited to the classical mobile transactions and

they do not consider M-services or context awareness. The

authors in [22] proposed an adaptive context transaction

model for mobile and ubiquitous services. This work is

interesting and it develops performance management

model. However, unlike our approach, this work does not

consider ‘‘context’’ as a first class correctness property.

Furthermore, WS-Transactions [23] aim to address issues

related to 2PC-based protocols. WS-Transactions define a

framework for providing transactional coordination of web

services offered by multiple autonomous businesses.

4 The context-aware transaction model

This section first illustrates the definitions of context-aware

transactions. It then presents the new properties defined for

the context-aware transactions.

4.1 Context-aware transactions

Context-aware transactions can range over different

M-services involving and spanning many enterprises dis-

tributed over the wired and wireless networks. In the pro-

posed model, a context-aware transaction, denoted CAT, is

defined as an execution of a composite service which can

be divided into component service transactions, denoted

csti. The execution of CAT aims to acquire M-services

(required by a user) and to maintain the correctness and

consistency of those services.

Formally, CAT is defined as a tuple, CAT = (MSi,

csti,\); where MSi (1 B i C n) represents M-services such

as a restaurant service or a location service. The csti
(1 B i C n) is a set of component services transactions.

Each of the csti is a sequence of operations that are exe-

cuted in order to collect service context, reserve services,

and acquire (or commit) services (MSi) \ is a partial

ordering of the csti, which determines the order of execu-

tion of csti. The csti may have different types such as

compensatable, vital, and non-vital. The csti is compens-

atable if its effects can be semantically undone by exe-

cuting a compensating action. All vital csti must be

successfully executed in order for the CAT to commit. If

any of the vital csti fails, then the CAT will be aborted.

Failure of non-vital csti may not result in the abort of the

CAT. Consider an CATfor a restaurant booking which

composes different component service transactions,

CAT = {cst1, cst2, cst3, cst4}—where cst1 checks the

location of a restaurant, cst2 chooses a restaurant and

reserves a table, cst3 makes payment for table’s reserva-

tion, and cst4 gives the directions to a restaurant. In this

hypothetical transaction, if a user can get the restaurant

location, book a table and make payment, then the trans-

action will be considered as successful even if she does not

get the directions to the restaurant. Thus, the component

service transactions cst1, cst2, cst3 are considered as vital,

while cst4 is non-vital as it does not result in the failure

(abortion) of CAT even if it’s not successfully completed.

Furthermore, we assume a flat structure of CAT; meaning

that it can be composed of single level csti. However, a

824 Pers Ubiquit Comput (2011) 15:821–831

123

nested or hierarchical CAT can be constructed based on the

flat structure.

The characteristics of context-aware transactions are

significantly different from the classical transactions.

Context-aware transactions:

• involve different M-services, which are distributed

across the (wireless and wired) networks and are

provided by a number of independent and autonomous

service providers

• need to fulfill the contextual requirement of the

required services

• may suffer from a variety of failures such as system

failures and context-related failures

• need longer processing time, e.g., gathering of context

information and acquiring M-services.

The above characteristics reveal that current transaction

models and properties (such as ACID criteria or ETMs) are

inapplicable to the context-aware transactions. These

motivate the need for a new transaction model and cor-

rectness properties, which are presented below.

4.2 Context-aware transaction properties

We propose new criteria, called RACCD (relaxed atom-

icity, consistency, context, and durability). Each context-

aware transaction is required to meet the rules set by these

criteria:

• Relaxed Atomicity (RA) It relaxes the strict notion of

the classical atomicity which requires that either all or

none of the operations (in our case, csti) of an CAT be

completed. In M-services environment, such restriction

is inappropriate due to the nature of independent and

autonomous services. The relaxed atomicity allows

partial commit of CAT such that individual csti may

commit unilaterally and the failure of non-vital csti may

not result in the abortion of the CAT. Relaxed atomicity

requires that all of the (vital) csti must be successfully

executed in order for CAT to be committed. In the

above example, either all or none of the vital cst1, cst2,

and cst3 is executed in order for CAT to maintain the

RA property. Since RA allows unilateral commit, it is

possible that some csti successfully execute while

others fail. In that case, it is required to compensate the

effects of the executed csti via compensation actions in

order to maintain the RA property.

• Consistency Consistency requires that the M-services

data remain consistent after the execution of CAT.

The traditional notion of consistency and isolation of

ACID criteria cannot be enforced in M-services as they

either result in the useless consumption of resources

or resource blocking. That is, they require all the

component services to wait for the completion of each

other in the prepare-to-commit state [6].

• Context It requires that CAT must fulfill the require-

ments of the service context. That is, CAT can be

committed only if all its vital csti are successfully

completed and they meet the required context of

M-services.

• Durability Similar to the ACID criteria, it requires that

effects of a committed CAT must be made permanent in

the respective data sources of M-services, even in the

case of failures.

5 Architecture and protocol

5.1 The system architecture

This section presents a generalized system architecture

within which the context-aware transaction protocol is

implemented. The system architecture is shown in Fig. 2.

Users submit context-aware transactions (CAT) to the

system implementing the main coordinator (MC). MC

manages the overall processing and execution of a CAT.

MC submits the component services transactions (csti) to

the component coordinators (CCi), which are associated

with various M-services (MSi) such as a restaurant service

or a weather service. Each CCi executes csti on MSi in

order to collect context information, reserve, and acquire

services. Referring to Fig. 1, we assume that MC and CC

can be deployed at fixed hosts where M-services may be

deployed at fixed as well as mobile hosts. MC and CC are

assumed to be deployed at fixed hosts as they are consid-

ered to be more reliable than mobile hosts. Further, it is

assumed that each CAT contains a finite number of csti and

the type of csti (vital, non-vital) is specified by a user.

M-service 1

CC 2 CC 1 CC n

MC

M-service 2 M-service n

Users: Context-aware Transactions

Fig. 2 The proposed system architecture

Pers Ubiquit Comput (2011) 15:821–831 825

123

M-services transactions are coordinated by the MC

which ensures that they comply with the rules set by the

RACCD criteria. MC also maintains the execution order

between csti [CAT. For instance, a compensating action

cannot execute before the completion of an actual csti. That

is, a csti for booking a table in a restaurant cannot be

compensated for whether the table was not booked. MC

also sends the type of each csti to the respective CC. Each

CC executes csti on the M-service and sends the result to

the MC.

MC and each CC are required to gather context infor-

mation and also reserve services required by context-aware

transactions. Service reservation is required in order to

avoid blocking of services. As described earlier, context-

aware transactions are generally of longer duration, and

thus, it is not feasible to use the classical locking protocols

such as two-phase locking [11]—where a service can be

locked by a single transaction and no other transactions can

access that service (e.g., a table in a restaurant) until the

lock is released. In the following, we adopt the W3C

Tentative Hold Protocol (THP) [24] that allows multiple

transactions to tentatively reserve the same service at the

same time. For instance, the same table in a restaurant can

be simultaneously reserved by two transactions, say, csti [
CAT1, and cstj [CAT2. However, if CAT1 completes before

CAT2, then the reservation of cstj ([CA2) is canceled.

Though THP may degrade the performance of context-

aware transactions, it provides more flexibility as multiple

transactions are able to request tentative reservation of the

required services, check their availability as well as their

context. It also provides flexibility to service providers as

they can allow multiple non-blocking reservation of their

services, avoid useless consumption of their services

(which may happen through classical locking) thus

retaining control of their resources. Most importantly, THP

increases the throughput (commit rate) of transactions and

thus reducing the need to execute compensating actions.

As part of the THP, the coordinators (MC and CC)

implement the M-service policy framework. As in THP

[24], the policy framework implements the rules set by the

service provider. These rules define various conditions/

restrictions on the tentative reservation of services, for

example, setting a timeout interval for a tentative reser-

vation, the number of tentative holds (reservation) on a

particular service, and so on.

5.2 Context-aware transaction protocol

In the first phase, component service transactions are

executed in order to collect the service context information

and reserve the required M-services. The second phase

executes the commit process for the context-aware

transactions.

5.2.1 Phase 1: context gathering and service reservation

In this phase, the main coordinator, MC and each compo-

nent coordinators, CC, implement the context gathering

and service reservation protocol. The objective is to

enforce the property of ‘‘context’’ in context-aware trans-

actions and to avoid the blocking of resources (or data) as

in classical 2PC protocols.

1.1 Users submit context-aware transaction, CAT, to the

system. After initiating the transaction process, MC

logs the start of CAT in a log file in order to keep the

necessary information about CAT and its component

services transactions, csti, including transaction state

information, recovery information, the execution

order, and so on.

1.2 After logging the information, MC starts collecting

context information. For example, if CAT has to book

a restaurant, then it needs to collect context informa-

tion about the restaurant service. MC contacts each

CC associated with the service for which the context

is required. Each CC processes the request as follows.

a. Upon receiving the request, CC starts collecting

the context information by executing csti. For the

sake of simplicity, CC is designed such that it is

capable of collecting both internal as well as

external context of the required service. Note that

for every service context, a listener is attached

that informs the CC whenever there is a change

in context. CC collects:

i. internal context information from a service

interface definition, e.g., using CSWDL (as

described above) or

ii. external context from a separate independent

service (e.g., location service).

b. After executing csti, CC sends the required

context information to the MC—(e.g., sending

the restaurant location information).

1.3 MC checks (with feedback from users) the context

information received from CC. If the information

received does not meet the desired context, then MC

has to cancel the CAT as it cannot preserve the

property of ‘‘context’’.

1.4 If the desired context is met, then MC sends a

reservation request to CC. Service reservation is done

using the THP protocol.

Upon receiving the request, CC executes csti in order

to reserve the required service. The reservation

process works as follows.

a. CC executes csti to tentatively reserve the

service. It uses the M-service policy framework

826 Pers Ubiquit Comput (2011) 15:821–831

123

to determine whether the required service can be

tentatively reserved. Note that tentative reserva-

tion must comply with the rules set by the

M-service policy framework such as timeout

interval for a tentative reservation and the

number of tentative holds (reservation) on a

particular service, etc.

b. If the required service can be reserved, CC sends

a ‘‘res-yes’’ message to the MC telling it that the

service is tentatively reserved. If not, CC sends

‘‘res-no’’ to the MC.

1.5 MC checks the service reservation response and also

records it in the log file.

a. If the response is ‘‘res-yes’’, MC then starts the

commit process (phase 2) provided no more

context information or service reservation is

required. If required, then the above steps for

context gathering and service reservation are

repeated.

b. If the response is ‘‘res-no’’, MC checks the type

of csti (associated with MSi). If the type of csti is

vital, then MC has to cancel CAT as it cannot

preserve the relaxed atomicity property. If the

type is non-vital, then MC proceeds to the

commit process provided no more context infor-

mation or service reservation is required. If

required, then the above steps for context gath-

ering and service reservation are repeated.

5.2.2 Phase 2: commit process

2.1 Once the context information is gathered and services

reserved, MC starts the commit process. MC contacts

each CC to commit their respective component ser-

vice transactions, csti.

2.2 Each CC starts processing its respective csti. If csti
commits (i.e., locally committed), CC sends a commit

message to MC. If csti does not commit, CC sends an

abort message to MC.

2.3 MC checks the messages received from each CC

regarding the commit/abort of the component service

transactions, csti.

a. If all the messages received are ‘‘commit’’ then

MC commits the CAT. It informs each CC about

the commit decision of CAT. Each CC then

marks its csti as globally committed. MC logs the

commit decision of CAT, terminates it and starts

a new CAT (if any).

b. If any of the messages received is ‘‘abort’’ and

the type of csti is non-vital then MC acts

according to the above step, 2.3 (a).

c. If any of the messages received is ‘‘abort’’ and

the type of csti is vital, then MC has to abort CAT

as one of its vital component service transaction

is not committed. CAT is aborted in order to

maintain relaxed atomicity, which enforces the

condition that all the vital component service

transactions must be committed.

i. MC sends abort message to each CC that has

locally committed csti.

ii. Each CC executes compensating actions in

order to cancel the effects of csti.

iii. After compensation, each CC marks its csti
as aborted.

d. Following step (c), MC aborts CAT and termi-

nates it. MC then starts a new CAT (if any).

6 Evaluation and validation

This section develops an analytical model for the perfor-

mance evaluation of the proposed model and presents

various experimental results. It also describes the imple-

mentation of a prototype system in order to validate the

proposed model.

6.1 Performance evaluation

In this section, we evaluate the performance of the

proposed protocol using analytical modeling technique.

Performance is evaluated using the criteria of the

time complexity, message complexity, and transaction

throughput (commit rate). These criteria have also been

used to evaluate the performance of the commonly used

protocols such as two-phase commit, presumed abort, and

the mobile transaction protocols [6, 19, 21]. Message

complexity takes into account the number of messages

required to process a context-aware transaction. The

number of messages significantly affects the performance,

as the time required to send a message between the par-

ticipants of a protocol increases with the increase in the

number of messages. Time complexity takes into account

the processing time of component service transactions and

also the disconnection delay. Disconnection delay is con-

sidered in the performance evaluation as context-aware

transactions may suffer from disconnection due to the

unreliable nature of mobile services environment (as dis-

cussed above). Disconnection affects the performance as it

generally increases the execution time of context-aware

transactions.

We make the following assumptions in the performance

evaluation:

Pers Ubiquit Comput (2011) 15:821–831 827

123

• Majority of the existing performance models for

transaction protocols assume ideal conditions (failure

free) where transactions do not suffer from failures

such as communication failure, system failures, or

software failure. We also assume such ideal conditions

in the performance evaluation of the proposed protocol.

• Disconnections are not treated as failures that result in

transaction’s abort. It is assumed that during the

execution of the protocol, component systems can be

disconnected and reconnected (automatically) such that

they do not result in the failure of context-aware

transactions.

• Communication between the main coordinator and

component coordinators (and services) is assumed to be

done using wired (fixed) networks.

In the following, we develop a set of equations which

are used to calculate the average processing time of a

context-aware transaction. It is calculated using the per-

formance parameters such as the execution time spent in

context gathering, service reservation, transaction com-

mitment, message communication, and the disconnection

delay. The different parameters used in the performance

evaluation are shown in Table 1.

The average processing time, PTavg, is the time taken to

collect the context information, reserve the services, and

commit the transaction. PTavg is calculated as follows.

PTavg ¼ CT þ RT þ CTcommit ð1Þ

We calculate the time taken to collect the context

information, CT, as follows.

CT ¼ EXEcon � ðPcon � NcstÞ þ ðPDCcon � DRCtÞ ð2Þ

That is, the time taken in gathering context (EXEcon)

times, the number of cst used in context gathering plus the

disconnection delay with some probability. Note that for

some of the services (e.g., payment service), cst may not be

required to gather context. Hence, we use the parameter,

Pcon, which represents the probability of a cst used in

gathering context.

Disconnection delay is included as it affects the pro-

cessing time of a context-aware transaction. For simplicity,

we assume that at most one disconnection happens during

each of the phases of the context gathering, service reser-

vation, and transaction commit. EXEcon is calculated as

follows.

EXEcon ¼ 3Wnet þ 2Fnet þ Tcon ð2aÞ

According to 2a, the execution time, EXEcon, incurs:

• local processing time, Tcon, in gathering context

• three messages over wireless network, Wnet: one for

MC (main coordinator) receiving a request (from user),

one for MC sending the outcome (context information)

to the user, and one for getting feedback from user

• two messages over wired network, Fnet: one for MC to

send context request to CC (component coordinator)

and another for CC to send the context outcome to MC.

The time taken to reserve services, RT, is calculated as

follows.

RT ¼ EXEres � Ncstð Þ þ PDCres � DRCtð Þ ð3Þ

That is, the time taken to reserve services (EXEres)

times, the number of cst used in service reservation plus the

disconnection delay. We assume that all services which are

to be acquired by transactions are required to be reserved.

EXEres is calculated as follows.

EXEres ¼ 2Fnet þ Tres ð3aÞ

According to 3a, the execution time, EXEres, incurs:

• local processing time, Tres, to reserve services

• two messages over wired network, Fnet: one for MC to

send service reservation request to CC (component

coordinator) and another for CC to send the reservation

outcome to MC. Note that reservation does not involve

communication with (user’s mobile device) and hence

no wireless messages.

Table 1 Parameters used in the performance evaluation

Parameter Description

PTavg Processing time of a context-aware transaction, CAT

CTcommit Time taken in the commit phase of CAT

EXEcom Time taken to commit a component service transaction

(cst)

Tcom Time taken in local processing of the commit of a cst

Ncst Total number of component service transactions (cst).

Each of the cst is used to gather context, reserve, and

acquire (commit) services

Pcon Probability that a particular cst is used in gathering

context

EXEcon Time taken in gathering service context including

message delay and local processing

Tcon Time taken in local processing of cst to gather context

EXEres Time taken to reserve a service including message delay

and local processing

Tres Time taken in local processing of cst to reserve services

CT Total time required to collect context information

RT Total time required to reserve the required services

Wnet Time to transmit a message over a wireless network

Fnet Time to transmit a message over a fixed (wired) network

DRCt Time spent in disconnection and reconnection

PDCcon Probability of disconnection occurring during context

gathering

PDCres Probability of disconnection occurring during service

reservation

PDCcom Probability of disconnection occurring during commit

828 Pers Ubiquit Comput (2011) 15:821–831

123

The time taken to commit a component service trans-

action, CTcommit, is calculated as follows.

CTcommit ¼ EXEcom � Ncstð Þ þ ðPDCcom � DRCtÞ ð4Þ

That is, the time taken to commit a cst (EXEcom) times,

the number of cst to be committed plus the disconnection

delay. EXEcom is calculated as follows.

EXEcom ¼ 2Fnet þWnet þ Tcom ð4aÞ

According to 4a, the execution time, EXEcom, incurs:

• local processing time, Tcom, to commit a cst

• two messages over wired network, Fnet: one for MC to

send commit request to CC and one from CC to MC (to

send the outcome of commit)

• one message, Wnet, over wireless network to send the

final result of a transaction to the user’s mobile device.

6.2 Experimental results

In order to evaluate the performance of the proposed pro-

tocol, we have conducted various analytical experiments

using the above equations (see Sect. 6.1). As context-aware

transaction research is a new, values for many of the

parameters cannot be known exactly. We obtain some of

these values from existing work on (mobile) transactions,

while for others we make educated guesses. For instance,

the time to deliver a message over wired network (Fnet) is

5 ms and over wireless network (Wnet) is 10 ms (as in [19,

25]). However, the message communication time varies

according to the type of network and also the network

traffic. The average local processing time to commit (Tcom)

a cst is assumed to be between 50 and 90 ms (as in [6]).

But the local processing time also varies as some transac-

tions involve a large number of I/O operations and a greater

deal of CPU than others. In the experiments, we use dif-

ferent values for all of the performance parameters used in

the equations.

First, we compute the average processing time, PTavg, of

a context-aware transaction (CTA) in three different cases.

Each case varies according to the number of the component

service transaction, Ncst, of CTA. We set Ncst to 3, 4, and 5

cst in case 1, case 2, and case 3, respectively. The values

(calculated in ms) for the other parameters are kept similar

across these three cases, i.e., Pcon = 0.90, Tcom = 70,

Tcon = 55, Tres = 45, Wnet = 10 Fnet = 5, PDCcon =

PDCres = PDCcom = 0.03, and DRCt = 500. Figure 3

shows the PTavg for each of the three cases.

It is clear that a CTA with a larger number of component

service transactions (cst) needs more processing time than

the one with small number of cst. In the performance

evaluation of the classical commit protocols, it is assumed

that component transactions are processed in parallel [11],

and hence, the increase in the number of component

transaction does not affect the overall processing time of a

transaction. However, in context-aware transactions, this

assumption may not be valid due to the characteristics of

M-services.

Next, we analyze the effects of the disconnection on the

average processing of a context-aware transaction (Fig. 4).

We use the above data but increase the probabilities of

disconnection (PDCcon = PDCres = PDCcom) from 0.03 to

0.15 in the different phases of the protocol. For the sake of

simplicity, we assign the same values to the probabilities of

disconnection during context gathering, service reserva-

tion, and commit phases. It is observed that disconnection

significantly degrades the performance of context-aware

service transactions and it must be minimized using

appropriate methods.

The other main factor that affects the performance of

context-aware transactions in the proposed protocol is the

reservation of services.

Figure 5 shows two scenarios of the average processing

time of a context-aware transaction—one with service

reservation and one without service reservation. Though

the service reservation increases the average processing

time, it significantly improves the throughput (commit rate)

of context-aware transactions (as shown in Fig. 6). It also

reduces the chances of executing compensating actions in

case of a transaction abort.

0

200

400

600

800

1000

1200

1400

1 2 3
Case

T
im

e
(m

s)

Fig. 3 Average processing time, PTavg

0

200

400

600

800

1000

1200

1400

1600

1 2 3

Case
T

im
e

(m
s)

PDC=0.03

PDC=0.15

Fig. 4 Effects of disconnection on PTavg

Pers Ubiquit Comput (2011) 15:821–831 829

123

Next, we adopt the method from [12] in order to analyze

the effect of service reservation on the throughput of a

CAT. This method is based on the probability theory which

assigns various probabilities to the commit and abort

actions of a CAT. We conduct different experiments using

various probabilities, and accordingly, calculate the

throughput (commit rate) of CAT as shown in Fig. 6. It

shows that the commit rate of a CAT significantly increases

using the service reservation. Thus, the benefits of service

reservation outweigh its limitation in terms of the pro-

cessing overhead.

6.3 Prototype implementation

The proposed model is implemented as a prototype, called

‘‘Smart Campus’’ [26]. The implementation architecture is

shown in Fig. 7. The aim of the Smart Campus prototype is

to assist students and university staff with a mobile light-

weight interface that provides them with context-aware

M-services inside a university campus. Services offered

include university events calendar, directions inside the

campus, library reminders, and campus restaurants’ book-

ings. The system is capable of detecting users’ locations

and communicating through a wireless infrastructure in

order to gather context information and services requested

by the users. For this purpose, mobile devices like iPhones,

PDAs, and laptops are both offering and requesting

services.

Two mechanisms are implemented: the automatic and

the request-based service provisioning.

Automatic service provisioning: In this mechanism, user

does not need to register to or explicitly request a service.

Instead, services are automatically triggered by the MC

once certain context conditions are met. The MC offers

services to the user without explicit requests. For example,

the library reminder service is triggered when the deadline

is approaching, the restaurant’s menu is sent to the user

when it is lunch time and the user is not in class.

Request-based services: It corresponds to the response

to the users’ queries. For example, the user explicitly

requests the room occupancy schedule service to check

whether she can plan a meeting there.

The prototype system is developed as a proof of concept

for checking the validity of the proposed model. However,

this will be extended in order to include the simulation of

the analytical model presented in the preceding section.

7 Conclusion and future research

This paper proposed a new model for context-aware

transactions in mobile services. The aim was to manage

transactions such that they comply with the required con-

text of the desired services and adapt to the environmental

conditions and users’ needs. The paper also presented the

0

200

400

600

800

1000

1200

1400

1 2 3

Case

T
im

e
(m

s)

No reservation

Reservation

Fig. 5 Overhead of service reservation

Fig. 6 Effects of service reservation on throughput

Fig. 7 Example of the context-aware transaction implementation

830 Pers Ubiquit Comput (2011) 15:821–831

123

protocol that is used to execute the context-aware trans-

actions in mobile services. The protocol ensures that con-

text-aware transactions enforce the RACCD criteria, which

is crucial to maintaining the correctness of M-services and

the consistency of their underlying data. In order to test the

validity of the proposed model, a prototype system has

been developed. A number of performance management

experiments have been conducted in order to evaluate the

performance of context-aware transactions in terms of pro-

cessing time, message delay, and transaction throughput.

The observation made from the evaluation is that the

proposed protocol could be optimized in order to reduce

the processing time and message delay and to increase the

transaction throughput. We also aim to develop models in

order to include failure and recovery in the performance

management of context-aware transactions.

References

1. Pilioura T, Tsalgatidou A, Hadjiefthimiades S (2003) Scenarios

of using web services in M-commerce. ACM SIGecom Exch

3(4):28–36

2. Benatallah B, Dumas M, Sheng QZ (2005) Facilitating the rapid

development and scalable orchestration of composite web ser-

vices. Distrib Parallel Databases 17(1):5–37

3. Maamar Z, Sheng QZ, Benatallah B (2003) Selection of web

services for composition using location of provider hosts crite-

rion. In: Proceedings of UMICS Workshop, Austria

4. Maamar Z, Sheng QZ, Benatallah B (2004) On composite web

services provisioning in an environment of fixed and mobile

computing resources. Inf Technol Manag 5(3):251–270

5. Kuramitsu K, Sakamura K (2001) Towards ubiquitous database

in mobile commerce. In: Proceedings of 2nd ACM international

workshop on data engineering for wireless and mobile access,

California, USA

6. Younas M, Eaglestone B, Chao K-M (2004) A low latency

resilient protocol for e-business transactions. Int J Web Eng

Technol 1(3):278–296

7. Chen G, Kotz D (2000) A survey of context-aware mobile

computing research. Dartmouth Tech. Report TR2000-381

8. Mostéfaoui SK (2005) Supporting context-aware services in

pervasive environments. PhD thesis University of Fribourg

9. Malandrino D, Mazzoni F, Riboni D, Bettini C, Colajanni M,

Scarano V (2010) MIMOSA: context-aware adaptation for

ubiquitous web access. Pers Ubiquit Comput 14(4):301–320

10. Lin C, Jin B, Long Z, Chen H (2011) On context-aware distrib-

uted event dissemination. Pers Ubiquit Comput 5(3):305–314

11. Younas M, Eaglestone B, Holton R (2000) A review of multi-

database transactions on the web: from the ACID to the

SACReD. In: Proceedings of 17th BNCOD conference, Exeter,

UK, pp 140–152

12. Mostéfaoui SK, Younas M (2007) Context-oriented and trans-

action-based service provisioning. Int J Web Grid Serv

3(2):194–218

13. Kouadri SK, Maamar Z, Narendra NC (2006) Mobile middleware

for context-aware service composition. In: Mobile Middleware,

Boca Raton

14. Dey A, Abowd G, Salber D (2001) Conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware

applications. Hum Comput Interact 16(2):97–166

15. Schilit B, Adams N, Want R (1994) Context-aware computing

applications. In: Proceedings of the first workshop on mobile

computing systems and applications (WMCSA), Santa Cruz,

California, USA, 1994, pp 85–90

16. Younas M, Chao K-M, Anane R (2003) M-commerce transaction

management with multi-agent support. In: Proceedings of the

17th international conference on advanced information net-

working and applications (AINA), Xi’an, China

17. Holanda M, Brayner A, Fialho S (2008) Introducing self-adapt-

ability into transaction processing. In: Proceedings of ACM

SAC’08, Fortaleza, Ceará, Brazil, pp 992–997

18. Rouvoy R, Serrano-Alvarado P, Merle P (2006) Towards context-

aware transaction services. In: Proceedings of the 6th IFIP DAIS

Conference, Bologna, Italy

19. Kumar V, Prabhu N, Dunham M, Seydim YA (2002) TCOT: a

timeout-based mobile transaction commitment protocol. IEEE

Trans Comput 5(1):1212–1218

20. Lee M, Helal S (2002) HiCoMo: high commit mobile transac-

tions. Distrib Parallel Databases 11(1):73–92

21. Dunham MH, Helal A, Balakrishnan S (1997) A mobile trans-

action model that captures both the data and movement behavior.

Mob Netw Appli 2:149–162

22. Tang F, Guo M, Li M, You I (2008) An adaptive context-aware

transaction model for mobile and ubiquitous computing. Comput

Inform 27:785–798

23. Web Services Transaction (WS-Transaction) (2005) Avail-

able online http://www-106.ibm.com/developerworks/library/ws-

transpec/

24. Roberts J, Collier T, Malu P, Srinivasan K (2001) Tentative hold

protocol part 2: Technical specification. Available online

http://www.w3.org/TR/2001/NOTE-tenthold-2-20011128/

25. Younas M, Awan I, Chao K-M (2004) Network-centric strategy

for mobile transactions. Int J Interconnect Netw 5(3):329–350

26. Younas M, Mostefaoui S.K (2010) Context-aware mobile ser-

vices transactions. In: Proceedings of the 24th IEEE international

conference on advanced information networking and applications

(AINA), Perth, Australia, pp 705–712

Pers Ubiquit Comput (2011) 15:821–831 831

123

http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www.w3.org/TR/2001/NOTE-tenthold-2-20011128/

	A new model for context-aware transactions in mobile services
	Abstract
	Introduction
	Background
	M-services: basic concepts
	Context
	M-services characteristics

	Literature review
	The context-aware transaction model
	Context-aware transactions
	Context-aware transaction properties

	Architecture and protocol
	The system architecture
	Context-aware transaction protocol
	Phase 1: context gathering and service reservation
	Phase 2: commit process

	Evaluation and validation
	Performance evaluation
	Experimental results
	Prototype implementation

	Conclusion and future research
	References

