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Abstract In this article we obtain a new anisotropic solu-

tion for Einstein’s field equations of embedding class one

metric. The solution represents realistic objects such as

Her X-1 and RXJ 1856-37. We perform a detailed investi-

gation of both objects by solving numerically the Einstein

field equations with anisotropic pressure. The physical fea-

tures of the parameters depend on the anisotropic factor i.e.

if the anisotropy is zero everywhere inside the star then the

density and pressures will become zero and the metric turns

out to be flat. We report our results and compare with the

above mentioned two compact objects as regards a num-

ber of key aspects: the central density, the surface density

onset and the critical scaling behaviour, the effective mass

and radius ratio, the anisotropization with isotropic initial

conditions, adiabatic index and red shift. Along with this we

have also made a comparison between the classical limit and

theoretical model treatment of the compact objects. Finally

we discuss the implications of our findings for the stability

condition in a relativistic compact star.

1 Introduction

Recent development in a cosmological deep survey has clar-

ified progressively the origin and distribution of matter and

evolution of compact objects in the Universe. Some of their

properties, such as masses, rotation frequencies and emis-

sion of radiation are measurable, whereas measurements of

important parameters which determine the nature of compact

stars still represent an observational challenge. The proper-

ties that are not directly linked to observations, such as the

internal composition or masses and radii, require the devel-

opment of theoretical models. On the theoretical side, the
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mass and the radius are determined by solving the hydro-

static equilibrium equation which expresses the equilibrium

between gravitational and pressure forces. In the framework

of general relativity the equilibrium of a spherical object is

described by the Tolman–Oppenheimer–Volkoff (TOV) [1,2]

equations, and, for completeness, the equation of state is

required. Very recently other theoretical advances in mod-

elling of densely neutral gravitating objects in strong grav-

itational fields have generated much interest in last couple

of decades. This is because of its importance in describing

relativistic astrophysical objects such as neutron stars, quark

stars, hybrid proto-neutron stars, bare quark stars etc.

The main theoretical routes have been used to study of

stellar structure and evolution assuming that the interior of a

star can be modelled as perfect fluid. The perfect fluid model

necessarily requires the pressure in the interior of a star to be

isotropic. Spacetime fuelled by a rotating anisotropic fluid

has been used to model the interior of the star. One common

source is a fluid with anisotropy in pressure. In particular

at very high densities conventional celestial bodies are not

composed purely of perfect fluids so that radial pressures are

different from tangential pressures. The model of Bowers

and Liang [3] is conceptually different from isotropic mat-

ter, but it possesses anisotropic matter in the study of general

relativity. Mak and Harko [4] and Sharma et al. [5] suggest

that anisotropy is a sufficient condition in the study of dense

nuclear matter with a strange star. Some argument against the

existence of anisotropy could be verifiable through the exis-

tence of a solid core or the presence of a type 3A fluid; see the

work of Kippenhahn and Weigert [6]. On the other hand, this

can arise from different kinds of phase transition and pion

condensation as pointed out by Sokolov and Sawyer [7]. The

structure of compact objects in general relativity will depend

on several parameters, including fluid and magnetic stresses,

entropy gradients, composition, heat flow and neutrino emis-

sion. However, we restrict our attention to the case of an

anisotropic perfect fluid with equilibrium composition.
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The theoretical investigation of compact objects has been

done by several workers by using both analytical and numer-

ical methods. However, emphasis has always been given on

the importance of the local pressure anisotropy. This seems to

be very reasonable explaining the matter distribution under

a variety of circumstances. Also, this has been proved to

be very useful to explore characteristics of relativistic com-

pact objects [8–15]. In recent years, many exact solutions to

the Einstein field equations have been generated by differ-

ent approaches [16–22]. Therefore, the Einstein–Maxwell

spacetime geometry for a compact object having a local

anisotropic effect has attracted considerable attention in var-

ious physical investigations. However, the physical accept-

ability of the solution depends on the number of criteria which

include the fulfillment of various energy conditions of gen-

eral relativity.

Against this background we would like to mention that in

one of the earlier works Maurya et al. [23] have proposed

an algorithm of a charged anisotropic compact star while

in the later works [24,25] they have given a new approach

for finding an anisotropic solution of Einstein’s field equa-

tions by using the metric potentials function. The present

work is a sequel of the work done by Maurya et al. [26,27],

in which the authors have obtained the charged compact star

and the structure of a relativistic electromagnetic mass model

under the condition of a class one metric. It would be desir-

able to do a systematic stability analysis of our model based

on anisotropic spacetime. In this work, we check the mass–

radius relation, stability and surface redshift of our models

and find their behaviour is well behaved.

The present article is organized as follows: Sect. 2 con-

tains the spherically symmetric metric and the Einstein field

equations. Also we find the metric function λ in terms of

the metric function ν by applying the class one condition.

In Sect. 3, we obtain the interior structure of the anisotropic

star under the class one condition. The values of the arbi-

trary constants and total mass of the compact star of radius R

are obtained by using the boundary conditions in Sect. 4. In

Sect. 5, we discuss several required physical conditions for

anisotropic models along with the stability analysis which

is vital one. Section 6 contains some concluding remarks on

the anisotropic models.

2 Line element for class one metric and Einstein’s field

equations

We consider the static spherically symmetric metric for

describing the spacetime of the compact stellar configura-

tion

ds2 = −eλdr2 − r2(dθ2 + sin2 θ dφ2) + eν dt2. (1)

The energy-momentum tensor of interior matter for a

strange star may be expressed in the following standard form:

Ti j = diag(ρ,−pr,−pt,−pt), (2)

where ρ, pr and pt correspond to the energy density, radial

and tangential pressures, respectively, of the matter distribu-

tion.

The Einstein field equations can be written as

Ri j −
1

2
R gi j = −8π Ti j . (3)

Here G = c = 1 in geometrized relativistic units.

In view of the metric (1), Eq. (3) yields the following

differential equations [28]:

pr =
e−λ

8π

[

v′

r
−

(eλ − 1)

r2

]

, (4)

pt =
e−λ

8π

[

v′′

2
−

λ′v′

4
+

v′2

4
+

v′ − λ′

2r

]

, (5)

ρ =
e−λ

8π

[

λ′

r
+

(eλ − 1)

r2

]

. (6)

The metric (1) may represent the spacetime of the embed-

ding class one, if it satisfies the condition of Karmarker [29].

This condition gives the following relation between the met-

ric potentials ν and λ [24]:

eλ(r) = 1 + C ν′2 eν . (7)

Here C is a positive constant quantity.

3 New anisotropic models for compact star

To find an interior solution of the anisotropic compact star

in class one, we consider the pressure isotropy condition as

given through the expression of the anisotropic factor as fol-

lows:

e−λ

8π

[

v′′

2
−

λ′v′

4
+

v′2

4
−

v′ + λ′

2r
+

eλ − 1

r2

]

= (pt − pr) = �. (8)

For finding the non-zero expression for the anisotropic

factor, we assume the metric potential to be in the form

eν = B e2 Ar2

, (9)

where A and B are positive constants.

Hence from Eqs. (7) and (9), we get

eλ = [ 1 + D Ar2 e2Ar2 ], (10)

where

D = 16 A B C. (11)
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Fig. 1 Variation of metric potentials eν and eλ with the radial coordi-

nate r/R for Her X-1 and RXJ 1856-37

Fig. 2 Variation of anisotropic factor �i = �/A with the radial coor-

dinate r/R for Her X-1 and RXJ 1856-37

From Eqs. (9) and (10), we observe that eλ(0) = 1 and

eν(0) = B at the centre, r = 0. This shows that metric poten-

tials are singularity free and positive at the centre. Also both

are monotonically increasing functions, which shows that

these metric potential are physically valid [30]. These fea-

tures can be observed from Fig. 1.

By plugging Eqs. (9) and (10) into Eq. (8), we get

� =
A2r2

8 π

[

−2 + D e2Ar2

1 + D Ar2 e2Ar2

]2

. (12)

We note from Fig. 2 that the anisotropy � is zero at the cen-

tre r = 0 and is monotonically increasing with the increase

of r . Also from Eq. (12), we observe that the anisotropic

factor � vanishes everywhere inside the compact star if and

only if A = 0.

Equations (4), (5) and (6) give the expressions for the

radial pressure pr, the tangential pressure pt and the energy

density ρ:

pr =
A

8 π

[

4 − D e2Ar2

1 + D Ar2 e2Ar2

]

, (13)

pt =
A

8 π

[

4 − D e2Ar2 + 4 Ar2

(1 + D Ar2 e2Ar2
)2

]

, (14)

ρ =
A

8 π

[

D e2Ar2
(3 + 4Ar2 + Ar2 D e2Ar2

)

(1 + D Ar2 e2Ar2
)2

]

. (15)

The radial and tangential pressures at the centre, r = 0,

can be given by pr = A (4−D)/8 π and pt = A (4−D)/8 π .

Since A and D are positive and the pressure should be positive

at the centre, this implies that D < 4. In a similar way, we can

find the density at the centre, r=0, as ρ0 = (3 A D/8 π). Since

the density should be positive at the centre, D is positive due

to positivity of A. As D, A, B all are positive, C is also a

positive quantity. The behaviour of pr and pt are shown in

Figs. 3, 4.

We suppose that the radial and tangential pressures of the

star are related to the matter density by the parameters ωr and

ωt as pr = ωr ρ and pt = ωt ρ.

Then the expressions for the parameters ωr and ωt are

given by

ωr =
(4 − D e2Ar2

)(1 + D Ar2 e2Ar2
)

D eAr2 [3 + 4 Ar2 + Ar2 De2Ar2 ]
, (16)

ωt =
4 (1 + Ar2) − D e2Ar2

D e2Ar2 [3 + 4 Ar2 + Ar2 De2Ar2 ]
. (17)

From Fig. 5 it is clear that the ratios ωr = pr/ρ and

ωt = pt/ρ are less than 1. This implies that the density dom-

inates over the pressures throughout inside the star. However,

this also implies that the underlying fluid distribution is non-

exotic in nature [39].

4 Matching condition

For any physically acceptable anisotropic solution, the fol-

lowing boundary conditions must be satisfied:

(i) At the surface of the compact star, the interior of met-

ric (1) for anisotropic matter distribution match with the

exterior of Schwarzschild solution [31], which is given

by the metric

ds2 =
(

1 −
2M

r

)

dt2 − r2(dθ2 + sin2 θ dφ2)

−
(

1 −
2M

r

)−1

dr2, (18)
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Fig. 3 Variation of radial

pressure (left panel) and

transverse pressure (right panel)

with respect to the radial

coordinate r/R with Pr = pr /A

and Pt = pt/A for Her X-1 and

RXJ 1856-37

where M is a constant representing the total mass of the

compact star at r = R.

(ii) The radial pressure pr must be finite and positive at the

centre r = 0 and it must vanish at the surface r = R of

the star [32]. The condition pr(R) = 0 gives

D = 16ABC = 4e−2AR2

. (19)

This readily yields the radius R of the compact star as

R =

√

1

2A
ln

[

1

4ABC

]

. (20)

Using the continuity of metric coefficients eν , eλ and
∂gt t

∂r
across the boundary of the star gives the following

equations:

B e2AR2 = 1 −
2M

R
, (21)

1 + D AR2 e2AR2 =
[

1 −
2M

R

]−1

, (22)

4 B AR2 e2AR2 =
2M

R
. (23)

The following equations with Eq. (19) give the value of

the unknowns M, B and C as follows:

M =
R

2

[

4 AR2

1 + 4 AR2

]

, (24)

B =
e−2AR2

1 + 4AR2
, (25)

C =
1 + 4AR2

4 A
. (26)

On the other hand, the value of the constant A can be

determined by assuming the density at the surface of the

star i.e. ρs at r = R.

Fig. 4 Variation of effective energy density (ρ̃ = ρ/A) with respect

to the radial coordinate r/R for Her X-1 and RXJ 1856-37

ω
t

ω
r

ω
r

ω
t

ω
r

ω
t

Fig. 5 Variation of parameters ωr and ωt with the radial coordinate

r/R for Her X-1 and RXJ 1856-37

5 Physical features of the anisotropic models

5.1 Sound speed

The speed of sound should monotonically decrease through-

out from the centre to the boundary of the star and it must

be within the range 0 ≤ Vi =
√

d pi/dρ < 1. It is argued by

Canuto [33] that the sound speed should decrease outwards
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Fig. 6 Variation of sound speed with the radial coordinate r/R for the

Her X-1 and RXJ 1856-37

for the EOS with an ultra-high distribution of matter. From

Fig. 6, it is clear that the speed of sound is monotonically

decreasing outwards.

5.2 Energy conditions

The anisotropic fluid must satisfy the following energy con-

ditions: the Null energy condition (NEC), the Weak energy

condition (WEC) and the Strong energy condition (SEC).

Therefore, the following inequalities should hold simultane-

ously at each point inside the compact star corresponding to

the above conditions (Fig. 7):

NEC : ρ ≥ 0, (27)

WECr : ρ − pr ≥ 0, (28)

WECt : ρ − pt ≥ 0, (29)

SEC : ρ − pr − 2pt ≥ 0. (30)

5.3 Tolman–Oppenheimer–Volkoff equation (TOV)

The generalized TOV equation for the anisotropic fluid dis-

tribution is given by [1,2]

MG(ρ + pr)

r2
e

λ−ν
2 +

d pr

dr
+

2

r
(pr − pt) = 0. (31)

We can write the above TOV equations as follows:

−
1

2
ν′(ρ + pr) −

d pr

dr
+

2

r
(pt − pr) = 0, (32)

where MG is the effective gravitational mass and it can be

given by

MG(r) =
1

2
r2e

ν−λ
2 ν′. (33)

Equation (32) describes the equilibrium condition for an

anisotropic fluid distribution subject to the gravitational (Fg),

the hydrostatic (Fh) and the anisotropic stress (Fa) so that

Fg + Fh + Fa = 0, (34)

where its components can be defined as

Fg = −
1

2
ν′ (ρ + pr), (35)

Fh = −
d pr

dr
, (36)

Fa =
2

r
(pt − pr). (37)

The explicit form of the above forces can be expressed as

(Fig. 8)

Fg = −
A2r

4 π

[

4 + 2D e2Ar2
(1 + 4Ar2)

(1 + D Ar2 e2Ar2
)2

]

, (38)

Fh = −
A2r

4 π

[

D e2Ar2
(−6 + 2D e2Ar2 − 8Ar2)

(1 + D Ar2 e2Ar2
)2

]

, (39)

Fa =
A2r

4 π

[

−2 + D e2Ar2

(1 + D Ar2 e2Ar2
)

]2

. (40)

Fig. 7 Variation of energy

conditions with the radial

coordinate r/R for Her X-1 (left

panel) and RXJ 1856-37 (right

panel)
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Fig. 8 Variation of different

forces with the radial coordinate

r/R for Her X-1 (left panel) and

RXJ 1856-37 (right panel)

5.4 Stability of the models

5.4.1 Herrera cracking concept

We know that for physically acceptable anisotropic models,

the radial and transverse speed of sound should lie between

0 and 1, i.e., 0 ≤ Vr < 1 and 0 ≤ Vt < 1. We observe

from this inequality that the parameters also should satisfy

the inequality 0 ≤ V 2
r < 1 and 0 ≤ V 2

t < 1. Now we define

the expression for the square of the velocity of sound as

V 2
r =

d pr

dρ
=

[

(6 − D e2Ar2 + 8Ar2)(1 + D Ar2 e2Ar2
)

D2 Ar2 e4Ar2 − 2 (5 + 4Ar2) + D e2Ar2
(5 + 6Ar2 + 8A2r4)

]

; (41)

V 2
t =

d pt

dρ
=

[

2[ D e2Ar2
(5 + 10Ar2 + 8A2r4) − 2 − D2 e4Ar2

(1 + Ar2)]
D e2Ar2 [D2 Ar2 e4Ar2 − 2 (5 + 4Ar2) + D e2AR2

(5 + 6Ar2 + 8A2r4)

]

. (42)

From Fig. 9, we conclude that the square of the radial and

transverse speeds of sound are within the range everywhere

inside the stars. Therefore, 0 ≤ |V 2
t − V 2

r | < 1. In order to

examine the stability of the local anisotropic fluid distribu-

tion, we follow the cracking concept of Herrera and Aberu et

al. [34,35] which states that the region is potentially stable

where the radial speed of sound is greater than the transverse

speed of sound. This implies that there is no change in sign

V 2
r − V 2

t and V 2
t − V 2

r .

So we calculate the difference between the radial and

transverse speeds of sound:

V 2
t − V 2

r =
[

(2 − D e2Ar2
)[2 + D2 Ar2 e4AR2 − D e2Ar2

(1 + 6Ar2 + 8A2r4)]
D e2Ar2 [D2 Ar2 e4Ar2 − 2 (5 + 4Ar2) + D e2Ar2

(5 + 6Ar2 + 8A2r4)

]

. (43)

We note from Fig. 10 that the radial speed of sound is

always greater than the transverse speed of sound and also

0 ≤ |V 2
t −V 2

r | < 1 everywhere inside the star. These features

represent that the proposed physical models are stable.

5.4.2 Adiabatic index

In order to determine an equilibrium configuration, the mat-

ter must be stable against the collapse of local regions. This

also requires Le Chatelier’s principle (known as the local or

microscopic stability condition), stating that the radial pres-

sure pr must be a monotonically non-decreasing function of

ρ such that
d pr

dρ
> 0 [36]. Heintzmann and Hillebrandt [37]

also proposed that a neutron star with an anisotropic equation

of state is stable for γ (= pr+ρ
pr

d pr

dρ
) > 4/3. From Fig. 11, it

is clear that the adiabatic index (γ ) is higher than 4/3 every-

where inside the star.

5.5 Effective mass–radius ratio

This section contains the maximum allowable mass–radius

ratio for the above proposed anisotropic fluid models. As

Buchdahl [38] has already discussed, the maximum limit of

mass–radius ratio for a static spherically symmetric perfect

fluid star should satisfy the upper bound 2M/R < 8/9. Also

Mak and Harko [4] have given the generalized expression for

the same mass–radius ratio.

The effective mass of the anisotropic compact star is

defined as
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Fig. 9 Variation of square of radial speed of sound and transverse speed

of sound with radial coordinate r/R for Her X-1 and RXJ 1856-37

Meff = 4π

∫ R

0

ρ r2dr =
1

2
R [1 − e−λ(R)]

=
R

2

[

D AR2e2AR2

1 + D AR2e2AR2

]

=
R

2

[

4 AR2

1 + 4 AR2

]

. (44)

However, the compactness u of the star can be expressed

as

u =
Meff

R
=

1

2

[

4AR2

1 + 4AR2

]

. (45)

5.6 Surface redshift

The surface redshift (Z ) corresponding to the above com-

pactness (u) is given by the expression (Fig. 12)

Z =
1 − [ 1 − 2 u]1/2

[ 1 − 2 u]1/2
=

√

1 + 4 AR2 − 1. (46)

6 Conclusions

In the present article, we have obtained new anisotropic com-

pact star models of the embedding class one metric. Our

Fig. 11 Variation of adiabatic index (γ ) with radial coordinate r/R for

Her X-1 and RXJ 1856-37

Fig. 12 Variation of the redshift (Z ) with the radial coordinate r/R for

Her X-1 and RXJ 1856-37

models satisfy all the physical reality conditions. Some of

the special features of the present model are as follows:

1. We used the boundary conditions by joining the

Schwarzschild metric with a class one metric at the

boundary of the star r = R. Subsequently we obtained

the arbitrary constants A, B, C along with the total mass

Fig. 10 Variation of difference

between square of radial speed

and transverse speed of sound

with radial coordinate r/R for

Her X-1 and RXJ 1856-37
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Table 1 Values of the model parameters mass (M⊙), radius (R), D, A, B and C for different compact stars

Compact star candidates M
R

M(M⊙) R (km) D A(cm−2)
√

B
√

BC(cm2)

Her X-1 0.216 0.9825 6.7 2.7344 4.2371 × 10−13 0.6231 6.4733 × 1011

RXJ 1856-37 0.222 0.9041 6.0 2.6834 5.5443 × 10−13 0.6108 4.9528 × 1011

Table 2 The energy densities, the central pressure and AR2 for different compact star candidates for the above parameter values of Table 1

Compact star candidates Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2) AR2

Her X-1 1.8664 × 1015 1.3273 × 1015 2.5923 × 1035 0.1902

RXJ 1856-37 2.3968 × 1015 1.6924 × 1015 3.5282 × 1035 0.1996

of the compact star and the corresponding numerical

values are provided in Table 1. All these values match

the observed data of real compact stars.

2. The metric potentials are free from any singularity at

the centre, and positive and finite inside the star (Fig. 1).

Also the ρ, pr and pt are positive, finite and monoton-

ically decreasing away from the centre. However, the

parameters ωr and ωt are within the range between 0

and 1 (Fig. 5).

3. The model is in static equilibrium. We observe from

Fig. 8 that the gravitational force (Fg) is dominating

over the hydrostatic force (Fh) and is counter balanced

by the joint action of the hydrostatic force and the

anisotropic stress.

4. The model has a density of the order 1015 gm/cm3. The

corresponding values for Her X-1 and RXJ 1856-37 are

as follows:

(i) at the centre ρ0 = 1.8664 × 1015 gm/cm3 and ρ0 =
2.3968 × 1015 gm/cm3,

(ii) at the surface ρs = 1.3273 × 1015 gm/cm3 and ρs =
1.6924 × 1015 gm/cm3 (Table 2).

This density profile shows that our models may repre-

sent a realistic anisotropic objects.

(5) The redshift is monotonically decreasing and attains

its maximum value at the centre of the compact star.

The numerical values corresponding to the Her X-

1 and RXJ 1856-37 are: (i) at the centre Z0 =
0.2669 and Z0 = 0.2796, (ii) at the surface Zs =
0.0474 and Zs = 0.0480.

As a final comment, an interesting and puzzling point

about the anisotropic compact model is that its stability

depends on the unavoidable anisotropic pressure and

the TOV equations used to place a constraint on the

anisotropic parameters. It would be interesting to pro-

pose a richer model in which consideration of the pres-

sure anisotropy on the compact relativistic objects could

lead to a more realistic model of the anisotropization

mechanism as regards compact relativistic objects.
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