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Abstract 

We consider the problem of routing and assignment of 
wavelength (RAW) in optical networks. Given a set of re- 
quests for all-optical connections (or lightpaths), the 
problem is to [a)find routes from the source nodes to their 
respective destination nodes, and [ b) assign wavelengths 
to these routes. Since the number of wavelengths is limit- 
ed, lightpaths cannot be established between every pair of 
access nodes. In this paper, we first consider the dynamic 
RAW problem where lightpath requests arrive randomly 
with exponentially distributed call holding times. Then, 
the static RAW problem is considered which assumes that 
all the lightpaths that are to be set-up in the network are 
known initially. Several heuristic algorithms have already 
been proposed for establishing a maximum number of 
lightpaths out of a given set of requests. Howevel; most of 
these algorithms are based on the traditional model of cir- 
cuit-switched networks where routing and wavelength as- 
signment steps are decoupled. In this paper a new graph- 
theoretic formulation of the RAW problem, dubbed as lay- 
ered-graph, has been proposed which provides an effi- 
cient tool for solving dynamic as well as static RAWprob- 
lems. The layered-graph model also provides a framework 
for obtaining exact optimal solution for the number of re- 
quested lightpaths as well as for the throughput that a giv- 
en network can support. A dynamic and two static RAW 
schemes are proposed which are based on the layered- 
graph model. Layered-graph-based RAW schemes are 
shown to peg?orm better than the existing ones. 

1. Introduction 
All-optical local and wide area network infrastructures 

supporting hundreds and thousands of users, each operating 
at gigabit-per-second speed, can be realized by wave- 
length-division-multiplexing (WDM) and other emerging 
optical communications technologies[ 11. In this paper, we 
consider a WDM optical network architecture consisting of 
wavelength routers which are interconnected by point-to- 
point optical links (e.g., see Fig. 1). End users or electronic 
switching devices (e.g., ATM switches) can be attached to 
the wavelength routers via accen nodes. Direct optical 
connection between a pair of access nodes can be set-up in 
this all-optical network by appropriately choosing a wave- 
length-continuous route. Since no optical-to-electrical 
conversions or buffering is performed at any intermediate 
wavelength routing node, a Terabits-per-second network 
supporting a large number of users at gigabit-per-second 

1. This work has been partially supported by NSF under Grant 
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rate can be achieved. For example, in Fig. 1, an optical path 
(also called lightpath or clear channel) can be set-up bet- 
ween Node B and Node C without any intermediate elec- 
tronic processing. 

Since the number of wavelengths is limited, it may not 
be possible to set up one-hop[2] connection between every 
pair of access nodes. As a result, multiple hops[2] may be 
necessary for some of the communicating access node 
pairs. Therefore, based on some criterion (e.g., network 
traffic demands[3]), a set of lightpaths has to be selected for 
embedding a virtual topology on top of a physical topology 
such that the network performance (e.g., throughput, block- 
ing rate, average message delay etc.) is optimized. Thus, the 
goal for a dynamic RAW scheme is to minimize the blocking 
probability, and one of the goals for a static RAW scheme 
is to maximize the total one-hop traffic for a given traffic 
demand matrix. 

Routing and Assignment of Wavelength (RAW) problem 
in WDM optical networks can be described as follows. Giv- 
en a set of requests for all-optical connections or lightpaths 
between access node pairs, the problem is to (a) find routes 
from the source nodes to their respective destination nodes, 
and ( b) assign wavelengths to these routes. In this paper, we 
first consider a dynamic RAW problem in which lightpath 
requests arrive randomly with random call holding times. 
Then, a static RAW problem is considered which assumes 
that all the lightpaths that are to be set-up in the network are 
known initially. 

A similar routing problem is typical in traditional cir- 
cuit-switched telephone networks. Consider an undirected 
multigraph model of a physical network, where multiple 
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edges between same pairs of nodes correspond to multiple 
logical channels (within tht: same physical cable). A call be- 
tween two users can be established by finding a route in the 
multigraph that is edge-disjoint with the existing connec- 
tions. However, in an optical network, the path, apart from 
being edge-disjoint with the existing connections, must 
also satisfy the wavelength continuity constraint, which de- 
mands that the same wavelength should be assigned to all 
the segments of the path. For example, in Fig 2(a), let us 
assume that each physical link in a traditional circuit- 
switched network supports two logical channels. In the cor- 
responding undirected multigraph (Fig. 2(b)), three connec- 
tions can be accommodated by finding three edge-disjoint 
paths. However, in optical networks, the paths must use the 
same wavelength on all the links. With this additional 
constraint, only two of the three edge-disjoint paths can be 
accommodated with two wavelengths (i.e., optical chan- 
nels) per link. 

Fig 2(a). Physical Network. Each line represents an optical 
fiber, each fiber can support two WDM channels. 

35 .lone of the two Wavelengths 
can be assigned to this path. AI - 

A2 - 
Fig 2(b). Logical Network.. Each line represents a WDM 

channel. Although there are three edge disjoint 
paths, only twc~ of them can be assigned as 
liahtoaths. 

Several researchers have studied the RAW problem and 
various heuristic algorithms have been developed [3,4,5,6]. 
Most of these algorithms are based on the undirected 
multigraph model of traditional circuit-switched networks. 
In this model, the routing iind wavelength assignment steps 
are decoupled. That is, firsit the best route (e.g., the shortest 
path) for each lightpath request is found, and then wave- 
lengths to these paths are assigned one-by-one based on 
some heuristic criterion such as 'longest-path first'[6] or 
'heaviest traffic path first'l31. In [5], Wcopies of the physi- 
cal network topology are: created, one for each of the W 
available wavelengths. "Is, the optical network is repre- 
sented as W disjoint subgraphs, each of which is identical 
to the physicail network topology. A route between a pair 
of nodes is found by applying a shortest path algorithm on 
all the W disjoint subgraphs, and then the cheapest one 
among these shortest paths; is chosen. However, this disjoint 

subgraph model works only in the case of dynamic RAW 
problem, where the lightpaths are assigned on demand. 
This model is not suitable for optimal static RAW problem, 
since each subgraph is considered independently and there 
is no way to decide which lightpath request should be as- 
signed to which subgraph in order to accommodate a maxi- 
mum number of lightpaths in the optical network. 

Given that the number of wavelengths is limited, it is un- 
likely that lightpaths can be established between every pair 
of access nodes. Moreover, a common wavelength might 
not be available on all the segments of a chosen route (a seg- 
ment is a portion of the route between two adjacent wave- 
length routers). Thus, routing and wavelength assignments 
are to be considered simultaneously for the best possible 
performance. In this paper, we propose a new model called 
layered-graph for addressing the dynamic as well as static 
RAW problems. We show that under this new model, the 
RAW problem can be reduced to the problem of finding 
edge-disjoint paths in a traditional circuit-switched net- 
work. Thus, the routing algorithms used in the traditional 
circuit-switched networks can also be applied to our lay- 
ered-graph model. Based on the layered-graph model, a 
maximal multicommodity 0-1 flow formulation of the stat- 
ic RAW problem has also been obtained. An exact optimal 
solution for a given RAW problem can be obtained by solv- 
ing the corresponding integer linear programming problem. 
To our knowledge no other formulation exists that can pro- 
vide an exact optimal solution to the RAW problem. 

The remainder of this paper is organized as follows. The 
layered-graph model is introduced in Section 2. Section 3 
deals with the dynamic RAWproblem. The static RAWprob- 
lem is considered in Section 4. Numerical results for dy- 
namic as well as static RAW schemes are presented in Sec- 
tion 5. The paper concludes in Section 6. 

2. A New Model For Solving RAW Problem 
In the last section, we observed that solving the optimal 

RAW problem is quite difficult due to its wavelength conti- 
nuity constraint. In fact, it has been proved that the optimal 
RAWproblem is NP-complete[6]. Several schemes have al- 
ready been proposed for establishing a maximum number 
of desired lightpaths in a given topology. These schemes 
first find routes for a given set of lightpath requests, and 
then the schemes try to establish as many lightpaths as pos- 
sible along the predetermined routes. Thus, the routing and 
the wavelength assignment subproblems are decoupled. 
Note that, even if the maximum number of paths routed via 
any link in a given topology is W, it is not guaranteed that 
all these routes can be supported with W wavelengths (see 
Fig. 2). In the layered-graph model a lightpath request is 
routed based on the available links as well as on the avail- 
able wavelengths in these links such that, whenever a route 
is found its wavelength continuity is guaranteed. Thus, in 
the layered-graph model, routing and wavelength assign- 
ment steps are tightly coupled. 

The layered-graph model also provides a framework for 
obtaining exact upper bound on the number of requested 
lightpaths a given topology can support. Another formula- 
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tion for this upper bound can be found in [4] which, howev- 
er, is applicable only for large number of wavelengths. 

2.1. The Layered-Graph Model 
Define a network topology N(R, A, L, W) for a given 

WDM optical network (e.g., see Fig. l), 
where R is the set of wavelength router nodes, 

A is the set of access nodes, 
L is the set of undirected links, and 
W is the set of available wavelengths per link. 

At a wavelength router r E R, wavelengths arriving at its 
different input ports can be routed onward to any of its out- 
put port, provided that all the wavelengths routed to the 
same output port are distinct. Each access node in A is at- 
tached to a wavelength router. The access nodes provide 
electro-optical conversions for supporting electronic pack- 
et and circuit switching operations (e.g., electronic cell 
switching in ATIWBISDN). The links, L, in the network are 
assumed to be bidirectional. Each link consists of two uni- 
directional optical fibers, each carrying IWI wavelength di- 
vision multiplexed channels. 

The layered-graph model is a directed graph, G(V E), 
obtained from a given network topology N as follows. Each 
node i E R in N, is replicated IWI times in G. These nodes 
are denoted as vi, v:, .. v w  E V.  If link 1 E L connects Router 
i to Routerj, i,j E R, in N, then Node v; is connected to Node 
v; by a directed edge, e;, e; E E for all w E W. Now, let 
us consider an access node a E A attached to Router k. In 
the layered-graph G,  two nodes are created for each access 
node a, one representing the traffic generating part (i.e., 
source) of Node a, while the other represents the traffic ab- 
sorbing part (i.e., destination). These two nodes are denoted 
as v: and vt E V; respectively. Now, directed edges from 
Node vi to nodes v t ,  v:, .. v," E V; and from each of the 
nodes vi, vi, .. V ~ E  V to vzlare added to G. Thus, the num- 
ber of nodes in G is IVI = RI x IWI + 2LAland the number of 
directed edges in G islEl= 21LI x IWI. Fig. 3(b), shows an 
example of a layered-graph which is obtained from the 
physical network topology shown in Fig. 3(a). 

fibers in opposite dirictions 
(2 wavelengths per fiber) 

Fig. 3.(a) A given optical network topology N. 

It is easy to see that if a set of paths in the layered-graph 
is edge-disjoint, then all the paths in the set can be sup- 
ported in the corresponding physical network topology. 
However, recall that in the multigraph model, a set of edge- 
disjoint paths does not guarantee that they all can be sup- 
ported in the physical network topology, N (e.g., see Fig. 2). 

Fig. 3.(b) Layered-graph corresponding to the given 
oDtical network toDoloav N. 

Before we proceed further we need to introduce the follow- 
ing terminologies. 

Definition: A Mono-Chromatic Path (MCP), from ac- 
cess Node i to access Node j in N, is a directed path from 
Node i to Node j such that all the links in the path can be as- 
signed a common wavelength (color) without conflicting 
with any existing MCPs in the network. 

LetM = {(si, di) I si, di E A }  be a set of lightpath requests 
from access node si to access node di. (Note that multiple 
lightpaths can be requested between two access nodes.) A 
necessary and sufficient condition for the existence of 
MCPs for a given set of lightpath requests M is given by the 
following theorem. A simple proof of the theorem is given 
in the appendix. 

Theorem 1: Let G be a layered-graph constructed from 
an optical network topology Nand letM be a set of lightpath 
requests. Then, N can support all the lightpath requests in 
M as MCPs if and only if G contains a set of edge-disjoint 
paths for all the requests in M .  

After introducing the necessary terminologies we now 
consider the dynamic RAW problem in Section 3 and the 
static RAW problem in Section 4. Numerical results are pre- 
sented in Section 5. 

3. The Dynamic RAW Problem 
In the dynamic RAW problem lightpaths between access 

nodes are set up on demand. Lightpath requests are assumed 
to arrive according to a Poisson process with exponentially 
distributed holding times. Whenever a new lightpath is re- 
quested the dynamic RAW scheme either selects an avail- 
able MCP, or it blocks the request if no such path can be 
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found. However, if multiple MCPs exist, a dynamic RAW 
scheme should look for the “best” MCP (e.g., the one that 
is likely to minimize bloclking in the future). Unfortunately, 
finding an MCP in the network, N, is not straightforward. 
First, a best route (e.g., the shortest one) has to be found, 
and then one has to decide if any wavelength can be as- 
signed to that route. If none of the wavelengths could be as- 
signed to that route due to the wavelength continuity 
constraint, then the second best route has to be found, and 
so on. These procedures rnight have to be repeated several 
times until either an MCP is found, or the request is blocked. 
Searching time for an MCP in this manner can be large espe- 
cially when the network already contains a large number of 
MCPs. 

The dynamic RAW problem can be simplified signifi- 
cantly by employing the layered-graph model. We show 
that a set of edge-disjoint paths in a layered-graph guaran- 
tees monochromaticity of the paths in the corresponding 
optical network. In other words, if a route, that is edge-dis- 
joint with the existing connections, cannot be found in the 
layered-graph, then that connection request cannot be met. 
Thus, the dynamic RAW problem can be solved by simply 
applying a shortest path algorithm for the requested 
lightpath in the layered-graph. A formal description of this 
formulation is provided in Subsection 3.1. The layered- 
graph-based ,dynamic RAW scheme is presented in Subsec- 
tion 3.2. 

3.1. Mathematical formulation 
Consider an optical network topology N(R, A, L, W )  

with cost c(1) associated with each of its optical link 1 E L. 
Let B be the set of lightpaths that are already set-up in N .  
Also, at time: t, let M = {m=(si,di), si,diEA} be a set of 
sourcedestination pairs requesting new lightpath connec- 
tions. Let G(V E) be the layered-graph constructed from N.  
Now, weights for the edges in G are assigned as follows. If 
an existing lightpath is routed via wavelength k on link 1 = 
(i, j )  in N ,  then the weight of the directed edge e; E E in G 
is set to infinity, otherwise, the weight of e:. is set to c(Z). 

Now, the (dynamic RAW problem can be formulated as 
follows. For each node pair (s,d> in M ,  our goal is to set up 
the ‘cheapest’ available lightpath between Node s and d. 
Alternatively,, the problem can be viewed as sending one 
unit of flow l’rom Node s to Node d via the least cost path 
in the layeredl-graph. Let x i  be defined as follows. 

1 

0 otherwise 

if 1 unit of fllow passes through the edge e! 

[ Xk = 
‘I 

Then, the minimal cost, Cp, of a lightpath from Node s 
to Node d can be formulated as follows: 
Note that, since the links ‘to the access nodes in V are unidi- 
rectional, a lightpath from access node s to access node d 
cannot be routed via another access node. This enforces the 
wavelength contuinity constraint since it is guaranteed that 
every route vvill be entirely in one of the layers in G. This 
was the reason for creating two nodes in the layered-graph 

C, = min c(e$. xi subject to 
i,j€A, kE W 1 if i = s  

- 1  if i = d  
- ; = { 0 otherwise 

G, one as the source and the other as the sink, for every ac- 
cess node in N. 

3.2. The dynamic RAW algorithm 
The above formulation can be solved by a shortest path 

algorithm (e.g., Dijkstra’s algorithm). If the cost of the 
shortest path, Cp, is found to be finite then the request is ac- 
cepted and the lightpath is set-up along the shortest path; 
otherwise the request is blocked. Note that, the weights on 
the links of G have to be updated whenever a lightpath is es- 
tablished or released. A formal description of the algorithm 
is given below: 

Layered-Graph based dynamic RAW algorithm: 
1. Transform a given WDM optical network N(R, A, L W) 
into a layered-graph G(K E). 
Let the cost2 of edge e in G be c(e), for a11 e E E 
2. Wait for a lightpath request. 
If it is a lightpath connection request, go to Step 3. 
If it is a lightpath release request go to Step 4. 
3. Find a shortest path p in G from the source to the 
destination node (e.g., by Dijkstra’s algorithm). 
If the cost of the path Cp = CQ, reject the request; otherwise, 
Accept the request 

Set up the connection along the shortest path. 
If the shortest paths is via Layer k, assign wavelength 

Update the cost of the edges on path p to W. 

k to the lightpath 

Go to Step 2. 
4. Update the cost of the edges ei occupied by the lightpath 

Release the lightpath and then go to step 2. 
to 

The complexity of step 1 is linear with the number of 
edges IEl in G .  Also, the running time of Step 4 is at most 
proportional to the diameter of the network N. Thus, the 
computational complexity of the dynamic RAW algorithm 
is dominated by the point-to-point shortest path algorithm 
used in Step 3. If c(ej) = 1 for all i, then Step 3 can be execut- 
ed in O(IEI +Ill) time using Dial’s implementation of 
Dijkstra’s algorithm. If the lengths of the physical links are 
used as the cost function then Step 3 can be executed in 
O(IEI+IVID) where D is the diameter of G[73. Note that, in 

2. This cost may be based on the physical length of the link if 
propagation delay is a concern or the cost can be set to 1 for 
all eE E if the number of wavelength routers in a lightpath is 
to be minimized. 
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large or dense optical networks the total number of links is 
much greater than the number of wavelengths per link. In 
such cases the complexity of the layered-graph-based al- 
gorithm is within a constant factor of the complexity of 
routing algorithms for traditional circuit-switched net- 
works. 

4. The Static RAW Problem 
In static RAW problem it is assumed that set of the re- 

quested lightpaths, M ,  to be set-up in the network is known 
initially. The objective here is to maximize network 
throughput. We consider two traffic cases, uniform and 
non-uniform. In uniform traffic case each lightpath has 
equal traffic demand. Thus, maximizing network through- 
put is same as maximizing the number of lightpaths estab- 
lished. In the non-uniform trafic case traffic demands of 
lightpath requests are randomly distributed. Here our objec- 
tive function is to support as much as total carried traffic as 
possible. Based on the layered-graph model, static RAW 
problem can be formulated as a maximal multicommodity 
0-1 flow problem. Note that, a similar integer linear pro- 
gramming formulation can be found in [4]. The formulation 
in [4] is based on the number of maximal independent sets 
in a path-graph3[8] which can grow exponentially with the 
number of nodes in path-graph. A formal description of our 
layered-graph-based formulation of the static RAW prob- 
lem is given in Subsection 4.1. Two layered-graph-based 
static RAW schemes are presented in Subsection 4.2 These 
two schemes are evaluated and compared against the upper 
bound in [9]. 

4.1. Mathematical formulation 
Consider an optical network N(R, A, L, W), and a set of 

source-destination access node pairs M .  Based on the lay- 
ered-graph model, the static RAW problem can be reduced 
to the problem of finding a maximal set of edge-disjoint 
paths in G, connecting the node pairs in M .  A 
multicommodity 0-1 $ow based formulation of the static 
RAW problem is given below. 

Let G(K E) be a layered-graph corresponding to a given 
physical topology N .  Let the capacity of the edges in E be 
unity. Also letf(s,, &), n = 1, ..., MI, denote the value of flow 
n carried from access node s, to access node d,, where, 

Also, let x;  denote the value of flow n on the edge eij E 

E where, 
1 

0 otherwise 
if flow n is assigned to edge eij 

3. In a path graph, G, = (V,, g), each node corresponds to a 
lightpath in the optical network and an edge connects two 
nodes in G, when the two corresponding lightpaths share a 
common physical link. 

Now, the optimal static RAWproblem for uniform traffic 
case can be formulated as follows. 

IMI 

maximize 1 f ( s ,  , d,) subject to 
n = l  

1 x; 
LEV 

5 1  

i f j  = d, 

i f j  = s, 

otherwise 

For non-uniform traffic model, traffic demand between 
each source-destination access node pair is given in the 
form of a traffic demand matrix T = [to]. We also assume 
that the traffic demand between each pair of nodes is less 
than the bandwidth which a lightpath provides. Otherwise, 
we will split the request to several requests between the 
same source-destination node pair. Let l(sn, 41, n = 
I ,  ..., IMI, denote the traffic demand from an access node s, 
to an access node 4. The optimal solution can be formu- 
lated as follows: 

IM I 

maximize t(s, , d , ) f ( s ,  ,A,) subject to (2) 
n=l 

Raghavan and Upfal[ IO] conjectured that the static RAW 
problem is significantly harder than integer multicommod- 
ity flow problem due to the wavelength continuity 
constraint. However, our formulation of the optimal static 
RAW problem is a pure integer multicommodity flow prob- 
lem with respect to the layered-graph model. The above 
formulation can be solved as an integer linear programming 
(ILP) problem. Thus, an upper bound on the throughput 
supported by the network can be obtained by relaxing the 
ILP to a linear program. 

4.2. The static RAW algorithms 
For large networks the running time of the ILP is likely 

to be unacceptably long. In such cases, heuristic or approxi- 
mate algorithms for integer multicommodity flow problem 
can be used to obtain faster but suboptimal solution. Study 
of algorithms for maximal multicommodity 0-1 flow is out- 
side the scope of this paper. However based on the layered- 
graph, two simple heuristic algorithms, one for the uniform 
traffic model and the other for non-uniform traffic model, 
are proposed. These algorithms have been simulated in or- 
der to better understand the advantages of the layered- 
graph model in solving the static RAW problem. 

For uniform traffic case, a hybrid algorithm which com- 
bines greedy and layered-graph approach is proposed. This 
algorithm, in its first phase, finds shortest paths for all 
lightpath requests in given network topology N.  Then the 
lightpath requests are sorted in non-descending order of 
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their shortest path lengths. The algorithm now routes first 
lightpath request on the layered-graph with the shortest 
path. If a finite-cost path is found then the lightpath is estab- 
lished, and the layered-graph is updated by assigning infi- 
nite cost to the edges along which the request is routed. 
Otherwise the request is s!kipped and the next request from 
the sorted list is considered. The procedure is repeated until 
all the lightpath requests are considered. In the second 
phase, the algorithm searches the shortest available path in 
the residual layered-graph for the lightpath requests that 
were skipped in the first phase. The details of the steps of 
the algorithm are described in [9]. 

Next we consider non-)uniform traffic case. Here our ob- 
jective is to maximize the total carried traffic in the net- 
work. Therefore, we first order the lightpath requests by 
their traffic demands. Our layered-graph based heuristic 
algorithm them tries to satisfy the lightpath requests in the 
non-decreasing order of their traffic demands. Detailed de- 
scription of algorithm and its numerical performance can be 
found in [9]. 

5. Numerical Results 
In this section numerical results of the layered-graph 

based dynamic and static RAW schemes are presented. An 
ARPANET-like network topology is used as an exam- 
ple[3]. This network, shown in Fig. 4, consists of 24 wave- 
length routers interconnected by 49 bidirectional optical 
links. We also assume that six access nodes are attached to 
each Wavelength router (to keep the figure simple these ac- 
cess nodes are not shown in Fig. 4). 

Fig. 4. A 24-node ARPANET-like network topology N. 

For the dynamic case, lightpath requests are assumed to 
arrive according to an independent Poisson process with ar- 
rival rate I: Holding time of the lightpaths are exponentially 

distributed with mean p (in the simulations average hold- 
ing time is set to 1 time unit). Also, once a lightpath request 
is blocked, it is removed from the list of pending lightpath 
requests. The traffic pattern is assumed to be uniform, that 
is, the lightpath requests are uniformly distributed over all 
the access node pairs. 

Performance of the layered-graph based dynamic RAW 
scheme is shown is Fig. 5. Performance of the simple greedy 
heuristic[4], which accepts a lightpath request if a common 
wavelength is available on all the segments of a shortest 
path is also shown. Fig. 5(a) shows the blocking rate of the 

1 

lightpath requests as a function of their arrival rate I: Fig. 
:5(b) shows the average number of ongoing lightpath con- 
nections as a function of their arrival rate. As expected, the 
results show that the layered-graph-based approach has a 
better chance in finding an MCP for a requested lightpath. 
Thus, for the same arrival rate, more lightpath requests can 
be satisfied by using the layered-graph-based approach. 
For example, when r = 100 and IWI = 6, the blocking rate 
of the layered-graph based algorithm is only 0.09 compared 
lo blocking rate of 0.24 for the simple heuristic in [4]. Thus, 
by using the layered-graph based approach, blocking rate 
1s reduced by 62%. Moreover, relative performance of the 
liayered-graph based approach improves as IWI increases. 

Figs. 6 and 7 show the performance of the layered- 
graph-based static RAW heuristics for the uniform and 
]non-uniform cases. The results are compared with two 
greedy approaches. Both the greedy approaches first find 
shortest paths for the all lightpath requests in the original 
network topology. Then, the first greedy heuristic assigns 
the wavelengths to lightpath requests in increasing order of 
their shortest distances[4], while the second heuristic as- 
signs wavelengths in decreasing order of their traffic de- 
imands[3]. All the heuristic algorithms are simulated for 
various sets of source-destination access node pairs, M ,  in 
the 24-node ARPANET-like example network topology. 
During the simulations, first a set of lightpath requests is 
generated randomly and uniformly selecting access node 
,pairs. For the non-uniform traffic case, traffic demand for 
each of the requested lightpaths is set to be uniformly dis- 
tributed between 0 and 1. 

We plot the number of lightpaths established versus the 
number of lightpaths requested in Fig. 6(a) for the uniform 
traffic case. The four curves in Fig. 6(a) represent two dif- 
ferent heuristic schemes (i.e. layered-graph and greedy[4] 
approaches) for IWI = 6 and 12. The simulation results show 
that the improvement obtained from the layered-graph- 
based approach, in term of the number of lightpaths estab- 
lished, is very consistent after a certain size of the lightpath 
request set. The average gain in the number of lightpaths es- 
tablished is about 22.2 for IM= 6 and 160 <IMI( 840. For 
IWI = 12 and 320 <lMl( 1000, the layer-graph-based ap- 
proach establishes on an average, 37.6 more lightpaths, 
which is a little less than twice the gain for IM= 6. For ex- 
ample, for IMI= 800, the layered-graph-based algorithm 
can support 22 and 41 more lightpaths than the greedy algo- 
rithm when IWI = 6 and 12, respectively. 

Fig. 6(b) shows the average hop distance (in terms of the 
number of physical links) of the established lightpaths ver- 
sus the total number of lightpaths requested. The average 
hop distance for the layered-graph-based algorithm is ex- 
pected to be longer than the greedy algorithm. (Recall that 
the layered-graph-based approach looks for an available: 
monochromatic path which might be longer than the short- 
est path that the greedy algorithm insists on,) However, the 
simulations show that the largest differences in the hop dis- 
tance are only 0.425 and 0.312 hop for IWI = 6 and 12, re- 
spectively; and the difference gets smaller as the number of 
lightpath request grows. Since the layered-graph-based al- 
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gorithm also searches for an available shortest path in the 
corresponding layered-graph, increase in the average hop 
distance is mostly contributed by a few ‘long’ lightpaths 
which could not be satisfied by the greedy approach. 

For the non-uniform traffic case, Fig. 7(a) plots the total 
traffic demands of the established lightpaths versus the 
number of lightpaths (i.e., throughput) requested (i.e., IMI). 
We find that the throughput of the layered-graph based ap- 
proach is always greater than the throughput of the greedy 
algorithm[3]. This increased throughput is not only due to 
a greater number of lightpaths being supported but also due 
to the fact that more lightpaths with heavy traffic demands 
were established. From Fig. 7(b), which shows the total 
number of lightpaths established versus the number of 
lightpaths requested, we note that the improvement in the 
total number of lightpaths established decreases as the num- 
ber of lightpath requests increases. However, the improve- 
ment in total network throughput shown in Fig. 7(a) is still 
significant and it remains constant for large values of MI. 

6. Conclusions 
We presented a new layered-graph model for solving the 

routing and wavelength assignment problem in optical net- 
works. The layered-graph model ‘eliminates’ the wave- 
length continuity constraint since all the paths between two 
access nodes are guaranteed to be monochromatic. Thus, 
the optimal RAW problem can be reduced to the problem of 
finding maximal number of edge-disjoint paths in the cor- 
responding layered-graph. This allows us to consider the 
routing and wavelength assignment subproblems simulta- 
neously in order to exploit better performance. This is in 
contrast to the traditional schemes in which the routing and 
wavelength assignment subproblems are treated indepen- 
dently. Based on the layered-graph model, the RAW prob- 
lem is formulated as a pure maximal 0-1 multicommodity 
flow formulation. Heuristic algorithms that are based on the 
layered-graph model are also developed for the dynamic 
and static RAW problems. Since the number of wavelength 
is much smaller than the number of nodes in the network, 
the complexity of the layered-graph-based approach is 
within a small factor of the complexity of traditional sche- 
mes. Thus, the cost of routing in the layered-graph is only 
a few times the cost of routing in the physical network. Nu- 
merical examples were employed for evaluating the perfor- 
mance of the layered-graph-based heuristics with respect 
to the upper bounds and other existing heuristics. The simu- 
lation results demonstrate that the layered-graph-based al- 
gorithms provide better performance, both in terms of 
blocking rate and the number of lightpaths established (for 
the dynamic case) as well as in terms of the one-hop traffic 
supported (for the static case). 
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Appendix 
Theorem 1: Let G be a layered-graph constructed from 

an optical network topology Nand let M be a set of lightpath 
requests. Then, N can support all the lightpath requests in 
M as MCP if and only if G contains a set of edge-disjoint 
paths for all the requests in M .  

Pro03 Suppose N contains a set of MCPs for the 
lightpath requests in M. Then, each MCP of color i can be 
drawn with Wavelength i on the ith layer of G, i = I, 2, .. 
Iwi. Since all the layers in G are disjoint, and since the 
MCPs which are assigned the same wavelength must be 
edge-disjoint in N, the paths drawn on the layered-graph 
are disjoint as well. Conversely, suppose that for the 
lightpath requests in M there exists a set of edge-disjoint 
paths in G .  Then, since the layers in G are disjoint, Wave- 
length i can be assigned to all the paths on the ifh layer of 
G, i = 1, 2, .. IWl. Now, by merging nodes vi, v;, .. v r  to 
a single node for each i E R, all the layers of G are merged 
to a single layer The source and destination nodes vi, vi 
are also merged to a single node for each a E A.  This one- 
layer graph is identical to network topology N where all the 
paths from all the layers will form a valid set of mono-chro- 
matic paths satisfying the requests in M.  0 
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