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Introduction

Mining method selection is a critical point and
a strategic issue in the mining engineering
process. Selection of a method unsuitable for
deposit characteristics may make exploitation
of the orebody troublesome and sometimes
uneconomical. So, available deposits should be
evaluated carefully in an optimum manner. In
the process, the selection of the most
appropriate mining method is of great
importance from the economical, technical and
safety points of view. In the method selection
process, many controllable and uncontrollable
parameters should be taken into account.
Therefore, these parameters must be obtained

with scientific and technical studies for each
ore deposit1. 

In the past, selection of an extraction
method was based primarily on operating
experience at a similar type of mine and on
methods already in use in the districts of the
deposit. The approach of adopting the same
mining method as that of a neighbouring
operation is not always appropriate. However,
this does not mean that one cannot learn from
comparing mining plans of existing operations
in the district, or of similar deposits2.

There is no single appropriate mining
method for a deposit. Usually two or more
feasible methods are possible. Each method
entails some inherent problems. Consequently,
the optimal method is the one that offers the
minimum numbers of problems. The key issue
for mining method selection is to maximize the
profit by selecting the method with the highest
recovery of the mineral resources and the
lowest cost among the feasible alternatives. 

The approaches to the selection of the
mining method can be classified in three
categories: profile and checklist methods,
numerical ranking (scoring) methods, and
decision making models. In this paper, the
problems with these methods are discussed
and the results of applying fuzzy decision
making software tool in the process of
selecting the extraction method for several
cases are offered. The main purpose of this
paper is to present a fuzzy multi-criteria
decision making model for the mining method
selection. In order to introduce the suggested
fuzzy decision making model, firstly, the
existing mining method selection models and
their disadvantages are presented. Then, the
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basic concepts of the technique for order preference by
similarity to an ideal solution (TOPSIS) and the Fuzzy
TOPSIS are introduced. Moreover, the fuzzy decision making
(FDM) software tool is introduced based on the Fuzzy
TOPSIS. An application of the FDM software tool is carried
out through several case studies.

Existing mining method selection models and their

limitations

Several methods have been developed in the past to evaluate
a suitable mining method for an ore deposit based on its
physical characteristics such as shape, grade and geo-
mechanical properties of the enclosing rock and ore deposit
itself. The approaches to the solution of mining method
selection problems can be classified in three groups: (1)
profile and checklist methods, (2) numerical ranking
(scoring) methods and (3) decision making models. 

A group of mining specialists such as Peele3, Boshkov
and Wright4, Morrison5, Hartman6 and Agoshkov7 suggested
a series of approaches for selecting a suitable mining method.
This group of studies was neither enough nor complete, as it
is not possible to design a methodology that will automat-
ically choose a mining method for the orebody studied.2

Various approaches have been offered by researchers
such as Labscher8, Nicholas9,10, Pakalnis et al.11 to select the
mining method. These attempts led to the development of a
numerical approach to select the method of extracting mineral
deposits. Numerical ranking (scoring) methods rely on
ranking a finite number of geometric, geomechanical and
geologic parameters to arrive at a rating value for different
alternatives. In these methods, in addition to the limitation of
criteria number and alternatives, ambiguity and simultaneous
influence of criteria have been neglected in the decision
making process. 

This group of methods, such as University of British
Columbia (UBC) method11 or the method offered by
Nicholas10, are based on ranking parameters, which explain
the mineral deposit status. Disadvantages of these
approaches include limitations in the number of criteria and
the selection of alternatives. In the method offered by
Nicholas, geometric parameters such as general shape,
thickness, dip and grade distribution manner are considered.
Although in this method, the deposit depth is considered an
effective parameter in selecting the method of deposit
extraction, no point is considered for its influence.
Furthermore, only the geomechanic criteria of joint frequency,
rock quality designation (RQD), rock substance strength
(RSS) and the shear strength factor of joints in the ore
deposit and its surrounding rocks are considered. In the UBC
method, although the depth and the rock mass rating (RMR)
score are added, this limitation is still binding. Criteria such
as deposit dimensions, thickness changes or its uniformity,
availability of expert personnel in extraction, recovery in any
mining method, subsidence effect or gas leak effect,
underground water status and so on, are neglected in both
methods. This limitation also exists in the choices and
alternatives of selection. In the scoring approach, ten mining
methods are considered for selection. These methods in the
order of increasing operating costs are: open pit mining, block
caving, sublevel stoping, sublevel caving, longwall, room and
pillar, shrinkage, cut and fill, top slicing and square-set.

Although the traditional mining methods are divided into
eighteen extraction methods, each of which may include
several different alternatives.12 Among the methods not
included in the above list are the stope and pillar mining,
vertical crater retreat mining (VCR), strip mining and novel
extraction methods such as hydraulic mining and borehole
mining. Moreover, underground methods such as longwall
may be performed in the retreat or advance mode and the
ground control may be performed by caving or filling.
Therefore choices in the mining method selection process are
much more numerous than the ten considered methods.

Considering the fact that parameters affecting selection of
the mine extraction method are divided into three classes of
crisp (deterministic), linguistic and fuzzy parameters, the
deterministic explanation in numerical ranking methods can
be mentioned as the most important disadvantage, because in
the method offered by Nicholas and the UBC method,
parameters are explained by crisp values. But most of the
statements introducing the mineral deposit are linguistic
statements. For example, for the dip of an orebody, usually
low dip (flat), moderate dip (intermediate) or high dip (steep)
terms are used and for the cavability of the deposit hanging
wall, the terms appropriate, moderate or inappropriate
cavability are used. Also criteria introducing a mineral
deposit are divided into classes, which have no exact
definition in boundary status and have some ambiguities. In
numerical ranking methods, the influence of each parameter
is verified separately and the mutual effects of parameters are
ignored. For example, dip, thickness and depth parameters
are simultaneously effective on determination of the open pit
method. In numerical ranking methods, as the orebody’s dip
increases, the probability of choosing the open pit method
decreases. When the thickness is increased, the decreasing
score of the dip should compensate each other. For an
inclined and thick deposit, the open pit method maybe
preferred. Also in these methods, all the criteria are assumed
to have equal weights in decision making, but considering
the status of each deposit makes such an assumption
unrealistic. 

Considering these limitations and disadvantages, efforts
have recently been made in order to develop decision making
models for selecting the mining method. Among these efforts
are studies of researchers such as Wei-Xuan and Yiming13,14,
Kesimal and Bascetin15 Miranda et al..16, Samimi and
Shahriar17,18, Bitarafan and Ataei2, Bascetin 
et al.19, Karadogan et al.1.

Recent methods for decision making processes have
enabled decision-makers to decide more quickly, easily and
sensitively1. Although the disadvantages of numerical
ranking methods have been removed partly in the decision
making models offered, these methods have their own
disadvantages.

In decision making models, which are based on multi-
criteria decision making (MCDM) techniques, there is no
limitation on the number of criteria and alternatives, but
these models face the problem of time-consuming
calculations.

Most of these methods are based on the Yager model. The
Yager model20 follows the max-min method of Bellman and
Zadeh21, with the improvement of the analytical hierarchy
process (AHP) method, which considers the use of a
reciprocal matrix to express the pair-wise comparison criteria
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and the resulting eigenvector as subjective weights.2 The
disadvantages of the AHP technique is that it focuses mainly
on the decision maker who has to make many pair-wise
comparisons to reach a decision, while possibly using
subjective preferences. Furthermore, an important
disadvantage of the AHP method is the artificial limitation of
the use of the nine-point scale. For instance, if Alternative A
is five times more important than Alternative B, which in
turn is five times more important than Alternative C, a
serious evaluation problem arises. The Saaty method22

cannot cope with the fact that Alternative A is twenty five
times more important than Alternative C.23 The methodology
is useful only when the decision making framework has a
unidirectional hierarchical relationship among decision levels.
Moreover, AHP is not practically usable if the number of
alternatives and criteria are large since the repetitive
assessments may cause fatigue in the decision maker.24,25

The existing decision making models for mining method
selection are useful but have restricted applications. These
methods cannot deal with decision maker ambiguities,
uncertainties and vagueness, which cannot be handled by
crisp values. Having to use crisp values is one of the
important problematic points in their process. 

In this article, the concept of the approach used for
solving the mining method selection problem is based on the
fuzzy technique for order preference by similarity to ideal
solution (Fuzzy TOPSIS). This is because four advantages are
addressed: (1) a sound logic that represents the rationale of
human choice, (2) a scalar value that accounts for both the
best and worst alternatives simultaneously, (3) a simple
computation process that can be easily programmed, and (4)
the performance measures of all alternatives on attributes can
be visualized as a polyhedron, at least for any two
dimensions. These advantages make TOPSIS a major decision
making technique as compared with other related techniques
such as AHP.26,27

Methodology and the proposed model

TOPSIS and fuzzy TOPSIS

TOPSIS is a popular approach to the MCDM method and has
been widely used in the literature (Abo-Sinna and Amer28;
Agrawal et al.29; Cheng et al.30; Deng et al.31; Feng and
Wang32,33; Hwang and Yoon34; Jee and Kang35; Kim et al.36;
Lai et al.37; Liao38; Olson39; Opricovic and Tzeng40; Parkan
and Wu,41,42; Tong and Su43; Tzeng et al.44; Zanakis et
al.45). The method has also been extended to deal with Fuzzy
MCDM problems. For example, Chen46 first converted a fuzzy
MCDM problem into a crisp one via centroid defuzzification
and then solved the nonfuzzy MCDM problem using the
method. Chen and Tzeng47 transformed a fuzzy MCDM
problem into a nonfuzzy MCDM using a fuzzy integral.
Instead of using distance, they employed the grey relation
grade to define the relative closeness of each alternative.
Chu48,49 and Chu and Lin50 also changed a fuzzy MCDM
problem into a crisp one and solved the crisp MCDM problem
using the method. Differing from the others, they first
derived the membership functions of all the weighted
rankings in a weighted normalization decision matrix using
interval arithmetics of fuzzy numbers and then defuzzified
them into crisp values using the ranking method of mean of
removals (Kaufmann and Gupta51). 

Chen46 extended the method to fuzzy group decision
making situations by defining a crisp Euclidean distance
between any two fuzzy numbers. Triantaphyllou and Lin52

developed a fuzzy version of the method based on fuzzy
arithmetic operations, which led to a fuzzy relative closeness
for each alternative proposed by Wang and Elhag53.

The TOPSIS method is a technique for order preference by
similarity to ideal solution and proposed by Hwang and
Yoon34. The ideal solution (also called the positive ideal
solution) is a solution that maximizes the benefit
criteria/attributes and minimizes the cost criteria/attributes,
whereas the negative ideal solution (also called the anti-ideal
solution) maximizes the cost criteria/attributes and
minimizes the benefit criteria/attributes. The so-called benefit
criteria/attributes are those for maximization, while the cost
criteria/attributes are those for minimization. The best
alternative is the one that is closest to the ideal solution and
farthest from the negative ideal solution. 

Suppose a MCDM problem with m alternatives, A1,...,Am,
and n decision criteria/attributes, C1,...,Cn. Each alternative is
evaluated with respect to m criteria/attributes. 

All the values/ratings assigned to the alternatives with
respect to each criterion form a decision matrix denoted by X
= (xij)nxm. Let W = (w1,...,wn) be the relative weight vector for

the criteria, satisfying ∑
n

i=1
wi = 1, then the method can be

summarized as follows:24

a) Calculate the decision matrix (D) as: 

[1]

b) Calculate the normalized decision matrix or R matrix.
The normalized value rij is calculated as:

[2]

[3]

c) Calculate the criteria weighted matrix as:

[4]

d) Calculate the weighted normalized decision matrix. The
weighted normalized value νij is calculated as:

[5]

where wj is the weight of the jth criterion and  ∑
n

i=1
wi = 1.

e) Determine the positive ideal and negative ideal
solution, A+ and A– respectively.

[6]
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[7]

where I is associated with benefit criteria, and J is associated
with cost criteria.

f) Calculate the separation measures, using the n-
dimensional Euclidean distance. The distance of each
alternative from the ideal solution is given as:

[8]

Similarly, the distance from the negative ideal solution is
given as:

[9]

g) Calculate the relative closeness to the ideal solution.
The relative closeness of the alternative Aj with respect
to A+ is defined as:

[10]

Since d –
J

≥ 0 and d +
J

≥ 0, then clearly RCj ∈ [0,1] .

h) Rank the alternatives according to the relative
closeness to the ideal solution: the higher RCj, the
better alternative Aj.53

The fuzzy theory is a modern theory, which was proposed
by Zadeh54. In classic logic, events have two values: to be or
not to be, to exist or not to exist, black or white, and one or
zero. But in fuzzy logic, in order to answer to events, a
consistent spectrum is considered between ‘to exist’ and ‘not
to exist’ and world phenomena are seen as gray—neither
black nor white. The use of fuzzy theory allows us to
incorporate unquantifiable information, incomplete
information, non-obtainable information, and partial facts
into the decision model. The fuzzy decision matrix (D

~
) and

criteria weighted (W
~

) can be concisely expressed in matrix
format as:

[11]

[12]

where x~ij, i = (1,2,...,m), j = (1,2,...,n)and w~j, j = (1,2,...,n)
are fuzzy numbers, x~ij = (aij, bij, cij) and w~j = (wj1, wj2, wj3).
That x~ij is the performance rating of the ith alternative, Ai,
with respect to the jth criteria, Cj and w~j represents the weight
of the jth attribute, Cj. 

The normalized fuzzy decision matrix denoted by R
~

is
shown as:

[13]

If x~ij = (aij, bij, cij), i = (1,2,...,m) and j = (1,2,...,n) are
triangular fuzzy numbers, then the normalization process can
be conducted by:53

[14]

[15]

where Ωb and Ωc are the sets of benefit criteria and cost
criteria, respectively and c+

j = max
i

cij, j ∈ Ωb and a
–
j = min

i
aij, 

j ∈ Ωc. 

The weighted fuzzy normalized decision matrix is shown
as:

[16]

The fuzzy positive-ideal (A+) and the fuzzy negative-
ideal (A–) solutions are shown as:

[17]

[18]

The distance of each alternative from A+ and  can be
currently calculated using Equations [19] and [20].

[19]

[20]

If a~ = (a1, a2, a3) and b
~

= (b1, b2, b3) are two triangular
fuzzy numbers, then the vertex method is used to calculate
the distance between them and is calculated as:

[21]

At the end, the relative closeness of each alternative to
the ideal solution is calculated as below: 

[22]

RCi is then used to rank the alternatives. The higher the
RCi, the more suitable the mining method. The higher value
of RCi indicates that an alternative is closer to the positive
ideal solution and farther from the negative ideal solution
simultaneously. A value of 1 (or 100 per cent) for an
alternative indicates that the alternative is equal to the
positive ideal solution and a value of 0 (or 0 per cent) is
equal to the negative ideal solution. The best alternative is
the one with the greatest relative closeness to the positive
ideal solution. 

The fuzzy decision making (FDM) software tool 

The fuzzy decision making (FDM) software tool55 has been
prepared to make decisions considering specific criteria and
the effect of qualitative parameters and in the situation where
the decision maker does not have access to precise

▲
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information, by Meamareiani at the engineering faculty of
Tarbiat-modares University in Iran. The FDM software tool
has been designed based on the Fuzzy TOPSIS technique,
presented in the previous section. In this section, it is
attempted to remove the defects in existing mining method
selection models by using this software tool and applying it
systematically. The most important advantage of applying
this software tool is its ability in cases where diversity of
data exists. This tool can receive three types of information,
including deterministic, linguistic, and fuzzy information.
These three types of data are indeed parameters affecting the
decision making process for selecting the mining method. But
in previous methods only the crisp (ordinary) values
constitute the decision making process input. For example, in
Table I, the variety of the data that can be explained in the
extraction method selection has been offered.

Regarding fuzzy numbers related to the mine costs
mentioned in the last line of Table I, it should be added that
the costs are related to the block caving method, and it is
meant that the mine costs in block caving method is about
$12.5 per ton and a and b values are left and right limits,
respectively.6 Moreover, there is no limitation on the number
of alternatives and criteria.

The evaluation procedure can be applied to the mining
method selection, as shown in Figure 1. 

The proposed model consists of several steps. The first
step is to identify the criteria that are considered in the
mining method selection process and mining methods as
alternatives. Then the weights of the criteria are determined
and a decision matrix is created. In order to perform the
fuzzy decision making process, the scores for each criterion
and all of the weights are converted to fuzzy numbers
(fuzzification). In this step, crisp values and linguistic
variables are converted to fuzzy numbers. This step is called
fuzzification because fuzzy sets are used to convert linguistic
variables to fuzzy variables.

The decision makers use the linguistic variables to
evaluate the relative importance or weights of criteria and the
ratings of alternatives for various attributes. For this reason,
the linguistic variable is transformed into a fuzzy triangular
membership function. This is the first step of the Fuzzy
TOPSIS analysis. In the FDM software tool, the linguistic
variables divided to seven-levels, fuzzy linguistic values
‘very low’, ‘low’, ‘more or less (MoL) low’, ‘medium’, ‘more
or less (MoL) high’, ‘high’ and ‘very high’. Based on these
assumptions, a transformation table can be created as shown
in Table II. For example, the fuzzy variable ‘low’ has its
associated triangular fuzzy number with the minimum value
of 0.00, the mode value of 0.10, and the maximum value of
0.3. The same definition is then applied to the other fuzzy
variables very low, MoL low, medium, MoL high, high and
very high. 

The next step is fuzzy deduction. In this step, the result is
determined by the Fuzzy TOPSIS technique. The decision
making process in a fuzzy environment is the same as the
decision making process in the human brain, because in
everyday life, people analyses much inaccurate fuzzy
information and then makes decisions. Before any
calculation, linguistic and crisp values are converted to fuzzy
numbers with transformation of fuzzy membership functions
(by using Table II).

Transformation of the decision matrix to fuzzy numbers
is carried out by the software tool for user convenience and
the user has any role here. This action is carried out for all
inputs including criteria, weights and the decision matrix
information. Then, in order to remove a dimension, the
decision matrix is normalized and calculated using weighted
normalized ratings automatically. 

The next action is to find the negative as well as the
positive ideal solutions. After finding the ideal and negative
solutions, the distance of each alternative is obtained in an n-
dimensional space (n is the number of criteria affecting
decision making). 
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Table II

Transformation for fuzzy membership functions 

Rank Membership function

Very low (0.0, 0.0, 0.1)

Low (0.0, 0.1, 0.3)

MoL low (0.1, 0.3, 0.5)

Medium (0.3, 0.5, 0.7)

MoL high (0.5, 0.7, 1.0)

High (0.7, 0.9, 1.0)

Very high (0.9, 1.0, 1.0)

Table I

Various data input to FDM software

Data type Description Value

Crisp value Annum production 300 000 (ton per year)

Linguistic Deposit thickness Intermediate

Fuzzy value Mine costs (m=12.5,a=5,b=20)

Figure 1—Selection framework of mining methods

Definition of Alternatives

Create Decision Matrix & Weights of Criteria

(Linguistic, Crisp and Fuzzy values)

Fuzzification of

Decision Matrix

Application of

Fuzzy TOPSIS

Ranking of Mining

Methods

Definition of Criteria
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The final scores of each parameter is its relative closeness
to the positive ideal solution. These processes are performed
by the software tool itself and the user enters only the input
information such as selection criteria, their effective weight
and selection alternatives. 

Empirical illustration

In this section, three empirical examples are examined using
the proposed model. The first example is taken from
Nicholas10. Other case studies are a real application of the
proposed model to mining method selection.

Example 1: This example reconsiders the one investigated
by Nicholas10. Used data are given in Table III. 

Let us suppose the ratings (criteria values and their
relative importance weights) for numeric ranking methods
according to Table IV. After evaluation the top four
alternatives are determined, according to the proposed model
as well as the results of Nicholas method. The results are
summarized in Table V. 

The Nicholas and proposed model lead to the choice of
open pit as the first priority. 

Case study 1:56,57 In order to investigate the competence
of the proposed model, the Gol-e-Gohar (GEG) deposit, south
of Iran, was chosen as the first case. This iron ore district is
located in 55 km south-west of Sirjan (Figure 2).

The above mentioned iron ore district includes six
anomalies. Anomaly No. 1 has been extracted for many years
with open pit mining. Recently, exploitation of anomaly No. 3
has been considered. Deposit No. 3 has a length of 2 200 m
in a north-south line and an average width of 1 800 m in the
west of anomaly No. 1, which is located under a relatively flat
field. The geometric and some geomechanic specifications of
anomaly No.3 are represented in Table VI based on the latest
detailed exploration results. In order to select the most
suitable extraction method for this deposit, 11 methods are
considered for comparison and competition. 

Examined extraction methods include: open pit mining,
block caving, sublevel stoping, sublevel caving, longwall,
room and pillar, shrinkage, cut and fill, top slicing, square-set
and stope and pillar methods.

These methods are entered into the FDM model as
alternatives. Criteria involved in this selection include the
suitability of deposit shape, grade distribution, deposit dip,
deposit thickness, deposit depth, hangingwall rock mass
rating (RMR), deposit RMR, hangingwall rock substance
strength (RSS) (RSS = overburden pressure/ uniaxial
compressive strength UCS), deposit RSS, footwall RSS,
mining method recovery, access to expert work force,
production capacity, hangingwall rock quality designation
(RQD), shear strength of deposit joint, hangingwall joint
shear resistance and mine costs. 

▲
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Table V

Summary of evaluation for example 1 

Method OP TS BC SQ SC SH

Nicholas 33.8 28.3 27.3 26.6 26.3 25.8

FDM 70.74 58.13 57.26 56.49 55.91 56.34

Table IV

Linguistic value of Nicholas scores and weights

Description Linguistic rank

Criteria values -49 Very low

0 Low

1 MoL low

2 Medium

3 MoL high

4 High

Weighting factor 0.5 Medium

0.8 High

1 Very high

Table III

Nicholas example input parameters10

Criteria Description

Ore zone Deposit shape tabular or platy

Ore thickness 90 meters (thick)

Ore dip 15 degree(flat)

Grade distribution uniform

Depth 130 meters

RQD 40 %

RSS Strong

Joint condition Clean with a rough surface

Hangingwall RQD 65%

RSS Strong

Joint condition Clean with a rough surface

Foot wall RQD 40%

RSS moderate

Joint condition Coated with thin clay

* Where OP: open pit, TS: top slicing, BC: block caving, SQ: square set,

SC: sublevel caving and SH: shrinkage mining method

Figure 2—Location of GEG and Chahar Gonbad mines



These parameters are entered as attributes. The first step
is to gather input information for the model. The decision
matrix for GEG anomaly No. 3 was entered into the FDM
model according to Figure 3.

In this process, mining cost is entered as cost criteria
(negative effect on decision making) and the other
parameters are entered as profit. The decision making matrix
and related weight of criteria are shown in Figure 3. The
simplicity of changing these weights and studying different
decision making situations are advantages of this model.

Figure 4 shows the scores obtained by each mining
method in fuzzy decision making, after the data has been
processed by the FDM model. The open pit mining method
stands first with a score of 75.71and the square-set method
is last with a score of 30.86.

Case study 2: 56,57 The Chahar Gonbad copper ore 
deposit is located 50 km north of Sirjan, south of Iran
(Figures 2). Table VII shows the physical and mechanical 
characteristics of this deposit.

In order to select a mining method for this deposit, 11
methods are proposed for comparison such as the GEG
mining method selection process. The criteria that affect the
selection, considered in this study, are presented in Figure 5. 

The final scores obtained by each mining method in the
fuzzy decision making method are shown in Figure 6. The
open pit mining method is first with 78.90 and the square-set
method is last with 28.03. 

Results and discussion

In example 1, there is only one difference between the results
of the Nicholas and proposed model in the ranking of the
sublevel caving and shrinkage (Table V). The Fuzzy TOPSIS
is one of the compensatory decision making methods. As
mentioned before, in this method decreasing the score of one
parameter is compensated by increasing the score of other
parameter(s) and vice versa. In fact the shrinkage is closer
than the sublevel caving to the ideal solution so it is rational
to prefer the shrinkage method to sublevel caving. 

The resulting alternatives for GEG anomaly No. 3 vary
among the different methods to some extent. The eight
alternatives, according to the numerical ranking methods
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Table VI

Specifications of GEG Iron Ore anomaly No. 3

Criteria Description

Ore zone General shape Tabular

Ore thickness 15–130, Average 40 meters

Ore dip 20 degree

Grade distribution Gradational

Depth 95 ~ 600 meters

RQD 75%

RSS 8.9

RMR Good (60-80)

Ore reserve 643 million tons

Joint condition Filled (low strength )

Hanging wall RQD 38%

RSS 6 

RMR Good (60–80)

Joint condition Clean with a smooth surface

Footwall RQD 15%

RSS 6.5

RMR Good (60–80)

Joint condition Clean with a rough surface

Figure 3—Geometrical and geomechanical input data of GEG deposit No. 3
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Table VII

Specifications of Chahar Gonbad copper ore

Criteria Description

Ore zone General shape Platy

Ore thickness Average 8.5 metres

Ore dip 70 degree

Grade distribution Irregular

Depth Low depth (<100 metres)

RQD 75%

RSS 8.7

RMR Good (60–80)

Ore reserve 700 million tons

Joint condition Filled (low strength )

Hangingwall RQD 38%

RSS 15.63

RMR Good (60–80)

Joint condition Clean with a smooth surface

Footwall RQD 15%

RSS 9.1

RMR Average (40–60)

Joint condition Clean with a rough surface
Figure 4—The scores obtained by each mining method for  GEG

deposit No. 3

Figure 5—Geometrical and geomechanical input data of Chahar Gonbad deposit



(Nicholas and UBC), as well as the results by FDM, are
presented in Table VIII. Considering Table VIII: the open pit
mining in the Nicholas method has obtained the best score.
This result is not surprising considering the fact that in the
UBC method, scoring has been done with reference to
Canadian mining and gives priority to open stoping methods
such as sublevel stoping. Because the UBC mining method
selection is a modification of the Nicholas approach, which
places more emphasis on stoping methods (sublevel stoping,
room and pillar and cut and fill), thus better representing
typical Canadian mining design practices.11 Considering the
results of the mining method selection for Chahar Gonbad
(case 2), open pit mining in the Nicholas method has
obtained the best score. 

By applying the FDM model, based on Fuzzy TOPSIS, a
strategy was offered to extract mineral deposits. This strategy
has advantages in comparison with previous numerical
ranking (scoring) methods such as Nicholas and UBC. These
advantages are a strong theoretical base on fuzzy logic, the
high speed in achieving the result, the ability of sensitivity
analysis, the direct usage of linguistic variables in the mining
method selection process, unlimited alternatives and criteria,
and, most important of all, the possibility of considering the
mutual effects of different parameters in the selection
process. In fact, TOPSIS is one of the compensatory multi-
attribute decision making models. Moreover, this model

considers the uncertainty associated with the input
parameters (linguistic variables) used in the selection
process. The model has a potential to become a suitable tool
in mining method selection.

Conclusions

The mining method selection of an explored orebody is a
critical point and strategic issue in the mining engineering
process. This decision involves many parameters that are
interrelated in that changes in some parameters affect the
others. This paper has discussed mining method selection in
a fuzzy environment and uncertain linguistic value of
variables. Fuzzy TOPSIS is a viable method for the proposed
problem and is suitable for the use of linguistic variables.
When the decision making condition is vague and inaccurate,
then this method is the preferred technique. 

The present study explored the use of Fuzzy TOPSIS in
mining method selection. The proposed model can be a
suitable tool to select the mining method. The mining method
selection of GEG anomaly No.3 and Chahar Gonbad were
examined by this model. At the end of this examination,
open pit mining was assigned as the best extraction method
for these iron and copper ore deposits. The systematic
evaluation by Fuzzy TOPSIS of mining method selection
problems can reduce the risk of a poor choice.
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Figure 6—The score obtained by each mining method for the Chahar Gonbad deposit

Table VIII

Scores of different exploitation methods according to the methods prevalent in GEG deposit No. 3

Methods Open pit Cut and fill Shrinkage Sublevel stoping Top slicing Square-set Block caving Sublevel caving

Case 1 Nicholas 32.9 30 29.1 28.8 28.8 28 26.1 20.7

UBC 33 33 22 34 16 10 24 28

FDM 75.71 55.43 46.85 60.88 45.40 30.86 58.36 56.02

Case 2 Nicholas 32 30 25 21 - 25 - -

UBC 33 34 34 32 13 15 - -

FDM 78.9 60.46 53.91 66.88 37.91 28.03 53.61 51.73



A new model for mining method selection of mineral deposit

References

1. KARADOGAN, A., KAHRIMAN, A., and OZER, U. Application of fuzzy set theory

in the selection of underground mining method. The Journal of the South

African Institute of Mining and Metallurgy, 2008. vol. 108. pp. 73–79.

2. BITARAFAN, M.R. and ATAEI, M. Mining method selection by multiple

criteria decision making tools. The Journal of the South African Institute of

Mining and Metallurgy, October 2004. pp. 493–498.

3. PEELE, R. and CHURCH, J. Mining Engineering Handbook, John Wiley and

Sons, INC. 1941. vol. 1.

4. BOSHKOV, S., and WRIGHT, F. Basic and Parametric Criteria in the Selection,

Design and Development of Underground Mining System. SME Mining

Engineering Handbook. Cummins and Given. SME. New York. 1973. 

vol. 1. pp. 12.2–12.13

5. MORRISON, R.G.K. AQ Philosophy of Ground Control. McGill University.

Montreal. Canada. 1976. pp. 125–159. 

6. HARTMAN, H.L. Introductory mining engineering. John Wiley and sons, Inc,

Second edition. 2002.

7. AGOSHKOV, M., BORISOV, S., and BOYARSKY, V. Classification of Ore Deposit

Mining Systems. Mining of Ores and Non-Metalic Minerals. Union of

Soviet Socialist Republics. 1988. pp. 59–62. 

8. LABSCHER, D. Selection of Mass Underground Mining Methods. Design and

Operation of Caving and Sublevel Stoping Mines. 1981, New York, AIME,

Chapter 3. 

9. NICHOLAS, D. and MARK, J. Feasibility Study—Selection of a Mining Method

Integrating Rock Mechanics and Mine Planning, 5th Rapid Excavation

and Tunneling Conference. 1981. San Francisco. vol. 2. pp. 1018–1031.

10. NICHOLAS, D.E. Selection Procedure. Mining Engineering Handbook.

Hartman, H. SME. New York, 1993. pp. 2090–2105. 

11. MILLER, L., PAKALNIS, R., and POULIN, R. UBC Mining Method Selection.

International symposium on mine planning and equipment selection.

Singh. 1995.

12. HARTMAN, H.L. Introductory mining engineering. John Wiley and sons, Inc,

Second edition. 2002.

13. YIMING, W., YING, F., and WEIXUAN, X. An Integrated Methodology for

Decision Making of Mining Method Selection. Manufacturing Technology

and Management. China. 2003

14. YIMING, W., YING, F., and WEIXUAN, X. Multiple Objective–integrated

methodology of Global Optimum Decision-Making on Mineral

Exploitation. Computer & Industrial Engineering, vol. 46, 2004. 

pp. 363–372.

15. KESIMAL, A. and BASCETIN, A. Application of Fuzzy Multiple Attribute

Decision Making in Mining Operations. Mineral Resources Engineering.

2002, vol. 11, pp. 59–72.

16. MIRANDA, C. and ALMEIDA. Mining Methods Selection Based on Multicriteria

Models. Application of Computes and operation research in the mineral

industry. London. 2005.

17. SAMIMI NAMIN, F., SHAHRIAR, K., and KARIMI NASAB, S. Fuzzy Decision

Making for Mining Method Selection in Third Anomaly Gol-E-Gohar

Deposit. 18th International mining congress and exhibition of Turkey, I

MCET. 2003.

18. SHAHRIAR, K., SHARIATI, V., and SAMIMI NAMIN, F. Geomechanical

Characteristics Study of Deposit in Underground Mining Method Selection

Process. 11th ISRM Conferences, 2007. Portugal.

19. BASCETIN, A., OZTAS, O., and KANLI, A.I. Mining method selection by

multiple criteria decision making tools. The Journal of the South African

Institute of Mining and Metallurgy, 2006. vol. 106. pp. 63–69.

20. YAGER, R.R. A new methodology for ordinal multi objective decisions

objectives based on Fuzzy sets, Decision Science, 1978, vol. 12. 

pp. 589–600.

21. BELLMAN, R.E. and ZADEH, L.A. Decision Making In a Fuzzy Environment,

Management Science, vol. 17, 1970. pp. 141–164.

22. SAATY, T.L. Decision-making for Leaders, RWS Publication, USA. 1990.

23. MACHARIS, C., SPRINGAEL, J., DE BRUCKER, K., and VERBEKE, A. PROMETHEE

and AHP: The design of operational synergies in multi-criteria analysis,

Strengthening PROMETHEE with ideas of AHP. European Journal of

operational Research,  vol. 153, 2004. pp. 307–317. 

24. SHYUR, H.J. Cost Evaluation Using Modified TOPSIS and ANP. Applied

mathematics and computation, vol. 177, 2006. pp. 251–259.

25. SHYUR, H.J. and SHIH, H.S. A hybrid MCDM model for Strategic vendor

selection. Mathematical and Computer Modeling, vol. 44, 2006. 

pp. 749–761.

26. KIM, G., PARK, C.S., and YOON, K.P. Identifying Investment Opportunities

for Advanced Manufacturing Systems with Comparative-Integrated

Performance Measurement, International Journal of Production

Economics, vol. 50, 1997. pp. 23–33. 

27. SHIH, H.S., SHYUR, H.J., and LEE, E.S. An extension of TOPSIS for Group

Decision Making. Mathematical and Computer Modeling, vol. 45, 2007.

pp. 801–813. 

28. ABO-SINNA, M.A. and AMER, A.H. Extensions of for multi-objective large-

scale nonlinear programming problems. Applied Mathematics and

Computation, vol. 162, 2005. pp. 243–256.

29. AGRAWAL, V.P., KOHLI, V., and GUPTA, S. Computer aided robot selection:

The multiple attribute decision making approach. International Journal of

Production Research, vol. 29, 1991. pp. 1629–1644.

30. CHENG, S., CHAN, C.W., and HUANG, G.H. An integrated multi-criteria

decision analysis and inexact mixed integer linear programming approach

for solid waste management. Engineering Applications of Artificial

Intelligence, vol. 16, 2003. pp. 543–554.

31. DENG, H., YEH, C.H., and WILLIS, R.J. Inter-company comparison using

modified with objective weights. Computers and Operations Research,  

vol. 27, 2000. pp. 963–973.

32. FENG, C.M. and WANG, R.T. Performance evaluation for airlines including

the consideration of financial ratios. Journal of Air Transport

Management, vol. 6, 2000. pp. 133–142.

33. FENG, C.M. and WANG, R.T. Considering the financial ratios on the

performance evaluation of highway bus industry. Transport Reviews, 

vol. 21, 2001. pp. 449–467.

34. HWANG, C.L. and YOON, K. Multiple attribute decision making: Methods and

applications. Berlin: Springer. 1981

35. JEE, D.H. AND KANG, K.J. A method for optimal material selection aided with

decision making theory. Materials and Design, vol. 21, 2000. 

pp. 199–206.

36. KIM, G., PARK, C.S., and YOON, K.P. Identifying investment opportunities for

advanced manufacturing systems with comparative-integrated

performance measurement. International Journal of Production

Economics,  vol. 50, 1997. pp. 23–33.

37. LAI, Y.J., LIU, T.Y., and HWANG, C.L. For MODM. European Journal of

Operational Research, vol. 76, 1994. pp. 486–500.

38. LIAO, H.C. Using PCR- to optimize Taguchi’s multi-response problem. The

International Journal of Advanced Manufacturing Technology, vol. 22,

2003. pp. 649–655.

39. OLSON, D.L. Comparison of weights in models. Mathematical and Computer

Modelling, vol. 40, 2004. pp. 721–727.

40. OPRICOVIC, S., and TZENG, G.H. Compromise solution by MCDM methods: A

comparative analysis of VIKOR. European Journal of Operational

Research, vol. 156, 2004. pp. 445–455.

41. PARKAN, C. and WU, M.L. On the equivalence of operational performance

measurement and multiple attribute decision making. International

Journal of Production Research, vol. 35, 1997. pp. 2963–2988.

42. PARKAN, C. AND WU, M.L. Decision-making and performance measurement

models with applications to robot selection. Computers and Industrial

Engineering, vol. 36, 1999. pp. 503–523.

43. TONG, L.I. and SU, C.T. Optimizing multi-response problems in the Taguchi

method by fuzzy multiple attribute decision making. Quality and

Reliability Engineering International, vol. 13, 1997. pp. 25–34.

44. TZENG, G.H., LIN, C.W., and OPRICOVIC, S. Multi-criteria analysis of

alternative-fuel buses for public transportation. Energy Policy, vol. 33,

2005. pp. 1373–1383.

45. ZANAKIS, S.H., SOLOMON, A., WISHART, N., and DUBLISH, S. Multi-attribute

decision making: A simulation comparison of select methods. European

Journal of Operational Research, vol. 107, 1998. pp. 507–529.

46. CHEN, C.T. Extension of the for group decision-making under fuzzy

environment. Fuzzy Sets and Systems, 2000. pp. 114, 1–9.

▲

394 JULY  2008       VOLUME 108       REFEREED PAPER The Journal of The Southern African Institute of Mining and Metallurgy



47. CHEN, M.F. and TZENG, G.H. Combining grey relation and concepts for

selecting an expatriate host country. Mathematical and Computer

Modelling, vol. 40, 2004. pp. 1473–1490.

48. Chu, T. C. Facility location selection using fuzzy TOPSIS under group

decisions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 2002. Vol. 10, Pp. 687–701.

49. CHU, T.C. Selecting plant location via a fuzzy TOPSIS approach. The

International Journal of Advanced Manufacturing Technology, 2002, 

vol. 20, pp. 859–864.

50. CHU, T.C. and LIN, Y.C. A fuzzy TOPSIS method for robot selection. The

International Journal of Advanced Manufacturing Technology, vol. 21,

2003. pp. 284–290.

51. KAUFMANN, A. and GUPTA, M.M. Introduction to fuzzy arithmetic: Theory

and applications. New York: VanNostrand-Reinhold. 1991

52. TRIANTAPHYLLOU, E. and LIN, C.T. Development and evaluation of five fuzzy

multiattribute decision-making methods. International Journal of

Approximate Reasoning, vol. 14, 1996. pp. 281–310.

53. YING-MING WANG and TAHA, M.S. Elhag. Fuzzy method based on alpha

level sets with an application to bridge risk assessment. Expert systems

with applications, 2005. pp. 1–11. 

54. ZADEH, L.A. Fuzzy sets. Information control. vol. 8, 1965. pp. 338–353.

55. MEAMARIANI, A. FDM software (Fuzzy Decision Meaking). Tarbiat Modares

University. Tehran, Iran. 2003. 

56. SHAHRIAR, K., SAMIMI, F., and DEHGHAN, H. Mining Method Selection of

Chahar Gonbad Deposit Based on Fuzzy Decision Making (FDM), 2007,

20th International Mining Congress of Turkey (IMCET), pp. 143–150. 

57. SAMIMI NAMIN, F. Underground mining method selection based on decision

theory. Ph.D. Thesis. Faculty of Mining and Metallurgical Engineering.

Amirkabir University of Technology. Tehran. Iran.     ◆

A new model for mining method selection of mineral deposit
T

r

a
n

s
a

c

t
i

o
n

P

a
p

e

r

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 108       REFEREED PAPER JULY  2008 395 ▲

Platinum market in deficit by 480-000 oz 

in 2007

The platinum market was in deficit by 480-000 oz in 2007
according to Platinum 2008, released today by Johnson
Matthey. Disruption to production in South Africa drove
global platinum supplies down to 6.55 million ounces.
Demand for platinum rose by 8.6 per cent to 7.03 million
ounces with increased purchases of metal for autocatalysts
and for industrial use. The platinum price rose by 35 per
cent in response, hitting a series of record highs. Jewellery
demand fell marginally under pressure from the high price.

South African supply falls

Platinum supplies in 2007 fell by 4.1 per cent to 6.55
million ounces. South African supplies fell by 4.9 per cent to
5.04 million ounces; unscheduled smelter closures, safety
problems and a difficult industrial relations climate had a
negative impact on. Supplies of platinum from Russia and
elsewhere fell slightly.

Autocatalyst purchases of platinum rise to new

record

Global platinum purchases by the autocatalyst sector rose by
8.2 per cent in 2007 to 4.23 million ounces. The number of
diesel vehicles produced in Europe, Japan and North
America fitted with platinum-based exhaust aftertreatment
to meet emissions rules continued to increase, outweighing
the effect of substitution of platinum by palladium in some
gasoline and diesel catalysts.

High prices have little impact on jewellery demand

Despite a rising price, purchases of platinum by the

jewellery industry, excluding scrap, fell only marginally to
1.59 million ounces. Retail sales and manufacturing
volumes were resilient in most geographical markets.
Chinese demand for manufacturing platinum jewellery rose
modestly from 760-000 oz to 780-000 oz. The quantity of
second-hand jewellery and unsold retail stock returned for
recycling in both China and Japan increased due to the high
metal price.

Exchange traded funds boost investment demand

Platinum investment demand climbed sharply to 170-000 oz
in 2007 from net disinvestment of 40-000 oz the previous
year. The launch of two new platinum-based exchange
traded funds in Europe in the first half of 2007 created
significant new investment demand. Platinum industrial
demand rose to 1.94 million ounces, six per cent up from
the 2006 total. This was aided by booming retail sales of
electronic goods, which increased platinum requirements for
hard disks and for the manufacture of flat panel display
glass.

Platinum price to remain volatile

The countrywide power supply crisis in South Africa and the
temporary closure of the Amandelbult mine due to flooding
in early 2008 will affect production of platinum this year.
With industrial and automotive demand expected to remain
strong and supplies set to underperform, the platinum
market is likely to be in a substantial deficit in 2008. The
global economic slowdown and any strengthening in the 
US dollar could cause the platinum price to soften but 
high volatility is expected to continue during the next 
six months. Johnson Matthey forecasts that platinum will
trade within a wide range of $1-775 to $2-500 over this
period.   ◆

PLATINUM 2008
Johnson Matthey releases ‘Platinum 2008’ industry review*


