
A New Model for Handling Input

BRAD A. MYERS

Carnegie Mellon University

Although there has been important progress in models and packages for the output of graphics to

computer screens, there has been little change in the way that input from the mouse, keyboard, and

other input devices is handled. New graphics standards are still using a fifteen-year-old model even

though it is widely accepted as inadequate, and most modern window managers simply return a

stream of low-level, device-dependent input events. This paper presents a new model that handles

input devices for highly interactive, direct manipulation, graphical user interfaces, which could be

used in future toolkits, window managers, and graphics standards. This model encapsulates interactive

behaviors into a few “Interactor” object types. Application programs can then create instances of

these Interactor objects which hide the details of the underlying window manager events. In addition,

Interactors allow a clean separation between the input handling, the graphics, and the application

programs. This model has been extensively used as part of the Garnet system and has proven to be

convenient, efficient, and easy to learn.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user

interfaces; 1.3.6 [Computer Graphics]: Methodology and Techniques

General Terms: Human Factors

Additional Key Words and Phrases: Direct manipulation, input devices, interaction, interaction
techniques, model-view-controller, object-oriented design, user interface management systems.

1. INTRODUCTION

The Interactors subsystem of the Garnet project [21] provides a new model for
handling input from the mouse and keyboard. This model provides a high-level
interface that is independent of the details of the underlying window manager’s
input event mechanism, but is still flexible enough to support arbitrary looks
and feels. Interactors can handle all conventional mouse and keyboard-based
interaction techniques such as menus, scroll bars, and buttons, as well as
application-specific interactions such as selecting and moving boxes and arrows
in a graph editor. Each Interactor is entirely independent of the particular

This research was sponsored by DARPA (DOD) under contract F33615-87-C-1499, ARPA order 4976,

Amendment 20, monitored by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories,

Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OH 45433-6543. The views and
conclusions contained in this document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of the Defense Advanced Research

Projects Agency or the U.S. Government.

Author’s address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1990 ACM 1046-8188/90/0700-0289 $01.50

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990, Pages 289-320.

290 * Brad A. Myers

graphics used for the feedback. Therefore, the graphics, the input handling, and
the application program can all be defined separately and independently. Inter-
actors also support multiple input devices operating at the same time and
multithreaded dialogues.

The observation that makes Interactors feasible is that there are only a few
distinct behaviors used in graphical user interfaces. For example, although the
graphics can vary significantly and the specific mouse buttons may change, most
menus behave in the same manner. Another example is that many different kinds
of objects might want to follow the mouse around (be “dragged” with the mouse).

Garnet captures these common behaviors in a small set of Interactor objects
while still providing a high degree of customizability to application programs.
There are currently only six types of Interactors, and these are sufficient to
handle all interaction in our user interfaces. The types are Menu-lnteractor, Move-
Grow-Interactor, New-Point-Interactor, Angle-Interactor, Text-Interactor, and
Trace-Interactor. Parameters to these Interactors, such as what events cause
them to start and stop and what graphics should be used, allow significant
customization.

This paper discusses the current design of the Garnet Interactors, along with
a number of important trade-offs and design decisions that were made along the
way. It is a longer version of a previous paper [181. A complete reference manual
for the current implementation of Interactors is also available [22].

2. RELATED WORK

Garnet can be considered a User Interface Management System since it helps
build user interface software. UIMSs have been surveyed in various articles
[17, 241.

The primary influence on the Garnet project was the Peridot UIMS [16, 191.
Peridot was a construction tool that allowed toolkit items (menus, scroll bars,
buttons, title line, and iconic controls for windows, etc.) to be created without
programming. It successfully encapsulated mouse interactions into three different
kinds of objects, and was able to handle all the mouse-based interaction tech-
niques in the Macintosh Toolbox. Peridot did not handle any keyboard input,.
The Garnet Interactors are generalizations of the interaction objects in Peridot
and are easier to use.

There have been many other attempts to separate input devices from applica-
tion programs. The approach used by all of the graphics standards (PHIGS,
GKS, CGI, CORE, etc.) identifies five or six basic input types (e.g., locator,
stroke, valuator, choice, pick, and string for PHIGS [as]). This is based on a
model by Foley and Wallace [7]. In all of these, the goal is to free the designer
from details of the interaction and the device it is implemented on. This is

achieved by hiding, for example, whether “pick” is implemented by pointing on
the screen, by typing the name of an object, or by successively highlighting items
and having the user press a button when the correct one is highlighted. Similarly,
the programmer has no control over what kind of menu is used when a “choice”
input is requested.

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990.

A New Model for Handling Input 291

Unfortunately, these abstractions have proven to be inadequate and inappro-
priate for modern user interfaces [14], in two important ways:

(1) They are modal. For example, if the programmer requests a “choice” input,
the system blocks while waiting for the user to choose an item from a menu.
The user cannot, say, choose a graphic object instead. Therefore, it is not
possible to allow the user either to pick a graphical item in the main editor
window or to choose from a palette or one of a set of menus, as is common
in virtually all Macintosh applications.

(2) They restrict the programmer too much. There is little control over the style
of menus, the way that graphic objects are selected, or what feedback is
shown during the operation.

The Garnet Interactors provide a similar degree of device-independence, while
being nonmodal and providing flexibility of look and feel (for example, the
programmer has complete control over the feedback graphics and behavior for
menus).

The Garnet Interactors are similar to the Smalltalk “model-view-controller”
(MVC) paradigm [12]. The idea in MVC is to separate the code into three parts:
The model which embodies the application semantics, the view which handles
the output graphics that show the model, and the controller which handles input
and interaction. Unfortunately, programmers have found that the code for the
controller and view are often tightly interlinked; creating a new view usually
requires creating a corresponding new controller. In fact, both are often also
entwined with the model, so all three need to be recoded.

In Garnet, the Interactors serve as the controller, the object-oriented graphics
are the view, and conventional Lisp code is used for the model. Constraints are
used to tie the parts together. The primary difference from the Smalltalk MVC
is that in Garnet, the programmer does not create new types (subclasses) of
Interactors, but rather supplies parameters to instances of the built-in types.
This makes it clearer what information should be implemented as part of the
interactors and what should go in the view and model. Also, because there are
built-in interactors for the behaviors that programmers need, the programmer
does not need to code event handlers, so it is less work to make objects respond
to input in Garnet than in Smalltalk.

Because in the MVC paradigm it is often difficult to decide which functionality
should go into the view and which into the controller, some object-oriented
systems either have not used any separation, or, like the Andrew toolkit [26],
have only used two parts: the view (which handles all input, output, and
interaction) and the model. The problem with this is that the view must handle
all input events and output drawing and must be recoded whenever either changes.

The MacApp application builder for the Macintosh uses “command” objects
to encapsulate the handling of input [33]. When a menu item is selected, MacApp
creates the appropriate command object and calls a standard method in it.
The command object is responsible for executing the command and saving
enough information to undo it. MacApp supplies standard command objects

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990.

292 * Brad A. Myers

for some operations, such as opening and closing files and moving a bounding
box with the mouse, but for most operations, the programmer must code new

methods.
Other object-oriented systems have also had specific objects to handle com-

mands. For example, GWUIMS uses the same split as MVC, separating the
interface into representation objects, interaction objects, and application objects
[29]. IDL has an “action schema” for each action defined by the user interface
and a “parameter schema” for each parameter required for the action [9]. These
must be coded for each new command and parameter.

A significant difference in Garnet from the above systems is that the Interactor
types are parameterized sufficiently so that the programmer does not need to
create new types or subclasses. Therefore, the Interactors are much more than
just a methodology for structuring the software that the programmer must write;
rather, they supply high-level functionality that programmers use.

The X toolkit tries to separate some properties of the graphics from the rest
of the interaction techniques with separate “geometry managers,” but typically,
new geometry managers are needed for every new interaction technique.

In some user interface tools, such as DialogEditor [5], the term “Interactor” is
used for what this paper calls interaction techniques or widgets. These are
buttons, menus, sliders, and so forth, and contain both graphics and behavior.
These are therefore not related to the “Interactors” described here.

Some other ideas that have been used for programming the response to input
events are transition networks [ll], event languages [lo], and multiple-process
models [4]. Unfortunately, these have proven difficult to use and unpopular with
user interface designers [251.

3. FEATURES OF INTERACTORS

Interacbors make it much easier to program user interfaces, while still providing
a high degree of flexibility. In particular,

-they are independent of the graphics and application program and can be
specified separately;

-the details of the input handling are hidden from the programmer, providing
window manager independence;

-they make it easier to create user interface building tools;

-they make programming user interfaces easier;

-they support rapid prototying;

-they promote code reuse;

-they support multiple behaviors attached to the same object;

-they support multiple input devices operating in parallel;

-they simulate multiple processing in a single process; and

-they can handle “semantic feedback.”

These features are expanded upon in the following sections,

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990.

A New Model for Handling Input

January

eR
April

W
June
m

August
September

October
November

lU December

I ’ Mode is: Big String

A 4 List-Add

PMonday
Tuesday +

History

Math

~~~I,tXcience 

Biology 

English 

Basket Weavins 

Fig. 1. The same Interactor type can he used for menus with very different feedback and 
background graphics. Here, the interim feedback is a reverse-video rectangle (a) and (e), an outline 

box (c), moving the item towards its shadow (d), or changing the item itself to be italic (f). The 

final feedback is an outline box (a), moving the item left or right (b), plus signs (c), a reverse- 

video rectangle (d), or turning the item itself bold (f). 

3.1 Independent of the Graphics and Application Program 

It is well known that separating the definition and coding of the graphics, 
interactive behavior, and application program is an important, yet very difficult 
goal in user interface software design [lo, 271. The Interactors in Garnet are 
entirely independent of the particular graphics used to present the behavior (see 
Figure 1). There is a standard protocol used for interactors to query and modify 
the graphics, so each can be defined separately. They can then be attached to 
application programs using constraints (which are relationships that are defined 
once and maintained automatically by the system) or conventional call-back 
procedures. 

Many existing toolkits, such as the Macintosh Toolbox and Motif, provide a 
fixed look and feel. Garnet is specifically designed to allow explorations of new 
looks and feels. Predefined widgets can be selected from a library when that is 
desired (a library of widgets with a unified look and feel is supplied with Garnet). 

Providing a look and feel independent interface is also required so that 
Interactors can handle the interactions of the application-specific parts of the 
user interface, which most other toolkits ignore. For example, Interactors support 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



294 ’ Brad A. Myers 

the selection and moving of arbitrary application objects, independent of the look 
of the application graphics. 

3.2 Hide Input Handling 

Interactors also provide a level of window manager independence. The designer 
is freed from details of how events are queued and how exception conditions are 
presented. The object-oriented graphics package of Garnet and the Interactors 
provide a complete layer that hides the complex details of the window manager 
interface from application programs. This makes it possible to have Garnet 
implementations for different window managers (such as X/11 and Macintosh 
QuickDraw) and allow applications to be ported with little or no modifications. 
The event handling portion of the code in the Interactors package is only about 
one page long, so porting it to new window managers is easy, especially since all 
window managers use essentially the same input model.’ 

3.3 User Interface Tools 

Since behaviors can be specified by simply supplying parameters to Interactors, 
it is easy to provide graphical, direct manipulation tools that can attach in- 
put handling to graphics. For example, the Garnet user interface builder, 
called Lapidary, provides dialog boxes for attaching behaviors to objects (see 
Section 8). 

3.4 Make Programming Easier 

The primary goal of Interactors is to allow the commonly used and “surprisingly 
intricate” [4] input device handling code to be created easily. This has been 
achieved by identifying the primitive behaviors used in interfaces and the 
appropriate parameters to customize them. The programmer then only needs to 
create an instance of the desired behavior, attach it to the graphics, and the user 
interface is ready to operate. 

Often, it is not even necessary for the programmer to write any code. The 
Interactors can be completely created by demonstration using graphical tools, 
such as Lapidary. 

3.5 Rapid Prototying 

Another important advantage is that is is easy to investigate different looks and 
feels quickly. New parameters can be supplied to the existing Interactors, either 
by programming or by using Lapidary, and the new interface executed immedi- 
ately. Similarly, new Interactors can be attached to graphics on the fly, even 
while the interface is running. 

3.6 Code Reuse 

In most conventional object-oriented systems and object-oriented toolkits, when 
the programmer wants a new form of interaction technique or widget, both 
the messages that handle the graphics and those that handle the behavior 
must be reprogrammed, since usually none can be inherited without change. 

1 Porting the output graphic operations requires more work, however. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input l 295 

With Interactors, the programmer uses the built-in behaviors. An instance of an 
Interactor of the appropriate type is created, some parameters are supplied, and 
the new behavior is ready. If an existing Interactor supplies almost the correct 
behavior, the programmer can simply use that Interactor as a prototype, and 
override the particular parameters that need to be changed and the rest will be 
inherited. Therefore, less new code needs to be written. 

3.7 Multiple Behaviors on the Same Objects 

Another difference from conventional object-oriented approaches, where the 
behaviors are all inherited from super classes, is that different behaviors can be 
attached to the same graphics. This could be used, for example, to have one 
Interactor operate a menu when the left mouse button is pressed and another 
Interactor move the menu when the right mouse button is pressed. These kinds 
of behaviors can rarely be mixed in other systems without writing new methods, 
even when multiple-inheritance is available. 

This can also be used to combine different Interactors to create a composite 
behavior. For example, a scroll bar can be created out of Menu Interactors for 
the buttons and a Move-Grow Interactor for the indicator itself. 

3.8 Multiple Devices and Processes 

Interactors directly support multiple input devices active at the same time. 
Therefore, Interactors can be used when multithreaded dialogues [31] are desired. 
For example, one Interactor might be handling input from the mouse while 
another is handling the keyboard. The application program can be completely 
unaware of this parallelism because it is handled internally by the Interactors. 
Research has shown that people can effectively and easily use two hands to 
provide such parallel input and thereby execute certain tasks much quicker [2]. 
In the future, there will be additional Interactor types to handle alternative input 
devices, such as joysticks, physical knobs, and touch tablets. 

In addition, Interactors can simulate multiple processing in a single process. 
Different windows can have different applications running in them in the same 
Lisp process, but events will be distributed appropriately to the appropriate 
window. As long as the processing associated with each event is short, it will 
appear as if each window has its own process. When a long operation is required, 
and if real multiple processing is available, the operation can be passed off to 
another process so the interaction can continue.’ 

3.9 Semantic Feedback 

A system uses “semantic feedback” when the application program must process 
the input events in order to decide what feedback to show the user. Interactors 
modify feedback graphics indirectly (see Section 6.3.1), so application programs 
can insert constraints to perform appropriate filtering on the data. 

’ Garnet is designed to run on any CommonLisp implementation, and there is no standard multiple- 

process mechanism in CommonLisp, although many versions do have one. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



296 - Brad A. Myers 

4. THE GARNET PROJECT 

Garnet, which stands for Generating an Amalgam of Real-time, Novel Editors 
and Toolkits, aims to make highly interact&e, direct manipulation user interfaces 
easier to create [21]. Garnet is implemented in CommonLisp and runs on top of 
the X/11 window system or Macintosh QuickDraw. Garnet is therefore portable 
and runs on various machines and operating systems. It does not use the Common- 
Lisp Object System (CLOS) or any Lisp or X toolkit (such as CLUE, CLIM, 
Xtk, or Interviews). 

Garnet, contains both low-level and high-level tools. The low level is the 
“Garnet Toolkit,” and it contains a prototype-instance object system, a constraint 
system [30], a graphic object system featuring automatic graphic object updating, 
the Interactors, and a collection of widgets such as menus, gauges, buttons, scroll 
bars, browsers, error windows, and so forth. 

The toolkit has been available for some time now and is in active use by ovei 
25 projects at CMU and elsewhere.3 

The high-level Garnet tools include the Lapidary interface builder [20], which 
allows the user interface designer to draw pictures of what the user interface 
should look like and then demonstrate how it should act, and the Jade Dialog 
Box creation system [32], which automatically creates menus and dialog boxes 
from a list of their contents. 

Garnet is designed to handle interfaces containing a number of graphic objects 
(up to about 2,500) which the user can manipulate with the mouse and keyboard. 
Garnet is suitable for applications such as drawing programs like MacPaint and 
MacDraw, network editors like MacProject, iconic command interfaces like the 
Macintosh Finder, graphical programming language editors [15], tree and graph 
editing programs, board game user interfaces, simulation and process monitoring 
programs, form and dialog-box based interfaces, and some types of CAD systems. 
Garnet will not handle command line parsing or text editing (other than small 
strings used as labels). 

5. TAXONOMY OF INTERACTION TECHNIQUES 

The design for the Interactors was based on the observation that there are only 
a few ways in which the mouse and keyboard are used in interfaces. An earlier 
classification [8] listed the following interaction tasks: select, position, orient, 
path, quantify, and text. If only a mouse and a keyboard are available, then the 
quantify task can only be accomplished by typing a number (text) or moving an 
on-screen slider (position). 

In Garnet, the five remaining tasks are each assigned to a separate Interactor 
type. The position task is actually divided into two Interactors, depending on 
whether a new object is about to be created or an existing object is being modified. 
Therefore, the six types of Interactors are: 

-Menu-Interactor-select, 

-Move-Grow-Interactor-position, 

’ The Garnet toolkit is available for free. It is currently licensed to over 80 companies and universities 

throughout the world. Contact the author for more information. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input l 297 

-New-Point-Interactor-position, 

-Angle-Interactor-orient, 

-Text-Interactor-text, 

-Trace-Interactor-path. 

These are sufficient to cover all of the kinds of interactive behavior used in 
mouse-based, graphical user interfaces (see Section 7). 

Since Interactors are implemented in an object-oriented fashion, it is relatively 
easy to create new Interactor types, but this is only necessary for radically 
new interaction tasks, such as gestures and character recognition. Also, new 
input devices such as joysticks and touch tablets will probably require new types 
of Interactors. 

6. DESIGN OF THE INTERACTORS 

In a user interface, there is one Interactor object for each set of graphic objects 
that behave similarly. For example, there is one Interactor object to handle each 
menu (rather than, say, one per item). The Interactor object then handles all 
input events that are relevant to those graphics, and modifies the graphics as 
appropriate through a well-defined protocol. 

Each Interactor is parameterized in various ways. For example, the designer 
can specify which mouse button or keyboard key causes the Interactor to start 
operating. The parameters for Interactors are described in Section 6.1. Then the 
specific Interactor types are presented (Section 6.2), followed by the protocol 
that the Interactors use to connect to the graphics (Section 6.3) and application 
programs (Section 6.4). Some extra examples are given in Section 6.5, followed 
by details about the internal state machine of each Interactor (Section 6.6), and 
a discussion of how they are used in widgets (Section 6.7). Finally, some advanced 
features of Interactors are discussed in Section 6.8, such as the use of formulas 
and priority levels, and the support for modes and multiple windows. Section 7 
discusses the coverage of the Interactors in detail, and Section 8 presents some 
techniques for creating Interactors without programming. Section 9 discusses 
some tools that can be used to debug interfaces created using Interactors. 

6.1 Parameters to Interactors 

In designing the Interactors, there are many tradeoffs that have to be considered. 
The current design attempts to balance flexibility and power with ease of use. 
The interactors in the earlier Peridot system were much simpler than Garnet’s 
and had fewer parameters. Therefore, multiple interactors were needed for many 
common operations. For example, to have an outline (feedback) box follow the 
mouse while a button is pressed and have the object jump to the final position 
when the mouse button is released (as in Figure 4b) required three Peridot 
interactors: one to control the visibility of the feedback object, one to have it 
track the mouse, and one to have the actual object jump to the final position. In 
Garnet, the Interactors are at a higher level so that this behavior is achieved 
with one Interactor. A result of this is that individual Interactors have more 
parameters (to control the various options for feedback), but typical operations 
are much easier to achieve. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



298 - Brad A. Myers 

The following sections discuss some of the parameters to Interactors that are 
shared by the different types. Other parameters that are unique to a specific type 
of Interactor are discussed in Section 6.2. It is important to mention that there 
are reasonable defaults for all values, so typically the programmer has to specify 
very little to create an Interactor. For example, the default start event is :leftdown 
(left mouse button down), and the default stop event is :leftup, and if this is 
acceptable, the programmer does not have to specify any events. Figure 2 
summarizes all the slots of Interactors available to the programmer.4 

6.1.1 Eoents. An Interactor will start running when its start event occurs and 
continues running until a stop event occurs. There may also be an abort event 
that will prematurely cause it to exit and restore the status as if it had not 
started.5 All Interactors are able to restore the state if an abort event happens. 

The “event” is usually a transition of a mouse button or keyboard key. The 
value provided to an Interactor can be a single event (e.g., :left button, #\control- 
G), one of a set of events (e.g., (:leftbutton or :rightbutton, :anykeyboard), or one 
of these with exceptions (e.g., :anybutton :except :leftbutton). These can also be 
qualified using the standard modifier keys: shift, control, or meta. 

6.1.2 Feedback. The most unique parameters to Interactors control which 
graphic objects are modified by the operation. There is a standard protocol 
through which the objects are queried and modified (see Section 6.3). This holds 
for both feedback objects, if any, and the actual objects modified. 

There are two types of feedback that might be associated with an interactor. 
Interim feedback shows what is happening while the interaction is in progress. 
Final feedback might be used to show the user’s final selection (see Figure 3). 
Parameters to the Interactor specify the objects to use as feedback or whether 
there is a feedback object at all. For example, (see Figure 4) the Interactor that 
moves objects can have either the object itself following the mouse, or special 
interim feedback graphics might follow the mouse (an outline box is used in 
MacDraw), and the object jumps to the final location when the Interactor 
completes (e.g., when the button is released). Garnet will automatically replicate 
the feedback object as necessary, if multiple selections are allowed. 

Since all graphic objects are handled alike, the Interactors are entirely inde- 
pendent of the specific graphical representations on the screen. For example, the 
feedback graphics to show which item in a menu is selected can be an outline 
box, a reverse-video rectangle, a collection of objects that form a plus sign, or 
whatever the user interface designer can imagine, and the same Interactor is used 
without modification (see Figure 1). In fact, the feedback can be a change to the 
menu items themselves, rather than a separate object that is XORed over the 
items. For example, Figure If shows a menu where the items change to be bold 
or italic, and in Figures lb and Id, the items move when selected. This is 
explained more fully in Section 6.3. 

4 “Slot” is our name for an instance variable, and the slot names in Garnet always start with a colon. 

The “parameters” to interactors are specified by providing values for the various slots, as explained 

in Section 6.5. This paper therefore uses “slot” interchangeably with “parameter.” 

5 Section 6.6 discusses the state machine that controls Interactors in more detail. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input 299 

6.1.3 Which Objects. A parameter to the Interactor determines where the 
mouse needs to be when the start event happens for the Interactor to start 
operating. For example, in a menu, this would be “over one of the items in the 
menu.” Similarly, for a graphics editor, the list of objects might be any of the 
graphic objects that can be selected. This is encoded into the :start-where slot of 

the interactor. 
Another parameter determines which graphic objects the Interactor operates 

on. Usually, this is the same as the objects the Interactor is defined to start over. 
For example, if the programmer specifies to start over an item in a menu, the 
Interactor will operate on the items of the menu. A case when these are not the 
same is a scroll bar that allows the user to press anywhere in the “elevator” 
(background) to start moving the indicator (rather than requiring a press on the 
indicator as in the Macintosh). Here, the :start-where is over the background, 
but the object to change is the indicator. Therefore, in this case, the indicator 
object would need to be provided as the :obj-to-change parameter. 

The :start-where slot takes a list that specifies whether to look at a single 
object, any element of an aggregate object (optionally, only those elements of a 
certain type), or any element of a list of objects. 

If the programmer wants some items to be illegal and not pickable (such as the 
gray items in Macintosh menus), then this information can be passed to the 
interactor in a different parameter. Of course, the particular graphics used to 
show that the item is illegal is arbitrary and independent of the Interactor. 

In general, there will be an instance of one of the Interactor types for each 
entire menu, each set of buttons, and each set of objects to be moved. For 
example, for a scroll bar with two arrow icons (see Figure 5), there would be two 
Interactors: one Menu-Interactor to handle both icons, and one Move-Grow- 
Interactor to allow the indicator to be moved. Having the Interactors work on a 
set of objects (rather than just on one individual object) significantly decreases 
the number of Interactors that are needed. 

6.1.4 Outside. Many interactions should be suspended if the mouse goes out- 
side of an active region. Therefore, a parameter to Interactors specifies what the 
active area is, and whether going outside signifies to use the last legal value or to 
go back to the original value. For example, moving outside of a menu might cause 
there to be no selection, whereas moving outside of a slider might use the last 
legal, inside value. The programmer can also specify that the operation simply 
continue no matter where the mouse moves. This is all encoded into the :running- 
where parameter to the interactors. 

6.1.5 Continuous or One-shot. A parameter determines whether the Interactor 
operates once when the start event happens or continuously from the start event 
to the stop event. For example, one menu might select the item under the mouse 
when the left button is pressed and ignore any subsequent motions (one-shot), 
whereas another menu might have interim feedback that follows the mouse while 
the button is held down and stops when the mouse button is released (continuous). 

6.2 Types of Interactors 

As described in Section 5, there are six types of Interactors. The following 
sections describe how they operate. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



300 * Brad A. Myers 

Slot Section Parameter Default Comment 

type value 

:start-event 

:stop-event 

:abort-event 

:interim- 

feedback 

:final- 

feedback 

:start-where 

:obj-to- 

change 

:illegal 

:running- 

where 

:continuous 

:move-to- 

next-p 

:how-set 

:repeat-rate 

:attach-point 

6.1.1 

6.1.1 

6.1.1 

6.1.2 

6.1.2 

6.1.3 

6.1.3 

keyboard key, 
mouse button 

or 

combination 

keyboard key, 

mouse button 

or 

combination 

keyboard key, 

mouse button 

or 

combination 

an object or 

collection of 

objects 

an object or 

collection of 

objects 

one of :in, 

:element-of, 

:list-element- 

of followed by 

an object 

an object or 

collection of 

objects 

6.1.3 list of objects 

6.1.4 list of objects 

6.1.5 T or NIL 

6.2.1 T or NIL 

6.2.1 

6.2.1 

one of: :set 

:clear :toggle 

:list-add 
:list-remove 

:list-toggle 

NIL or a 

number 

6.2.2 one of :nw :n 

:ne :e :se :s :sw 

:w :center 

:where-hit 1 2 

:leftdown 

:leftup 

-G 

NIL 

NIL 

must be 

supplied 

NIL 

NIL 

based on 

.&art-where 

T 

T 

:set 

NIL 

:where-hit 

Starts the interactor 

Stops the interactor 

Aborts the interactor 

Object to be used as interim 

feedback. Its :obj-over slot is 

set 

Object to be used as the final 

feedback. Its :obj-over slot is 

set 

Where the mouse must be 

when the start event 

happens for the interactor to 

begin 

If supplied, then interactor 

modifies this object rather 

than return from 
:startwhere 

Which items are now illegal 

Where the mouse must be 

for the interactor to be 

active while running 

Whether the interactor is 

continuous or one-shot 

Does interim-feedback move 

to other objects when mouse 
moves? 

Object added, removed, or 

toggled in selection set. Also 

controls how may objects are 

selected 

Speed menu-interactor 

repeats if mouse button held 
down 

Where the object should 

move or grow from with the 

mouse. 1 and 2 are the end 

points of a line 

Fig. 2. AI1 of the Interactor slots (parameters) that can be customized by programs. The “section” 

column shows which section of this paper it is discussed in. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input - 301 

Slot 
Parameter Default 

Section type value Comment 

:line-p 

:grow-p 

:min-width 

:min-height 

:min-length 

:abort-if-too- 

small 

:flip-if- 

change-side 

:center-of- 

rotation 

:key- 

translation- 

table 

:Iinal- 

function 

:active 

waiting- 

priority 

:running- 

priority 

window 

:start-action 

:running- 

action 

:stop-action 

:abort-action 

:outside- 

action 

:back-inside- 

action 

6.2.2 T or NIL NIL 

6.2.2 T or NIL NIL 

6.2.2 number 0 

6.2.2 number 0 

6.2.2 number 0 

6.2.3 T or NIL T 

6.2.3 T or NIL T 

6.2.4 coordinate center of the 

object 

6.2.5 a table default 

editing table 

6.4 a function NIL 

6.8.2 T or NIL T 

6.8.3 

6.8.3 

a priority level 

a priority level 

standard- 

priority 

high-priority 

6.8.4 

6.8.5 

6.8.5 

a Garnet 

window 

a function 

a function 

must be 

supplied 

based on 

type 
based on 

type 

6.8.5 

6.8.5 

6.8.5 

6.8.5 

a function 

a function 

a function 

a function 

based on 

type 

based on 

type 

based on 

type 

based on 

type 

Whether the object is 

defined by end-points or a 

bounding box 

Whether to grow or move 

object 

Minimum width 

Minimum height 

Minimum length for a line 

If smaller than minimum, 

abort or just use the 

minimum value 

Flip over if move to upper 
left 

Where to measure rotations 

around for an angle 

interactor 

Translation table for text 

interactor editing operations 

Application function to call 

when interactor complete 

Whether interactor can run 

or not 

Level while waiting to start 

Priority level while running 

Window or windows that the 
interactor runs in 

Procedure executed when 
start 

Procedure executed for each 
mouse movement when 

running 

Procedure executed when 

stop 

Procedure executed when 

abort 

Procedure when go outside 

of running where 

Procedure when return 

inside 

Fig. P-Continued 

6.2.1 Menu Inter-actor. Menu Interactors are used, not surprisingly, mostly for 
menus. In general, they can be used to choose one or more item from any set of 
items. A final feedback object (e.g., a reverse video rectangle) is often shown over 
the selected item. Typically, an interim feedback object becomes visible when 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



302 l Brad A. Myers 

Fig. 3. Two Macintosh-like radio buttons, with the 

parts labeled as to the roles they play in the Menu 

Interactor. The interim feedback appears when the 

mouse button is pressed, and it goes away and the 

final feedback appears when the mouse button is re- 

leased. 

1 

(b) 

Fig. 4. Two options for the feedback with Interactors. On the top row (a), the object follows the 

mouse directly while the button is pressed. On the bottom row (b), the user presses a button over 

the circle, and an outline box follows the mouse until the button is released, when the circle jumps 

to the final position. 

the start event happens, and it moves from item to item as the mouse moves. If 
the :Move-to-Next-p parameter is NIL, however, then the feedback will not move 
from one item to another. In this case, the user is allowed to point to any of the 
set, but moving away from that item causes it to be deselected; a different item 
will not be selected. The user must release the mouse button and press again to 
move the feedback to a different item. This is how radio buttons and check boxes 
work on the Macintosh. When the stop event happens, the final feedback (if any) 
is displayed. Figure 1 shows various menus. 

A parameter determines how many items should be selected, and whether the 
new item should be added or removed from the selection set. For example, if the 
left mouse button should cause items to become selected, but the right button 
should cause them to be deselected, then the programmer can use two Interactors 
with different start events. One Interactor would add the item to the selected set, 
and the other would remove it. A more common case is that a single Interactor 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input . 303 

34 

24 

Fig. 5. The same type of interactor can handle different graphic looks. Here, a Move-Grow Interactor 

for each indicator and a Menu Interactor for the arrow buttons are handling scroll bars that look like 

those in the Macintosh, OpenLook, NeXT, and OSF/Motif. 

will toggle whether the item is in the selected set, and in this case the :how-set 
parameter would be “toggle.” 

Menu Interactors can also be used for on-screen buttons, such as radio buttons 
and check boxes (see Figure 6), and for stand-alone buttons, such as command 
buttons or the arrows in a scroll bar. Some buttons, such as the arrows on 
Macintosh scroll bars, repeat their operation while the mouse button is held 
down. The :repeat rate parameter to the menu-interactor controls this behavior 
in Garnet. 

Menu Interactors are also used to select items in a grahics editor. The 
programmer simply creates a list of all the items that can be selected and 
associates a Menu Interactor with them. The feedback indicating which item is 
selected can be arbitrary, of course, but typically a reverse video rectangle or a 
set of “handles” would be displayed (see Figure 7). 

6.2.2 Move-Grow Interactor. The Move-Grow Interactor is used to move 
or change the size of an object or one of a set of objects with the mouse (see Fig- 
ure 8). This is quite a flexible Interactor which handles many different behaviors 
including: moving the indicator in a slider, changing the size of a bar in a 
thermometer, changing the size of a rectangle in a graphics editor, changing the 
position of a text string, changing an end-point of a line, and changing the 
position of a line while keeping its length and slope fixed. 

Parameters determine whether the object is moved or resized, an optional 
minimum size, and which part of the object is connected to the mouse (for 
example, a rectangle might be grown from any edge or corner). Another parameter 
determines if there is feedback to show how the object will change (e.g., a hair- 
line box), or if the object itself changes with the mouse (see Figure 4). 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



304 * Brad A. Myers 

Fig. 6. A Menu Interactor can be used for 

radio buttons, check boxes, command but- 

tons, and so forth. These examples are from 

the Garnet widget set. 

Helvetica 

Geneva @ 

Bold 

Italic 

Underline 

Times 
Outline 

Symbol 
Shadow 

John FI. Kolojejchick 

yyiayxi~ 

Fig. 7. A simple boxes-and-arrows editor created using Garnet. A Menu Interactor was used to cause 

objects to become selected and display the selection “handles.” Pressing on a handle causes a Move- 

Grow Interactor to start, which changes the size or position of the selected object (pressing on the 

white handles moves the object and pressing on the black handles changes the size). Pressing on the 

strings allows them to be edited, which uses a Text Interactor. An arbitrary number of new boxes 

and arrows can be added, and their initial position is specified using the mouse (implemented with a 
New-Point Interactor). Any existing box or arrow can also be selected and deleted. This entire editor 

was implemented in about four hours using the Garnet toolkit (without using Lapidary). 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input * 305 

Fig. 8. The Move-Grow Interactor can be used to change the position of an 

indicator in a scroll bar, to change the size of a thermometer bar, to move or 

change an object’s size in a graphics editor, and so on. 

Since there are often a number of objects that might be moved or resized, the 
Interactor can take a set of objects as a parameter. In this case, the object that 
is changed is the object under the mouse when the start event happens. 

6.2.3 New-Point Interactor. The New-Point Interactor is used when one, two, 
or an arbitrary number of new points are desired from the mouse. This is typically 
used when the user is creating a new graphic object such as a rectangle, line, 
polygon, and so forth. It can also be used if the programmer wants to get a region 
of the screen to find out which objects are inside (to cause all objects inside a 
bounded region to become selected, for example). A feedback object (for example, 
a rubberband line or rectangle) will usually be drawn based on the points specified. 
Parameters to the Interactor determine how many points are desired, and if the 
number is 2, whether the mode is bounding box or line (the computation of the 
minimum sizes is different). New-Point Interactor is different from the Move- 
Grow Interactor because there is no existing object to be changed; a new object 
may be created based on the results of the Interactor. 

New-Point Interactors have built-in mechanisms for handling a number of 
common constraints on the values. For example, a minimum size for rectangles 
or minimum length for lines can be specified. If a bounding box is desired, another 
parameter determines whether the new box is allowed to “flip over” the initial 
point or not. That is, if you press and then begin dragging toward the bottom 
right, a rectangle is drawn. If you then move above and to the left of the original 
point, this parameter determines whether the rectangle simply flips over, as in 
Macintosh MacDraw, or whether it stays at its minimum size below and to the 
right of the initial point, as Macintosh windows do. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



306 . Brad A. Myers 

6.2.4 Angle Interactor. This is used to calculate the angle that the mouse 
moves around some point. It can be used for circular gauges or for “stirring 
motions” for rotating [6]. A parameter determines the center of rotation. Fig- 
ure 9 shows two objects that use Angle Interactors. 

6.2.5 Text Interactor. It is not one of the goals of Garnet to deal with text 
editors. However, it is useful to be able to input text strings on the screen. The 
Text Interactor can be used to input a one-line or multiline string of text, while 
allowing editing of the string. The intension is that this be used for string entry 
in text forms, for file names, object names, numbers, and labels for pictures. 

The Text Interactor provides a full set of editing operations, including: 

-inserting characters at the cursor position, 

-moving the insert cursor around in the string (to the beginning or end, forward 
and backward, and up and down if it is a multiline string), 

-deleting the character or word before or after the cursor, or the entire string, 

-changing the cursor position with the mouse by pointing at the desired position 
in the string, and 

-copying text to and from the window manager’s cut buffer. 

By default, these are bound to keys similar to the EMACS editor command set, 
but the programmer has complete control over the bindings. In addition, the 
programmer can easily add or remove editing functions. 

6.2.6 Trace Interactor. This is used to get all of the points the mouse goes 
through between start and end events, as is needed for free-hand drawing. (This 
Interactor is the only one that has not been implemented yet.) 

6.3 Protocol with Graphic Objects 

This section discusses how Interactors interface to graphic objects, and Set- 
tion 6.4 discusses how Interactors can be connected to application programs. 

6.3.1 Modifying the Graphics. In order to keep the Interactors independent of 
the specific graphics, all modifications are done indirectly. For example, the 
Menu Interactor specifies which object is selected by setting a special slot in that 
object, called :selected. If the programmer wants the font of the selected object 
to change (as in Figure If), then a constraint is set up between the font slot of 
the string object and the special :selected slot. Constraints are implemented 
using formulas. In the Garnet object system, any slot can either contain a normal 
value (like a number) or a formula that calculates the value. Formulas can be 
arbitrary Lisp expressions, with references to slots in objects using the special 
form (gv (obj-name) (slot-name)), where gv stands for “get value.” When the 
slot is in the same object as the formula, a special form ( gvl (slot name)) can be 
used, which is the same as (gv :self (slot-name)). Therefore, the font slot of each 
menu item might be as follows: 

:font (formula (if (gvl :selected) ; If I am selected 
bold-font ; then use bold font 
regular-font)) ; else use regular font 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input 

I 6 - 

307 

Fig. 9. The Angle Interactor can be used for circular gauges or clocks. 

Similarly, if a plus sign is to appear next to the selected items (as in Figure lc), 
then the :visible slot of the various objects that make up the plus sign would be 
tied with a constraint to the :selected slot. 

6.3.1.1 Menus. The Menu Interactor uses a number of different mechanisms 
to communicate which items are selected. The programmer can pick whichever 
is most convenient for his particular application. First, the Interactor sets the 
:interim-selected slot of the graphic object the mouse is currently over while the 
interaction is running (for the interim feedback). Then, the Interactor sets the 
selected slot as described above for the final object the mouse is released over 
(to control the final feedback). Also, if the item that is selected is part of an 
aggregate (or collection) object (for example, menu items are usually part of a 
menu aggregate), then the :selected slot of the aggregate object is set with a list 
of all the objects that are selected. Finally, if there is a feedback object, then a 
special slot, called :obj-over, in that feedback object is set with the item that is 
currently selected. Constraints in the feedback object can then indirectly refer- 
ence through this slot to put the feedback over the selected object. This slot 
therefore operates like a pointer variable. For example, the reverse video rectangle 
object of Figure le uses constraints to tie its position and size to whatever object 
it is over. The formulas to do this are shown in Figure 10. 

Of course, anywhere a single object can be used for feedback, an aggregate 
object containing an arbitrary collection of graphic objects can be used instead. 
The protocol allows the Interactor to be unaware of this. 

6.3.1.2 Moving and Growing. The Move-Grow Interactor also modifies objects 
indirectly, through the use of a special :box slot. Based on the position of the 
mouse, the Interactor sets the appropriate values into the :box slot. The graphical 
object must be defined with constraints between its left, top, width, and height 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



308 - Brad A. Myers 

IEEE Softwure 

(create-instance ‘feedback-box Rectangle ; Create a rectangle, call it feedback-box. 

(:obj-over NIL) ; The interactor sets this slot with the object that should be highlighted. 
(:visible (formula (gvl :obj-over))) ; I am visible if there is an object in :obj-over. 

(:left (formula (gvl :obj-over :left))) ; The size and position is the 

(:top (formula (gvl :obj-over :top))) ; same as that of the object 

(:width (formula (gvl :obj-over :width))) ; stored in the :obj-over slot. 

(:height (formula (gvl :obj-over :height))) 

(:draw-function :xor)) ; xor this rectangle 

Fig. 10. The Interactor can simply set the :obj-over slot, and the feedback box will jump 

to the appropriate object due to the constraints. When the interaction is complete, the 

Interactor simply sets :obj-over to be NIL and the box disappears. 

slots and the appropriate position in the box slot. This allows the object to apply 

filtering on the values before they are used to determine the position. For example, 
a vertical scroll bar will have a formula that uses the Y value from the :box slot 
and ignores the x value: 

(create-instance ‘indicator-box Rectangle ; create a rectangle to use as the feedback 
; in a scrollbar. 

(:box ‘(10 20 40 40)) ; The initial (left top width height). This is slot is set by the 
; Interactor. 

(:left 10) ; The left of the Indicator doesn’t change. 
(:top (formula (second (gvl :box)))) ; The top depends on the mouse, so usewhat 

; the lnteractor sets into the :box slot. 
(:width 40) ; The size doesn’t change. 
(:height 40)) 

6.3.1.3 Others. The Text Interactor changes special slots to signify the value 
of the string and the current cursor position within the string. The Angle 
Interactor sets an :angle slot. New-Point Interactor sets either a :box or :point- 

list slot, depending on whether it is entering a bounding box or set of lines. The 
Trace Interactor sets a :point-list slot. 

6.3.2 Querying Objects. The Interactors must determine whether the mouse 
point is inside of the graphic object, in order to determine which object should 
be selected or operated on. Since all graphics are respresented as objects, this 
simply requires sending the Is-This-Point-Inside-You message to the object. Again, 
using this object-oriented approach, the Interactor does not need to know 
anything about the graphics that serve as the items to be chosen. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input * 309 

6.4 Connection to Application Programs 

Often, the desired outcome of an interactor is a change to the graphics. In this 
case, the protocol described in the previous sections is sufficient. If properties of 
additional graphic objects should be affected also, these can usually be handled 
with constraints. 

The object system in Garnet can be used by application objects also (it is not 
limited to graphic objects), so often the application’s own data structures can be 
connected to the graphic objects by constraints. For example, if a gauge is 
associated with a temperature value in the application’s data space, then con- 
straints can be used to insure that when an Interactor modifies the gauge display, 
the temperature value is also changed. 

When constraints are not sufficient, however, there is an additional mechanism 
for notifying application programs. Each interactor can take a call-back procedure 
in the :Final-Function slot, which will be called when the interaction is complete. 
The parameters that are passed to this function are specific to the type of 
interactor. For example, the Move-Grow Interactor calls the Final Function with 
the object being changed and the final position and size of the object. 

One case when the Final Function is almost always needed is for the New- 
Point Interactor. Here, there is no existing object to modify, so the application 
will usually provide a function to create a new object. 

6.5 Some Examples 

The syntax for creating and modifying Interactors is the same as for all other 
objects in Garnet, since the Interactors are objects themselves. When an Inter- 
actor is created, values for slots can be specified. Any unspecified slots inherit 
the default values, which are often sufficient. For example, to create an interactor 
to move a rectangle, the following can be used: 

(create-instance ‘mymover move-grow-interactor 
(start-where ‘(:in moving-rectangle)) 
(start-event :middledown) ; the middle mouse button 
(:window mywindow)) 

This Interactor starts operating when the middle mouse button is pressed over 
the object named moving-rectangle, and will move that rectangle until the middle 
mouse button is released (the default stop event is calculated from the start 
event). If the programmer wanted to continue moving until the middle button 
was pressed a second time, the code would be changed to the following: 

(create-instance ‘mymover move-grow-interactor 
(start-where ‘(:in moving-rectangle)) 
(:start-event :middledown) ; the middle mouse button 
(:stop-event :middledown) ; stop on middle down also 
(:window mywindow)) 

As another example, Figure 11 is a complete, minimal “Goodbye World” 
program, that creates a window with an on-screen button that causes the window 
to go away when pressed with the left button. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



310 * Brad A. Myers 

Goodbye World 

;;; First create a window and a text object; see the manual [22] for a complete explanation. 

(create-instance ‘mywindow interactor-window (:left 1 OO)(:top 10) 

(:width 150)(:height 1 OO)(:title “My Window”) 

(:aggregate (create-instance ‘myagg aggregate))) 
(create-instance ‘mytext text (:String “Goodbye World”) 

(deft 25)(:top 40)) 
(add-component myagg mytext) 

(update mywindow) 

; ; ; Now add the Znteractor 

(create-instance ‘killer Menu-Interactor 

(:window mywindow) 

(:start-where ‘(:in mytext)) ; Operate on the mytext object. 

(:continuous NIL): Happen immediately on the downpress (see Section 6.1.5). 

(:final-function #‘(lambda (inter final-obj-over)(destroy mywindow)))) ; Kill the window. 

Fig. 11. The complete “Goodby World” program created from scratch. Of course, the 

Garnet object system automatically handles all intialization and overhead, including 

refreshing the string if the window is covered and uncovered. 

; ; ; Create a window and a button object. 

(create-instance ‘mywindow interactor-window (:left 1 OO)(:top 10) 

(:width 150)(:height lOO)(:title “My Window”) 

(:aggregate (create-instance ‘myagg aggregate))) 
(create-instance ‘mybutton labeled-button (:String “Goodbye World”) 

(deft 15)(:top 25) 

(:selection-function 
#‘(lambda (gadget-object value))(destroy mywindow)))) ; Kill window 

(add-component myagg mybutton) 

(update mywindow) 

Fig. 12. The complete “Goodbye World” program using a predefined 

Garnet labeled button. The Interactor is built into the button widget. 

Typically, a programmer would not create this from scratch as done here, but 
would use a button widget from the Garnet widget set instead (see Figure 12). 
This widget itself is implemented using a Menu Interactor. In fact, using the 
Lapidary user interface construction tool (described in Section B), either of these 
interfaces could be created without writing any code by hand. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input l 311 

The 13-line program of Figure 11 might be compared to the 40-line program 
needed using straight CLX in CommonLisp, or the 60-line program needed to 
handle this using straight Xlib in C. 

The S-line program of Figure 12 should be compared with the 30-line program 
needed using the X toolkits in C (Xtk, Motif, etc.) [13]. 

6.6 The Internal State Machine 

All Interactors run the same simple state machine (see Figure 13) that handles 
starting, stopping, aborting, and suspending while outside the active region. The 
parameters to the Interactor determine what events cause the transitions. Unlike 
transition network UIMSs, such as [ 111, the designer does not explicitly deal 
with this state machine. 

The particular “-action” routines shown in Figure 13 (such as start-action, 
stop-action, etc.), are specific to the particular type of interactor. It is also 
possible for the programmer to supply custom action routines, as described in 
Section 6.8.5, but this is not usually necessary (see Section 7). 

Different Interactors can be running their individual state machines in parallel, 
which is how multiple threads can be handled. 

As an example, consider the way the Macintosh Finder highlights icons while 
an object is being dragged around if that icon can accept the object being dragged. 
Two Interactors would be used to implement this in Garnet. The first would be 
a Move-Grow Interactor to drag around the object. The feedback graphics (that 
follow the mouse) would be calculated using a constraint based on the outline of 
the object that is being moved. The second Interactor would be a Menu Interactor 
that would highlight the object that the mouse was over (Menu Interactors can 
take an arbitrary list of objects as the items to choose over, and the highlight 
moves from one item to another as the mouse moves). The application would be 
responsible for giving this Interactor a list of the appropriate objects that could 
accept the object being moved, or this could be calculated using a constraint 
which was based on properties of the icons and the object being moved. Both 
Interactors would operate in parallel and therefore receive the same mouse events. 
This is also a good example of how Garnet can handle semantic feedback. 

6.7 Use of Interactors in Widgets 

In the Garnet object system, any collection of objects can be used as a prototype 
for other instances. This prototype can contain graphic objects, Interactor objects, 
and application objects. The create-instance call creates an instance of each of 
the objects in the prototype. For example, in Figure 12, the create-instance of 
labeled-button creates three rectangles, a string, and a Menu Interactor. 

When creating instances, it is also possible to override any slots or objects. In 
Figure 12, the :string, :left, :top, and :selection-function slots of the button are 
overridden. In the same way, the programmer can override some slots of the 
Interactor, for example, to change which mouse button causes the button to 
operate. Interactors (and graphic objects) can even be added or deleted from the 
particular instance (so the drop shadow could be removed, for example). If the 
programmer makes a number of changes in an instance, then that instance could 
be used as a prototype for further instances, since there is no distinction between 
prototypes and instances in Garnet. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



312 l Brad A. Myers 

6.8 Advanced Features 

The techniques described above are sufficient for most applications of interactors. 
However, some user interface styles require additional functionality. This section 
discusses some of the advanced features that are provided. 

6.8.1 Formulas for Interactor Parameters. Because any slot in any Garnet 
object can contain a formula (constraint) instead of a regular value, slots in 
Interactors can contain formulas also. In order to make this convenient, there 
are a number of special slots set by the Interactor that can be referenced by the 
programmer’s formulas. These include the object that is being operated on and 
the event that started the interactor. 

As an example, the following Interactor decides whether to grow or move an 
object based on which mouse button is used to start it. The Interactor modifies 
whichever object in the collection called all-objs-aggregate the mouse is first 
pressed over. 

(Create-instance ‘move-or-grower Move-Grow-Interactor 
(:start-event ‘(:leftdown :rightdown)) ; Either left or right mouse button. 
(:start-where ‘(:element-of all-objs-aggregate)) ; Start if press over any element. 
(:grow-p (formula (eq :rightdown (gvl :start-char)))) ; Grow if the start-char is 

; right mouse button, else 
; move. 

(:window mywindow)) 

6.8.2 Modes. Many user interfaces have different modes, and different Inter- 
actors should be available depending on the current mode. For example, in Apple 
Macintosh MacDraw, when the mouse button is pressed in the drawing area, an 
existing object will be selected or a new object will be created, depending on the 
mode selected in the drawing palette. 

In Garnet, modes can be supported in various ways. Of course, appropriate 
Interactors can simply be created and destroyed depending on the mode, but this 
is very inefficient. Alternatively, there is a special slot of Interactors called 
:active, and this can be set based on the mode to enable and disable the Interactor 
(if :active is NIL, the Interactor will not start even if the start event happens). 
The value in this slot can be a formula that depends on whatever value determines 
the mode. 

6.8.3 Priority Levels. When an Interactor is running (between the start and 
stop events), it is usually given a higher priority than other Interactors. This 
means that it will be sent events before other Interactors. If it accepts the events, 
then they are not sent to lower priority Interactors. Therefore, for example, if 
the stop event for a running interactor is the same as the start event for another 
Interactor, the running one will get the event by default. 

This mechanism is entirely under the control of the programmer, however, 
Any number of Interactors can all get the same event, and they can all operate 
on it in different ways. For example, pressing the left mouse button while the 
cursor is over a text object may start both a Menu Interactor which shows the 
object as selected, and a Text Interactor which allows it to be edited. This can 
be achieved by simply putting the two Interactors at the same priority level. 
Another example was given in Section 6.6. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input * 313 

Running-action 

Abort-actlon 

abort-event 

start-event 

over 

start-where 

Start-action 

not over 

running-where 

Outside-action 

Abort-action 

stop-event if outside-control = Abort 

Abort-action 

stop-event if outside-control = Last 

Fig. 13. Each Interactor runs the same state machine to control its operation. The start-event, stop- 

event, and abort-event can be specified (see Section 6.1.1), as can the various -action procedures 
(Section 6.8.5). Where the mouse should be for the Interactor to start (start-where), and where it 
should run (running-where) can also be supplied as parameters (Sections 6.1.3 and 6.1.4). The outside- 

control parameter determines where the interaction is aborted when the user moves outside, or 
whether the last legal value is used (Section 6.1.4). There are default values for all parameters, so the 

programmer does not have to specify them. In addition to the transitions shown, Interactors can be 

aborted by the application at any time. 

Priority levels can also be used to implement modes. All of the Interactors in 
a particular mode can be put into the same priority level, and then the priority 
level as a whole can be enabled or disabled. 

6.8.4 Multiple Windows. Interactors can operate over multiple windows. This 
allows an object to be dragged from one window to another, or to have various 
menu items in different windows. It is worth noting that the widgets and objects 
in Garnet are not usually windows, as in Xtk and some other toolkits, but Garnet 
allows an application to have as many top level or subwindows as desired. 

To create a multiwindow Interactor, it is only necessary to set the :window 

slot with a list of windows, or the special value T which means to use all Garnet 
windows. 

6.8.5 Custom Action Routines. Even with all of the flexibility described above, 
there are still a few cases in which the programmer needs more control. Therefore, 
the specific action routines that define the standard behaviors of the Interactors 
can be overridden in particular Interactor instances. Figure 13 shows the action 
routines that all Interactors support. The standard routines for these handle 
such things as turning on and off the feedback graphics, having the feedback 
follow the mouse appropriately, and updating the actual object when the inter- 
action is complete. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



314 l Brad A. Myers 

The Interactors reference manual describes how to supplement or replace each 
of these routines for each type of interactor. This has proven to be necessary in 

only a few cases, such as when the programmer wants a special action, such as a 
beep, when the mouse goes outside or if the Interactor aborts (see Section 7). 
Even when custom -action procedures are needed, using Interactors is still much 
easier than handling the raw window manager events because the Interactors 
handle the control of sequencing and provide a layer of device and window 
manager independence. 

7. COVERAGE OF INTERACTORS 

It is important to emphasize that Interactors handle all input for the user 
interface; both for the toolkit components (menus, buttons, scroll bars, etc.) and 
for the application-specific objects (icons, rectangles, arrows, etc.). 

As shown in Section 5, the choice of the six types is based on a taxonomy of 
interaction styles, but clearly, new styles can be invented. Therefore, an impor- 
tant question is whether the existing Interactors can handle all possible interac- 
tion techniques. 

In fact, the Interactors can be configured to provide the full information about 
all raw input events that occur. For example, the following interactor will call 
the application function for every mouse and keyboard event and every incre- 
mental mouse movement event. Notice that no calls to the underlying window 
manager are necessary: 

(Create-instance ‘everthing Move-Grow-Interactor 
(:start-event T) ; Any event. 
(:stop-event NIL) ; Never stop 
(:start-where T) ; Everywhere 
(:window T) ; All windows. 
(:start-action #‘ApplicationFunc) 
(:running-action #‘ApplicationFunc)) 

The input events are available to the application function. Therefore, Interactors 
can clearly support any technique that can be implemented with a mouse and a 
keyboard, so the question is not whether Interactors can support some technique, 
but rather whether it is convenient to implement with the existing Interactors. 

It would be nice to be able to refer to a comprehensive taxonomy of interaction 
techniques, and classify how difficult implementing each would be with Garnet. 
Unfortunately, attempts to create such a taxonomy have not been successful 
[23].6 Therefore, the range of Interactors must be presented informally. 

In the experience of the many users of Garnet, Interactors successfully allow 
simple interaction tasks to be created very easily, and more complex tasks to be 
handled with a corresponding increase in programming. The following list gives 
some examples of how much effort is required for various interaction techniques 
with the current design of Interactors: 

-Techniques implemented by simply supplying values for slots of existing inter- 

actor types: Simple menus and palettes, “floating” menus (where the items 
pretend to move in 3-D when pressed), radio buttons, check-boxes, selecting 

6 Note that taxonomies of input devices [ 1, 31 are not relevant here; we need a taxonomy of ways of 

using devices to interact with graphical objects. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling Input * 315 

application objects, moving application objects, growing an object from the 
nearest side or corner to where the mouse is pressed, moving a scroll bar or 
slider indicator, incrementing a scroll bar when an arrow button is pressed, 
moving the indicator of a circular gauge, giving commands by hitting single 
keyboard keys (e.g., command-x, control-p), editing the text label if the user 
clicks on it with a mouse, start editing the selected text when a keyboard 
character is hit, executing the default menu command if the user hits the 
“return” key, highlighting valid objects as the mouse moves over them. 

-Techniques best handled with formulas in slots of Interactors: deciding whether 
to move or grow an object depending on the mouse button pressed, deciding 
whether to more or grow depending on which selection handle is hit, moving 
one object when the mouse is pressed over a different object (e.g., pressing on 
a sub-part or a selection handle), having one menu determine which other 
interactors are active or not (to control different modes), calculating the 
appropriate minimum height depending on the selected object. 

-Techniques requiring custom action procedures: slide-out and pull-down sub- 
menus, gridding, gravity, providing an initial value for the string when text 
editing. 

-Techniques best handled with new Interactor types: gesture recognition, char- 
acter recognition, new hardware input devices. There is every indication that 
the Interactor paradigm presented here expands gracefully to cover these 
techniques. 

-Techniques outside the range of Garnet: Sophisticated text editing. 

8. NONPROGRAMMING INTERFACE 

The Garnet project includes a high-level graphical tool for creating user inter- 
faces, called Lapidary [20]. This kind of tool is sometimes called an “Interface 
Builder” or User Interface Management System (UIMS). Lapidary allows widgets 
and application-specific graphic objects to be created from scratch or copied from 
a library. To create an object from scratch, the designer draws pictures (using 
primitives such as rectangles, lines, and circles) of what user interface elements 
should look like, and then specifies the behavior using dialog boxes. 

Since Interactors allow behaviors to be attached to graphic objects by simply 
supplying values for parameters, Lapidary is able to attach behaviors to the 
graphics by providing dialog boxes in which the designer can specify the param- 
eters (see Figures 14 and 15). In Figure 14, the designer is creating a menu from 
scratch (Figure 14b), and adding behavior using a dialog box (Figure 14e). This 
dialog box supports Menu interactors, and allows the items in the editor window 
to be selected and used as the list of items to choose among (here, Othello menu), 
the interim feedback (here, not used), and the final feedback (here, the check- 
mark). Many of the other parameters to the interactor are available in the main 
dialog box or one of the subdialogs which can be brought up by hitting the Details 
or Extra Actions buttons. Therefore, the programmer can design the behavior by 
demonstration on example objects, which makes it much easier to achieve the 
desired result. 

An interesting feature of Lapidary is that it automatically modifies the graphic 
objects so that they conform to the standard protocol for Interactors. For example, 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



- - 



A New Model for Handling Input 

Button: 

Attach-Point: 

NW 

SW 

N 

W 

Fig. 15. The dialog box used to specify Move-Grow Interactors in Lapidary. 

in Figure 14, the designer constrained the check mark to be centered at the right 
of the Stop button. When the check mark is specified as the final feedback object, 
however, Lapidary generalizes the constraints on the check mark so that they 
instead refer indirectly to whatever object is selected. Since the protocol for each 
type of Interactor is well-defined, this is easy to do automatically. Note that the 
designer could have drawn any kind of object or even a collection of objects, and 
these could have been used as the final feedback. Lapidary would still be able to 
generalize the constraints appropriately; there is nothing special about the check 
mark. 

9. DEBUGGING 

Since Interactors provide an unconventional interface to input, it is useful to 
have some appropriate debugging tools to help find errors in programs. We have 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



318 . Brad A. Myers 

provided a number of tools in the Garnet Toolkit [22]. These include: 

-a tracing mechanism that shows what is happening with some or all interactors; 

-procedures to tell which interactors will affect a particular graphic object or 
which objects a particular interactor will affect; 

-techniques for determining which interactors will start on specified events, 
and what events will cause an interactor to start; and 

-cleanup procedures that will reinitialize Interactors if they get into erroneous 
states. 

10. STATUS AND FUTURE WORK 

Currently, all of the Interactors except Trace Interactor have been implemented. 
The others have been extensively used in many different kinds of interfaces. 
There is a complete widget set, consisting of menus, buttons, scroll bars, gauges, 
and so forth as well as a number of application-specific objects built using the 
Interactors. The Garnet toolkit has been released and is being used by approxi- 
mately 50 projects all over the world at this time. Interactors have proven to be 
an efficient, powerful and easy-to-use mechanism for implementing graphical 
interaction. 

In the future, there are a number of issues that we want to address: 

-How well will the Interactors paradigm work for input devices other than the 
mouse and keyboard? It seems clear that Interactors for simple devices such 
as physical knobs and switches will not be hard, but what about touch tablets 
and 3-D devices like a data-glove? Similarly, can Interactors handle new input 
techniques such as gesture recognition? 

-How can various sub-menu options be provided more conveniently? Some 
explicit coding using the running-action procedure is necessary to make the 
Menu Interactor handle pull-down menus as in the Macintosh. We want this 
to be easier to specify. 

-How can Interactors be used to support an Undo/Redo facility? 

-A primary focus will be on ways to allow Lapidary to specify higher-level 
combinations of Interactors. For example, it is currently easy to draw the 
selection handles that show which object is selected in a graphics editor, and 
then a dialog box can be used to say that the handles should appear over any 
object the mouse as clicked on. However, it requires programming to specify 
that when the user presses on a selection handle, this causes the object to 
which the handle is attached to grow (as opposed to, say, growing the handle 
itself). We believe that these composite behaviors can be specified by demon- 
stration also. 

-Finally, it would be interesting to reimplement the Interactors model in a 
“conventional” object system and toolkit such as C++ or Xtk. This would help 
demonstrate the flexibility and appropriateness of the model as a future 
standard. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



A New Model for Handling input l 319 

11. CONCLUSIONS 

The Interactors in Garnet allow interactive behaviors to be specified and imple- 
mented separately from the graphics and from the application programs. They 
provide a high-level, but look-and-feel independent, interface to input events 
that makes programming and rapid prototyping easier. This is achieved by using 
a small number of Interactor object types that take as parameters the events to 
start and stop the interaction, the associated graphic objects, and other appro- 
priate information. Interactors can handle all input for both standard widgets 
like menus and scroll bars, and application specific objects for a wide class of 
user interfaces. 

In addition, this research has identified the primitive, device independent 
behaviors that can be encapsulated to handle graphical interfaces, and the 
appropriate parameters to these behaviors. This can form the basis for a new 
model for input that could be incorporated into future graphics standards, window 
managers, and toolkits. 

ACKNOWLEDGMENTS 

For help with this paper, I want to thank the referees, Brad Vander Zanden, 
Roger Dannenberg, Dario Giuse, Bernita Myers, and Dave Kosbie. I also want 
to thank the many people who are working on various parts of Garnet, and our 
users who provide helpful feedback. 

REFERENCES 

1. BUXTON, W. Lexical and pragmatic considerations of input structures. Corn@. Gr. 17, 1 (Jan. 

1983), 31-37. 
2. BUXTON, W., AND MYERS, B. A study in two-handed input. Human Factors in Computing 

Systems, In Proceedings SIGCHI’86 (Boston, Mass., April 1986), pp. 321-326. 

3. CARD, S. K., MACKINLAY, J. D., AND ROBERTSON, G. G. The Design Space of Input Devices. 

Human Factors in Computing Systems, In Proceedings SZGCHZ’SO (Seattle, Wash., April 1990), 

pp. 117-124. 

4. CARDELLI, L., AND PIKE, R. Squeak: A language for communicating with mice. Computer 

Graphics, In Proceedings SZGGRAPH’85 (San Francisco, Calif., July 1985), pp. 199-204. 

5. CARDELLI, L. Building user interfaces by direct manipulation. In Proceedings of the ACM 

SIGGRAPH Symposium on User Znterface Software (Banff, Alberta, Canada, Oct. 1988), 

pp. 152-166. 

6. EVANS, K. B., TANNER, P. P., AND WEIN, M. Tablet-based valuators that provide one, two, or 
three degrees of freedom. Computer Graphics, In Proceedings SIGGRAPHBZ (Dallas, Tex, Aug. 

1981), pp. 91-97. 
7. FOLEY, J. D., AND WALLACE, V. L. The art of natural graphic man-machine conversation. In 

Proceedings ZEEE 62, 4 (April 1974), pp. 462-471. 
8. FOLEY, J. D., WALLACE, V. L., AND CHAN, P. The human factors of computer graphics 

interaction techniques. IEEE Comput. Gr. Appl. 4, 11 (Nov. 1984), 13-48. 

9. FOLEY, J. D., GIBBS, C., KIM, W. C., AND KOVACEVIC, S. A knowledge-based user interface 

management system. Human Factors in Computing Systems. In Proceedings SZGCHI’88 (Wash- 

ington, D.C. May, 1988), pp. 67-72. 
10. HILL, R. D. Supporting concurrency, communication and synchronization in human-computer 

interaction-The Sassafras UIMS. ACM Trans. Gr. 5, 3 (July 1986), 179-210. 
11. JACOB, R. J. K. A specification language for direct manipulation interfaces. ACM Trans. Gr. 5, 

4 (Oct. 1986), 283-317. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 



320 * Brad A. Myers 

12. KRASNER, G. E., AND POPE, S. T. A description of the model-view-controller user interface 

paradigm in the Smalltalk- system. J. Object Oriented Program. I, 3 (Aug. 1988), 26-49. 

13. MCCORMACK, J., AND ASENTE, P. An overview of the X toolkit. In Proceedings of the ACM 

SIGGRAPH Symposium on User Interface Software (Banff, Alberta, Canada, Oct., 1988), pp. 

46-55. 

14. MEAI)S, J. The standards factor. SIGCHI Bull. 19, 1 (July 1987), 34-35. 

15. MYERS, B. A. Visual programming, programming by example, and program visualization: A 

taxonomy. Human Factors in Computing Systems. In Proceedings SIGCHI’86 (Boston, Mass. 

April, 1986), pp. 59-66. 

16. MYEHS, B. A. Creating User Interfaces by Demonstration. Academic Press, Boston, 1988. 

17. MYERS, B. A. User interface tools: Introduction and survey. IEEE Softw. 6, 1 (Jan. 1989), 
15-23. 

18. MYERS, B. A. Encapsulating interactive behaviors. Human Factors in Computing Systems. In 

Proceedings SIGCHI’89 (Austin, Tex., ApriJ 1989), pp. 319-324. 

19. MYERS, B. A. Creating user interfaces using programming-by-example, visual programmllg, 

and constraints. ACM Trans. Program. Lang. Syst. 12, 2 (April 1990), 143-177. 

20. MYERS, B. A., VANDER ZANDEN, B., AND DANNENBERG, R. B. Creating graphical objects by 

demonstration. In Proceedings of the ACM SIGGRAPH Symposium on User Interface Software 

and Technology (Williamsburg, Va., Nov. 1989), pp. 95-104. 

21. MYERS, B. A., GIUSE, D., DANNENBERG, R. B., VANDER ZANDEN, B., KOSBIE, D., MARCHAL, P., 

AND PERVIN, E. Comprehensive support for graphical, highly-interactive user interfaces: The 
garnet user interface development environment. IEEE Comput. 23, 11 (Nov. 1990), To appear. 

22. MYERS, B. A., GIUSE, D., DANNENBERG, R. B., VANDER ZANDEN, B., KOSBIE, D., MARCHAL, P., 

PERVIN, E., MICKISH, A., KOLOJEJCHICK, J. A. The Garnet toolkit reference manuals: Support 

for highly-interactive, graphical user interfaces in Lisp. Tech. Rep. CMU-CS-90-117, Computer 

Science Dept., Carnegie Mellon Univ. March, 1990. 
23. NIELSEN, J. Classification of dialog techniques. SIGCHI Bull. 19, 2 (Oct. 1987), 30-35. 

24. OLSEN, JR., D. R. Ed. ACM SIGGRAPH workshop on software tools for user interface manage- 

ment. Comput. Gr. 21, 2 (April 1987), 71-147. 

25. OLSEN, JR., D. R. Larger issues in user interface management. Comput. Gr. 22, 2 (April 1987), 
134-137. 

26. PALAY, A. J., HANSEN, W. J., KAZAR, M. L., SHERMAN, M., WADLOW, M. G., NEUENDORFFER, 

T. P., STERN, Z., BADER, M., PETERS, T. The Andrew toolkit-An overview. In the Proceedings 

Winter Usenix Technical Conference (Dallas, Tex, Feb. 1988), pp. 9-21. 

27. PFAFF, G. R., ED. User Interface Management Systems. Springer-Verlag, Berlin, 1985. 

28. Draft Proposal American National Standard for the Functional Specification of the Programmer’s 

Hierarchical Interactive Graphics Standard (PHIGS). American National Standards Committee 

X3Hc/84-40,1984. 

29. SIBERT, J. L., HURLEY, W. D., AND BLESER, T. W. An object-oriented user interface management 

system. Computer Graphics. In Proceedings SIGGRAPH’86 (Dallas, Texas, Aug. 1986), pp. 

259-268. 

30. SZEKELY, P. A., AND MYERS, B. A. A user interface toolkit based on graphical objects and 

constraints. Sigplan Not. 23, 11 (Nov. 1988), 36-45. ACM Conference on Object-Oriented 

Programming; Systems Languages and Applications; OOPSLA ‘88. 

31. TANNER, P. P., MACKAY, S. A., STEWARD, D. A., AND WEIN, M. A multitasking switchboard 

approach to user interface management. Computer Graphics. In Proceedings SIGGRAPH’86 

(Dallas, Texas, Aug. 1986), pp. 241-248. 
32. VANDER ZANDEN, B., AND MYERS, B. A. Automatic, look-and-feel independent dialog creation 

for graphical user interfaces. Human Factors in Computing Systems. In Proceedings SIGCHI’SO 

(Seattle, Wash., April 1990), pp. 27-34. 
33. WILSON, D. Programming with MacApp. Addison-Wesley, Reading, Mass., 1990. 

ACM Transactions on Information Systems, Vol. 8, No. 3, July 1990. 


