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Abstract. Our recent paper [6] presented a model for thin plates with rapidly varying
thickness, distinguishing between thickness variation on a length scale longer than, on the
order of, or shorter than the mean thickness. We review the model here, and identify the
case of long scale thickness variation as an asymptotic limit of the intermediate case,
where the scales are comparable. We then present a convergence theorem for the
intermediate case, showing that the model correctly represents the solution of the
equations of linear elasticity on the three-dimensional plate domain, asymptotically as the
mean thickness tends to zero.

1. Introduction. In [6] we presented a model for the bending of symmetric, linearly
elastic plates with rapidly varying thickness. We considered plates with thickness of order
e varying on a length scale of order ea, a > 0, and we distinguished between three cases:
"a < 1", in which the thickness varies on a scale much larger than the mean thickness;
"a = 1", in which the variation is on a scale comparable to the mean thickness; and
"a > 1", in which the length scale of thickness variation is much shorter than the mean.
Our model yields, in each case, a fourth-order equation for the vertical midplane
displacement,

daf}(Mafi ytPy8W) =

the formula for the effective rigidity tensor depends, however, on whether a < 1,
a = 1 or a > 1. Sees. 2 and 3 give a review of the model, thus making the present
exposition self-contained.

The main goal of this paper is to show the validity of the model in the intermediate case
"a = 1". Attention is restricted to plates with clamped edges and periodic thickness
variation. Our main result, Theorem 6.1, shows that the model approximates the true
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three-dimensional elastostatic displacement in energy norm on the thin plate domain,
asymptotically as the thickness tends to zero. The corresponding result for flat, homoge-
neous plates is well known [8, 9]; an analogous one for flat plates with rapidly varying
composition has recently been proved by Caillerie [2, 3].

Similar convergence theorems remain to be proved for the other two scalings, involving
relatively slow ("a < 1") or very fast ("a > 1") variation. Proposition 3.1 represents a step
in this direction: it identifies the effective rigidities in the "a < 1" case as a limit of those
from the "a = 1" case, as the period of the thickness variation tends to infinity. One can,
at least formally, obtain the "a > 1" effective rigidities from the "a = 1" case in the
opposite limit as the period of the thickness variation tends to zero. That analysis is not
presented here, because we are unable to make it completely rigorous. We mention it,
however, in combination with Proposition 3.1, as an indication that the case "a =
1"—when the period is comparable to the mean thickness—is in a certain weak sense
universal.

The present problem combines the difficulties inherent in plate theory with those arising
from the rapid variation of the surface geometry, and our analysis therefore has aspects in
common with both [3, 9] and [4] (more complete references to the extensive literature on
periodic homogenization and plate theory are found in [6]). Our analysis is organized
around three integral estimates: (i) a Korn-type inequality, (ii) a weak form of Kirchhoff's
hypothesis, and (iii) an "averaging lemma".

The Korn-type inequality is Proposition 4.1: it estimates an arbitrary displacement in
the Hl norm on the three-dimensional plate domain in terms of its elastic energy, with a
constant whose dependence on e is made explicit. For flat plates this estimate can be
proved by rescaling Korn's inequality for a cylinder of height 1. A related result is proved
in [4] for domains with holes, by means of an extension argument. Those methods seem
not to apply in the present context; instead we divide the plate domain into &(e'2)
subdomains each with diameter of order e. By rescaling Korn's inequality for a unit-sized
domain one can relate the displacement on each subdomain to a suitable rigid motion.
The variation of these rigid motions can in turn be estimated by the local elastic energy;
since the rigid motions vanish at the clamped edge this leads to Proposition 4.1.

Kirchhoff's hypothesis asserts that the displacement u, to leading order has the form
8w 9w

From Theorem 6.1 it follows directly that the solution to the three dimensional elastostatic
boundary value problem does indeed satisfy this. Proposition 4.2, as a preliminary result,
establishes the weaker assertion that

/"« + *3f^r dx < Ce2J\e(u)\2 dx (a = 1,2)

for any u satisfying certain symmetry conditions. The symmetry conditions require that u
lie in the space

Xe = Hl n {u: u = 0 at the plate edge; ux, u2 are odd and
w3 is even as functions of x3}.
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The proof is similar to that of Proposition 4.1, although considerably simpler: we again
apply Korn's inequality on subdomains of diameter e to approximate u by rigid motions.
The symmetry conditions restrict the rigid motions that can arise, and this leads Proposi-
tion 4.2.

Our "averaging lemma" Proposition 5.1, is an adaptation to plate theory of the
following simple result for functions in R":

Consider a function f(x; |) defined for x G S2 c R" and £ e R", and periodic in each
with period 1. Assume moreover that f and each of the derivatives df/dx: are uniformly
bounded, and set

fc(x) =/(*; x/e), f(x) = f f(x-,Z)d£.

Then

||/E ~~ /||// '(S2) < Ce-

We call this an "averaging lemma", because it approximates the rapidly varying function
fc by its "local average"/. In Proposition 5.1, 7/_1(S2) (the dual of Hl(Q,)) is replaced by
the dual of Xf , where Xf is equipped with the energy norm.

The main convergence argument, presented in Sec. 6, is partly inspired by Nordgren's
article [9]. The Ansatz for the displacement contained in our model provides a stress field
t, defined by (6.10), which is almost statically admissible (Proposition 6.1) and at the same
time is almost kinematically admissible (cf. (6.21)). Therefore the Ansatz is a good
approximation to the true linearly elastostatic displacement, and that is the assertion of
Theorem 6.1. Proving that r is nearly statically admissible is by far the more difficult, and
it is here the three aformentioned integral estimates are used. As a corollary to Theorem
6.1 we also conclude that the first term of the Ansatz correctly estimates the mean vertical
displacement (in a weighted L2 norm on the midplane).

The analysis presented in this paper applies only to the case "a = 1" and only to plates
with periodic thickness variation and clamped edges. The method appears, however, to be
more general. We believe it could be applied with other boundary conditions at the plate
edge, and with plates whose thickness is "locally periodic" or "quasiperiodic" in the sense
of [6], An analysis of the cases "a < 1" and "a > 1" could perhaps be done following a
similar outline.

Structural engineers are interested in plates of the type studied here, because they may
be stronger per unit weight than uniform or slowly varying ones in certain design contexts.
Some references to the literature on structural design optimization are found in [6]. It is
natural to ask which scaling—a < 1, a = 1 or a > 1—produces the most rigid structure;
we intend to address this issue in a forthcoming paper.

We are pleased to acknowledge advice from George Papanicolaou on aspects of this
project.

2. Preliminaries. We shall write x = (jc1( x2, x3) for vectors in R3 and x = (xl5 x2) for
vectors in R2. Latin indices will usually range from 1 to 3, and Greek ones from 1 to 2; the
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summation convention applies whenever indices are repeated. We write 3, = 3/3.x, and
3,7 = 92/9x,3 Xj.

2A. Constitutive laws. Associated with any displacement u = (u1, u2, w3) of R3 is its
linear strain tensor

eij{u) = \{'djUi+^iuj) (2.1)

and the corresponding stress tensor

"ij(u) = Bijklek,{u). (2.2)

The fourth-order tensor Bijkl satisfies

Bijkl = Bjikl = Bjjlk = BkHj I

we assume that the elastic energy

jkl^ij^ k I

is positive definite on symmetric tensors.
We shall always assume that the horizontal planes are planes of elastic symmetry; this

means [7]

-®a/9y3 = -#<,333 = 0-

Finally, we define the positive definite fourth-order tensor

R -ft _ B»/»3gY"3
afiyS ~~ Da/jy8 D '

3333

2B. Plate geometry. The plate geometry is determined by

a smoothly bounded domain £2 in the xx - x2 plane, representing the
midplane;
a real parameter a, 0 < a < oo, determining the length scale of the , .
thickness variation, and
a bounded function h(rj) > 0, defined for any rj e R2 and periodic in ija

(2.4c)
with period La, a = 1,2.

The three-dimensional region occupied by the plate is

^(£) = |jc3|< eh(x/ea)};

R(e) denotes its natural periodic extension

R(e) ~ x e R2, |jc3| < Eh(x/e")}. (2-5)

We assume throughout that R(e) is a connected, C2a domain, for some Holder
exponent a > 0. The function h may nonetheless have discontinuities—i.e. parts of 3^(e)
may be vertical; and h may vanish on a set of positive measure—i.e. our plates may have
holes. (In Sec. 3D, where we study an asymptotic limit of the a = 1 case, we shall impose
additional smoothness assumptions on h.)

We denote by 30/?(e) the outer edge of the plate,

30R{e) = {.x: x e 3S2, |x3| < eh(x/ea)};
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9 + R(e) and d_R(e) are the remaining parts of 9R(e) above and below fi, respectively; ve
is the outward unit normal to 9R(e).

When, in the following, we call a function "periodic in tj" we shall always mean that it
has the same periods L = (Lv L2) as h. It will often be necessary to average a periodic
function /(tj) with respect to tj:

Jtf = --y- fL'fLlf(v)
L'\L'2 J0 •'0

We shall use the norm
1/2

llglkE = if \gf.2

JR(e)

The same notation will be used for tensors, in which case |g|2 denotes the sum of the
squares of the components.

2C. Loads and equations of equilibrium. The following discussion applies for a = 1;
when a # 1, it is more natural to work with the load per unit projected surface area, see
[6],

We suppose that the plate is loaded along its faces 9 ±R(e) by forces e3(0,0, f(x; x/e))
per unit surface area, and that the body force is e2(0,0, F(x; x/e)) per unit volume, where

f(x; tj) and F(x; tj) are bounded, periodic in tj, and even with respect to- - (2.6)
^3-

The equations of elastostatic equilibrium for the clamped, e-dependent, three-dimensional
plate are

ill'2, <2-')
| = 3~2 on3±«(e); (2.8)

ue = 0 on 90R(e). (2.9)

This scaling of the loads ensures that ue stays bounded as e -» 0. Notice that

wf, Mi are odd; u\ is even,
. j j e • (2.10)a^, a3E3 are odd; aa3 is even

with respect to tj3, as a consequence of (2.6); Xe will denote the space of all admissible
displacements that obey these symmetries:

= {« e H1(R(e)): w|8o«(f) = 0; ux, u2 are odd and ^

h3 is even in x3}

where H1(R(e)) is the space of (vector-valued) functions with square-integrable first
derivatives.

The restriction to even loads is merely a matter of technical convenience. If F and / are
odd in tj3, then the solution of (2.7)-(2.9) satisfies

lk(KE)ll2,E ^ Ce1/2. (2.12)
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In case |j»|| > c > 0 on 8 ±R(e) (i.e. 9 ±R(e) has no vertical parts), one can prove (2.12) by
taking the inner product of us with (2.7), integrating by parts, and using a Poincare
inequality on each vertical line. The proof in the general case is similar, but it requires the
methods of section 4. We shall show here that for even loads

lk(r)||2,~ eV2, (2-13)
whenever the "mean load" is nonzero. Since the problem is linear, any load can be
decomposed into its even and odd components; by (2.12) and (2.13), the even part is the
one that produces the dominant strain.

3. Review of the model. The model presented in [6] provides the initial terms of an
asymptotic expansion for the displacement vector, and—most importantly—an equation
for the limiting vertical displacement of the midplane. The equation has in each case the
form

(3.1)

where J*"= J^(F, f)(x) is the rescaled mean vertical load (see (5.1) for the precise
definition of J*"when a = 1; for a + 1 see [6]). The tensor MaPyS represents the "effective
rigidity" of the plate; it satisfies the usual symmetries

pys = MpayS = Ma/jSy = MySap,

and it is positive definite in the sense that

Mapys£ap£y6 ̂  cl£l

for symmetric tensors The formula for Ma/3yS depends on whether a > 1, a = 1, or
a < 1; in each case it is determined by h through the solution of certain "cell problems"
with periodic boundary conditions.

3A. The case a < 1. Let //2er denote the set of functions which are periodic with period
L = (L1, L2), with square integrable derivatives of order < 2. The auxiliary functions
<J>a^(r/) are in this space, and are characterized (modulo a constant) by

a2 92
h%sPa^zr<t>^dVydVs drlPdV„

,3?, 92 /l \ 32 ,
(3.2)

e //2er.

The tensor MapyS is

Mapyg ~ '
IX"'/,,

2
2 ^Bapy8 + . (3.3)
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The lowest order terms in the displacement vector are

_a
'3t)y"* = ~x£yw ~ eax3-^-(<t>a/i)dapW - e2ax3dy(<t>a%pw),

»s - » + + J"-")3-""''
where w solves (3.1), with the appropriate boundary condition. The right side of (3.4) must
be evaluated at rj = x/ea after differentiation.

3B. The case a = 1. For any function <t>("i]) we define

+ (3-5)
2 ^ 0T)y 07),

and

2ij(t) = BiJk/Ek/(*). (3.6)

Let Q denote the rescaled period cell determined by h,

Q= [l- hol< La/2> h3l< a(ij)}; (3-7)

and let denote the vector

3/i \ i i 2s33yS a2 (i
'7,3 ai)21 2 VaV^}' 2^ 27,3 53333 drijirit \ 2 ̂

(3.8)

3333 v'lyv'18

The auxiliary functions <f>a^ e Hl(Q) are periodic in r/, and they satisfy

f zjf ?)£,,( 1) = - jf Z,y(r«*)£,y(*) </r) (3.9)

for any i// e Hl{Q) which is periodic in 17. The tensor Ma/jyS is given by

= TrI + r'K-U* +rs)
^1^2 •'g

= </v. (3.10)

The lowest order terms in the displacement vector are

u* = -x33yw + e2<t>f(x/e)da/iw,

u*3 = w + hx3)2~^-da/i + we2<t>f (x/e)dafiw.
I -03333

3C. The case a > 1. We define a tensor CijkK for the use in this section only, by

Q 3/S3 = Qa/93 = C<k330 = ^3a3/3 =

C.jki = otherwise.
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For any function <£(■>?)> 2(</>) will denote the associated "stress",

= CIJklEkl(4>). (3.12)

Let Q and ra^ be as in (3.7), (3.8), and let 'S'be the space of functions \p e L2(Q) such
that

\p is periodic in tj, >p3 depends only on rj3 and

/Z,j(4<)e,j(*P) V < oo.Jq -

When a > 1, the auxiliary functions §a,i are in and they satisfy

/2,7(<^KU) A = "/dr\ (3.13)J Q JQ

for every . The tensor Ma/3yS is given by

MafiyS = tV / 8 + r* )£„(** + rs) a, (3.i4)

and the lowest order terms in the displacement vector are

u* = -X39YW + e1+^f dal)w,

U* = w + \(Xl)2JT^-dal3W + £l^%0W- (3.i5)
Z ^*3333

The right hand side of (3.15) is evaluated at rj = (x/ea, x3/e).
In [6] we wrote (3.13)—(3.15) in a slightly different form, to emphasize the connection

with homogenization of a rough surface. The functions g0/J(TJ3), i//0/3(t)), and ^33(t]) used
in [6] correspond to the decomposition

1 B
<t>f(v3) = ga/i(V3) - jvl 2 33a/?

2 '3 *3333 '

4>f(v) = ~V3if(v) + ^-(1b) • >P3y3(v)- (3.16)

One can characterize 4>'J( •, ij3) as the solutions of certain cell problems on the horizontal
slices of Q; ga/1(r)3) may be expressed in terms of certain averages of \p'J.

3D. An asymptotic limit of the case a = 1. For a given periodic function h(ij), let
be the effective rigidity of the associated "a < 1" plate defined by (3.3). Let M^yS denote
the effective rigidity of the "a = 1" plate with thickness variation

M1)) = h(-q/o), 0 < <3 < 00,

a< 1i.e., MltfyS is as defined by (3.10) with h replaced by hs. We show here that A/1" —> M
as a -* 00, if h is smooth enough; the proof is similar to Nordgren's convergence argument
[9]. A related result in the context of Laplace's equation can be found in [2],
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lim Mh°s = M°n\. (3.16)
o—*oc

Proposition 3.1. If h > c > Ois smooth enough then
f1'" = Ma<1
'aPyS ma/3yS-

Proof. Let denote the solution of (3.9) with h replaced by h3, which is periodic with
period oL. We introduce the rescaled variables

Va = Va/o (a = 1,2), T)'3 = TJ3, (3.17)

which range over the ^-independent cell

Q' = j1?': Wa\ < iLa> a = 1.2; |tj'3| < A(tj')} (3-18)

and note that

F ( l\ 1 t d + « ■ 1
Eap\$) 9 . a„' '2d ^ 9^ drj'a

E«W=bw. + 12ik- (3J9)

Let \pa/3(-q') be the solution of (3.2) with thickness h(rj'), and define

,0^ ,3^= o\ o,o, rp) + A - -v3^r,o

+ 1 , ,.2*33* a2*/^ I0,0, _(t)3) • (3.20)

We shall show that

provided that

2 £3333 37j'y37)'s

lim / |£(^-^)|2^i,' = 0, (3.21)
<J-+ OO •'(?' '

has bounded derivatives of order < 4, (3.22)

which is true for sufficiently regular h. Assertion (3.16) follows immediately from (3.21),
since

Kb* = TT J + la/')E" (+ ^<3-23)
^1^2 JQ'

and

lim tt/ 2->(^ + + iyS) ^d —*oo ^1-^2 (?'

For fixed a and /?, define a tensor t,- .(7j') as follows: for 7, S e {1,2},

. , ~ a2^
Ty« ~ By«P" dri'dji'^'3'
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for y = 1,2,

TY3 -ill\< '\2 1.2/ a1& b . 3/2 5 3V"", 3^
0 2 I Wl ySP°dri'pdri>Ms B«Whdri's B^°dV'pdV'ah' dv'tf

and t33 is the solution of

— 8t33 3t 3
3t/'3 =d 3<' (3'24)

I -4.-2L& u^L^L-h W" >■ dh dh
t33|,._±*(,.) ^ .^0^3^ YSpo ar,;0Vo 3tj; 3r)'s

One verifies the consistency condition for (3.24),

f + "^ly ' -o -ilb u^L^L^h a V" ■ dh dh
J-h 3t»; 7,3 * [^3^3^ ^""dv'Ma dVydVs

by means of (3.2). A straightforward computation shows that

2,7(f/+r^) = T,7+0(<r1), (3.25)

and that
3 -i 3t- 3t,

a—T// = " TV + ^TT = 0 in 0',3rjy 3t/„ 3tj3

1 +^VA|2) ^"1t,X + T'3"^ = ° ona±0'' (3-26^

where 9 +Q' are the upper and lower faces of Q', and v' is the outward unit vector normal
toa±e'r

Let x = ~ <t>f\ using (3.9), (3.25), (3.26), and Green's formula, we see that

j ?,j(x)Etj(x) = JqM?* +

= !q7'jeuM dt + <?(<,_1II-e(x)IL»{c?'))

= V^WEixA^), (3.27)
which implies (3.21).

4. Integral estimates. This section establishes certain integral inequalities for u e
We consider only the case a = 1, i.e.

^(e) = [x: x ^ |jc3| < eh(x/e)}

(see, however, Remark 4.2 at the end of the section). Our method is to decompose R(e)
into @(e~2) subdomains, each with diameter of order e, and to apply Korn's inequality on
each subdomain.
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We begin by reviewing Korn's inequality on the unit-sized domain1

Q = {*: |*J < LJ2, |x3| < h(x)}.

is the space of rigid motions,

y e Si <=> y,(jc) = CjjXj + d,, for some

d e R3 and some skew-symmetric matrix c.

V« denotes the (nonsymmetric tensor) 9/w;, and e(u) denotes the (symmetric) strain
tensor |(9/uJ + 3,-« ■).

Lemma 4.1. For any u e H1(Q) there exists y e ^such that

f |v(« — y)| ^ < C f \e(u)\ dx (4.1)JQ ~ JQ

and

f |m — yI ^ < C f |^(m)| dx. (4.2)JQ JQ

The constant C depends only on Q.
Proof. This follows, for any Lipschitz domain, from the results in [5], □
Recall that R(e) is defined by (2.5). For each pair of integers (k, /) let Rkl = Rk,(e)

denote the period cell centered around (keLv IeL2),

( i i £^i £L->Rki = { I-*! ~ keLx| < ——, \x2 ~ IeL2| < - , |jc3| < eh(x/e)2 . 12 —21 2

Rescaling (4.1) and (4.2) yields the following result.

Lemma 4.2. For any u e H^ikie)) and any pair (k, /) there exists ykl e ^such that

f Iv(m — ykl)\ dx^cf |e(«)| Jx (4.3)
J R . . ~ 1 J R . .

and

( \u - yk'\ dx < Ce2 f \e(u)\2 etx. (4.4)
Jr. ~ Jr.Rki Rki

The constant C in (4.3), (4.4) depends only on h.
Let

ykl(x) = ck'x + dkl,

where dkl e R3 and ckl is a skew-symmetric matrix. Clearly

e*\ck + 1J- ck'\2 + e2\dk + lJ - dk'\2

< Cf\yk+1J(x) - yk'(x)\ <Jx2</x3 (4 5)

cf(jyk+1''— u\ + |w ~ Y*'| ) dx2 dxz,

1 We always assume that the rescaled period cell Q is a Lipschitz domain.
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where the integrals are over the interface between Rkl and Rk + lJ.

eL
x: xx = (k + \)eLx, \x2 — IeL2\ < , |x3| < Eh(x/E)

One has the trace estimate (on any Lipschitz domain)

f \w\2 do < C f (\V>v|" + |vv|2) <Jx (4.6)
J'An J rv- '

for all w G H1(Q). Rescaling (4.6), and combining the result with (4.5), we obtain

e*\ck+1'' - ck'\2 + e2\dk + 1J - dk'\2

< c(e[ Jv(m - yk + 1~')]\ dx, + e_1 f \u - YA+u| ctx
\ JRk + J ~ JKk+1J

+ eJ |v(u - yk')\2 dx + e"1 J |« - Y*'| ̂
Rk/ Rkl

A combination of (4.3), (4.4) and (4.7) gives

ev+i,/-ei2+k*+i,/-^i2

< Ce 1 ( \e( u)| dx.
J T) . .1 Iff..

Similarly, we have

e \c ' — c + |dkJ+1 - dk

< Ce 1 f le(*OI
Rk.l+l u Rkl

(4.7)

(4-8)

(4.9)

Proposition 4.1. For any u e H1(R(e)) with u = 0 on 3()i?(e),

II—II2,e + II Vm||2>. < Ce_1||e(w)||2 E. (4.10)

Proof. Extend u to R(e) by letting it be zero outside R(e), and let {y*'} be the rigid
motions introduced in Lemma 4.2; notice that ykl = 0 if Rkl n R(e) = 0. Let o(.x) and
S(x) denote the piecewise bilinear interpolants to ckl and dkl, i.e.

Oij(keLi, IeL2) = ckj',

8i(kEL1,leL2) = dkl, and

aij(i)> ^i(*) are bilinear functions on

k + |)eLi
eL,<^T*X".

for each pair of integers (k, I).

X-, - I / + j \eL-
eL-,< ~Y
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It is standard that

f | V5|2 dx < cE[k*+u- dkl\2 +\dk-l+1 - dkl I2
•'r2 kj

and an analogous inequality holds for /| Vs|2 dx. It follows, using (4.8)-(4.9), that

e2 f |Va|2 dx + ( | v5|2 dx < Ce-1 f |e(«)| dx.
~ JR2 ~ JR(e)

Since a and 5 are compactly supported, we conclude by Poincare's inequality that

f |s| dx + ( |6|2 dx < Ce-1 \ |e(w)| dx,
•'r2 " •/R2 " JR(e)

and hence

E ®2|c*'| +k*'| <Ce"3/" \e(u)\ dx. (4-11)
k.l R(e)

Since Vy*' = ckl, (4.3) may be rewritten

f |vw — ck'\ dx < C ( |<?(m)| dx,
" J D

*kl Kkl

which leads immediately to

f |v«| dx < cl f \e(u)\ dx + E^VI ). (4-12)
J*(') \R(t) kj I

Similarly, since ly^x)! < C(\ck'\ + \dk'\) for every x e R(e), (4.4) leads to

f H dx < C e2 f \e{u)\ dx + E3Y,{\ck'\ + |^<:/|) • (4-13)
JR(e) [ "(e) ' _

A combination of (4.11), (4.12) and (4.13) gives

f (M +|Vm|) dx < Ce~2 f \e(u)\2 dx,
JR(e) ' R(e)

which is equivalent to (4.10). □
Recall that the space Xf is defined by (2.11).

Proposition 4.2. For any u <= Xe,

2

E II"a + < C4e(u)\\2,e- (4-14)
a = 1

Proof. When u e Xe, one may choose the rigid motions ykl of Lemma 4.2 to have the
same symmetry properties, i.e.

dk/ = dk/ = ck> = 0 (4.15)
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for each k, /. By (4.4) and (4.15),

f \Ua ~ Ca3Xl\ dx = f \ua - Y*'| dx ^ Ce2 f |e(w)| elx.
Rkl Rkl Rk!

By (4.3), on the other hand,

/ |9«"3 - 4L\ Jx = / |Mm3 - Y3*')l ̂
R-kl Rkl

< C ( |e(«)| dx.
JRk,

Since |jc3| < Ce and c$'a = — c*3, this implies that

f \ua + x30aw3| dx < Ce2 f |e(«)| dx. (4-16)
J D J D

Kkl Kkl

Adding (4.16) over all k, I and over a = 1,2 we get (4.14). □
Remark 4.1. Inequalities (4.10) and (4.14) are sharp in their dependence on e. For (4.10),

one sees this by considering u = ( —XjBjW, — x302w, w), where w = w(xx, x2). For (4.14),
one uses u = (0,0,w). □

Remark 4.2. The estimates in this section may be generalized considerably. We assumed
that u vanishes on d0R(e) to simplify its extension to R(e). One verifies, with a little more
effort, that Propositions 4.1 and 4.2 remain valid without this condition (modulo a rigid
motion, in the case of (4.10)). The argument presented here also works in the case a < 1;
it applies, moreover, even if R(e) is only a Lipschitz domain; and the periodicity of the
domain is not essential.

The case a > 1 is more subtle; we do not know nontrivial conditions on h which assure
(4.10) or (4.14) for that scaling. The methods of [1] and [4] may be relevant in that case.
□

5. An averaging lemma. Our attention remains restricted to the case a = 1. Q denotes
the rescaled period cell (3.7); 8 is the mean thickness 6 = 2 Jt[h)\ and 3 ±Q is the
"non-periodic" part of 3Q,

3±0 = 30 n {77: |tjJ < LJ2, a = 1,2).
For any pair of functions G(x\ tf) and g(x; ri) which are periodic in 77, we define

&(G,g)(x) = yVf I + f gdc) (5.1)
12 \JQ ~ Jd±Q I

(da denotes surface measure). Our goal is the following result.

Proposition 5.1. Suppose that G and g have derivatives in x of order < 2 which are C0,a
and Cl a in 77 uniformly in x, respectively. Then for any u e Xe

f G(x; x/e)uidx + e I g(x\x/e)u3da
J r?{*\ ~ *3 R(P\'R(e) '3 ±R(e)

- 0~l ( ^(G, g)(x)u3dx
JR(e)

The constant C depends on G, g, and h, but not on e.

(5.2)
< Ce^\\e(u)\\2,e.
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The essence of Proposition 5.1 is the following: if^"(G, g) = 0, and if solves

— 9 (a (w£)) = ^ in R(e),j\ ,j\- >) \eiG^ ,■ = 3 v

Oij(we)pJ= \ = \2 on 9±R(e),

we = 0 on 30R(e),

then

lk(wE)lke< Ce7/2. (5.3)
Indeed, if G and g are even in rj3, one proves (5.3) by substituting vve in (5.2) and
integrating by parts. If G and g are odd then (5.3) is the same as (2.12).

Before beginning the proof, we introduce some more notation. Given a pair G, g with
&{G, g) = 0, we say "</> solves the cell problem associated to G and g" if

( 2ij((t>)Eij{4/) = f G\p3<Jr\ + ( gip3</a
JQ ~ JQ ~ Ja±Q (5.4)
for every e Hl(Q) which is Tj-periodic.

Recall that E(<j>) and 2($) are defined by (3.5) and (3.6). One verifies easily that (5.4) has
an rj-periodic solution, unique up to a translation. Since we have assumed that R(e) is a
C2 a domain,

IKWlc'- < c(llGllc°-« +llg||c'«)- (5-5)
All norms are on the rescaled period cell Q or the boundary 9 ±Q. The constant C depends
only on Q and not on x, which occurs in (5.4)-(5.5) as a parameter. If we define

TtJ = 2,,(£)(*; x/e), (5.6)

then (5.5) leads to

IM2,, < Ce1/2sup(||G||c0'" + ||g||c'-)- (5-7)
X

Proof of Proposition 5.1. It suffices to consider the case ^{G, g) = 0; the general case
will follow by considering G' = G - 0~1&(G, g), g' = g.

Let <j> solve the cell problem (5.4) associated to G and g; let r be as in (5.6); and let
u e Xe. By Green's formula,

/ Gu3</x + e / gu3</<>" 0'''*'■> (5.8)

where = (9/9x^)2,p(<t>) is evaluated at rj = x/e after differentiation. Notice
that (9/9xy)2lV3 is the stress of the cell problem associated to dG/dxy and dg/dxy; since
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the x-derivatives of G and g are assumed C°'a and C1,a in rj, uniformly in x,

9 < Ce1/2. (5.9)
2,e

We estimate the various terms in (5.8) separately. First,

f Tijeij(M)
Pi (iJR(,e)

by (5.7) and Holder's inequality. Next,

a

Ce1/2||e(w)||2,£ (5.10)

f ^T2a/S "("a + ^39a«3)
JR(e) 0XP

< Ce1/2||wa + x3dau3\\2 e

f ^T2a/J*39a"3 <SX< Ce^llVKlk,

< Ce3/2\\e(u)\\2<c (5.11)

by (5.9), Holder's inequality, and Proposition 4.2. Finally,

_3_
'K(e)

< Ce1/2||e(w)||2,e (5.12)

by (5.9), Holder's inequality, and Proposition 4.1. Combining (5.10)-(5.12), we conclude
that the right side of (5.8) equals

_9_
JR(e) dxp

At this point we need the following identity, which will be proved later:

_8_
'Q ^x/3

This means that ^(d23p/dxp, 0) = 0. Repeating the above argument with the cell
problem associated to 323^/9x/3 and 0, we conclude that

*/ *<■> ' (5.15)
9 _

e / ^-23/ju3</x + 0(e3/2||e(w)||2J. (5.13)
J Rie\

ng identity, which will be proved later:

L = °- (514)

= e2j -r—z.3/)u3<Jx + C(e5/2||e(u)||2,f),
JR(e) °XP

where E are the stresses associated to the new cell problem. (We use here our hypothesis
on the second derivatives of G and g.) By Holder's inequality, Proposition 4.1, and the
analogue of (5.9),

8L av -3/3w3^*R(e) oxp
< Ce 1/2||e(w)||2,£. (5.16)

Combining (5.8), (5.13), (5.15), and (5.16), we obtain (5.2).
It remains to prove(5.14). Substituting^/ = (rj3,0,0) into(5.4) gives

/ 2M</v_ = f :£,.,.(*)£,.,(*)< Tj = 0.
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Since Q is independent of x, it follows that

The corresponding assertion for (9/8jc2)2!32 follows using ip = (0, ij3,0), and summation
leads to (5.14). □

6. Convergence. Let w solve

3a/j(^a/3y«9y«M;) = in '

w — 3nw = 0 on 3fl,
where Ma/3yS is defined by (3.10); let u* be as in (3.11); and let me solve the three
dimensional elasticity problem (2.7)-(2.9). We shall prove that u* — u' converges to zero
in energy, and that w is really the limiting vertical displacement. In addition to the
regularity hypotheses on £2 and R(e), formulated in Sec. 2, we must assume that

All ^-derivatives of order < 2 of F and / are C°-a and C1,a in tj,

respectively (uniformly in x).

By [6], MaPyS is positive definite; it follows that
w has bounded x-derivatives of order <6. (6.2)

Let f(/) g C^O, 00) with f(/) = 0 for / < 1/2 and £"(/) = 1 for t > 1; we define
%e(x) = z(e_1 dist(x, 3J2)) for x e 12,

and
u* = ( — — x$2w,w)

+ j((),0, K^s)2^) + e2f\x/E)^le ■ 3a/3w, (6.3)

where 4>al3 is as in (3.9). Notice that u* e Xe.
Since R(e) is assumed to be a C2a domain, a standard regularity result shows that

4>yS e Cla(Q). In particular the functions

are Cl a and C0,<\ respectively. We shall use this fact repeatedly, sometimes without direct
mention, in what follows.

Lemma 6.1. The functions u*, u* satisfy

||e(w* - w#)|2,e < Ce2. (6.4)

Proof. Since <j>a/3 and EiJ(<j>a?) are bounded functions,

|||vf.|-^(*/e)L< C,
||(1 - O$<*(*/«0||2,. < Ce,

||(1 - D^(^)(^A)||2,£ < Ce.
The estimate (6.4) follows easily, using (6.2), □



18 ROBERT V. KOHN AND MICHAEL VOGELIUS

Lemma 6.2 For each /?, y, 8

f </v = 0. (6.5)JQ

Proof. One argues as in the proof of (5.14), using (3.9) instead of (5.4). □

Lemma 6.3. Let v denote the outward unit vector normal to 9 + <2- F°r each /?> Y> S, the
functions

G(t]_)=-7rj G 0,

g(V_) = [--nlKpyS + ^32a/3(*Y4)]"a. ^ G 9 ±2<
satisfy

.F(G,g) = 0. (6.6)
Proof. By Green's formula,

'3±e
This is equivalent to (6.6). □

Lemma 6.4. For each a, /?, y, 6

/7)32a/3(fs) ^ <6-7)

Proof. Substituting^/ = (0,0, ^(r?3)2) in (3.9), and noting that 233(ryS) = 0, we see that

f rj3S33^ySj = 0; (6.8)
J n

on the other hand,

r ... f (at®"! = Y A-
B

-^233(^); (6.9)
3333

a combination of (6.8) and (6.9) yields (6.7). □
One easily verifies that (3.9) is equivalent to

If r is defined by

one computes that

in R(e), and

on 0 ±R(e).

T>j =

ifMr') -0 '"2-
2 ij (fS) "j = ond±Q.

[-•*3 ~B,jyS + e2.v(^Ya)(^/C)] ^6-10)

djTij = ["-*3^8 + £2//j(^S)(*/e)]9/Sy8W (6-1])

r.jVj = 0 (6.12)
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Proposition 6.1. For any v e Xe,

f T,je,j(v) Jx

= e2#"1/ J*(F, f)v3Jx + 0 (es/2He)||2,.).
J R( e\'*(«)

Proof. By Green's formula and (6.12),

f Tije,j(y)<Sx = - f dj(Tjj) Vj <£x.
'«(e)

We apply Proposition 5.1, using (6.11), (6.5), and the fact that #3/3yg = 0, to see that

/ dj(r3j)v3<tx < Ce5/2||e(t>)||2j£.
JR(*)

Writing va = ~x3dav3 + (va + x3dav3), and applying Proposition 4.2, we obtain

/ dj(raj)va^xJRU)

= -/ + ^(e5/2|k(y)ll2,t)-

A combination of these results yields

^(e)

We use Green's formula again:

( Tijejj{v) dx
JR(e)

= / *39y(T«y)9^3^ + ^(£V2|k(t;)||2,£).
(6.14)

f x£j(TaJ)dj)3Jx
JR(e)

Now,

with

~f x3daJ(r )v3yx + f x33(t»3^.
JRU) Ja±R(e)

xj>,{Taj)vea = e2(I + II),

(6.15)

and

~*39«/(0 = elll + e2IV,
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with

IV = (vjKflyS ~ Vi^a/i{tyS))\v=x/^al3ySW-

By Lemma 6.3 and Proposition 5.1,

ef (III)v3</x + e2[ (I + II) v3</o = 0(e5/2||e(t?)||2 e) (6.16)
JR(e) JS±R(e)

similarly, by Lemma 6.4, Proposition 5.1 and (3.10),

e2 f (W)v3<Jx
JR(e)

— <-20 '/ Ma/3 £a/i swv3</x + 0(e1/2\\e{v)\\2^).
JR( e)

Since Ma/3y8 is constant and w satisfies (3.1), (6.15)—(6.17) imply

f x3^j(Taj)^3^

"'/ &(F,f)v3</x + <9{e5/2\\e(y)\\2,e).
JR(e)

(6.17)

R(e)

= e26~1
(6.18)

A combination of (6.14) and (6.18) yields (6.13). □
We are ready to prove the main result of this paper.

Theorem 6.1. The Ansatz «*, defined by (3.11), and the displacement ue, defined by
(2.7)-(2.9), satisfy

\\e(u* - «f)||2,t< Ce2. (6.19)

Proof. We shall prove

||eU*-r)|ke<C£2, (6.20)
with u* as in (6.3). The estimate (6.19) is an immediate consequence, using Lemma 6.1.

To prove (6.20), we first observe that

||CT(^*) — "^1)2 c ̂  Ce2 (6-21)

where t is defined by (6.10). Indeed, a simple computation gives that

lk(«*) - Tike < Ce5/2,
while by Lemma 6.1,

\\o(u*) - a(u#)||2 e < Ce2;

(6.21) follows by means of the triangle inequality.
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By Proposition 6.1 and (6.21),

f ojiu#)eii{v) dx = e26~1 f v3</x + &(e2\\e(v)\\2 e) (6.22)
JR(e) JR(e)

for any v e Xe. Also,

/ a, («E)e, (y) dx = e2 / Fv3dx 4- e3 / fv3do
JR(e) JR(e) Jd±R(e)

= e20~-1/ !Fv3dx. + ^(e7/2||^(u)||2)£) (6.23)
^(e)

by (2.7)-(2.9), Green's formula and Proposition 5.1. Taking v = u* - u\ and subtracting
(6.23) from (6.22), we conclude that

f ~ ue)eij(u° - "e) < Ce2\\e(u* - t/£)||2,£,
JR(e)

from which (6.20) follows. □
Remark 6.1. Had we specified the e-dependent boundary condition

— f| 9^o(c) = -*l3«o(£)

instead of (2.9) then the introduction of u* would not have been necessary. The above
argument yields \\e(u* — m£)||2,e < Ce5/2 when uc is defined this way. □

One verifies readily that ||e(«*)||2?e ~ E?/2 whenever0. It follows, using (6.19), that

C~le3/2 < ||e(ue)||2,e < Ce3/2, (6.24)

with C depending on JHjut not on e. A combination of (6.19) and (6.24) yields the relative
error estimate

Ik(«* - ^£)lk£/lk(we)||2,£ < Ce1/2.
A similar argument, using (4.10), shows that

\\U* - — £|l 2.c + II V«* - V —£|1 2,e Cel/2
II— II 2,e HV«e||2,e

One may also compare ue3 and w directly:

Corollary 6.1. If one defines

^ = ? n /) J+eh("'A)u|(x) Jx3
2eh(x/E\ J-eh(x/e)2 eh(x/e)

whenever h(x/e) # 0, then

/ 2 \1/2
( y |w — w£| h(x/e) </x\ < Ce1/2. (6.25)
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Proof. We consider w, wf to be defined on R(e). By Poincare's inequality
2

reh(x/e) , ,2 , feh(x/e)
I |w — | </x} < Ce /

J-eh(x/e) ' J-

= Ce2 r/,<-/F) |e33( we)|~ ^/x3;
— eh(x/e)

integration over S2 yields

/" |mj — wf| </x < Ce2 /" |e(w£)| < Ce5.
^(e) *'K(e)

One computes directly from (6.3) that

( |w — wf | </x < Ce5.
•'R(e)

Combining these two estimates with (4.10) and (6.20), we conclude that

/.
2 IV2

|w — w'l dx I < Ce5//2 + |«* — m|||2 e < Ce.
R(t)

It follows that

f \w — we\2h(x/e) dx = f |w — we| dx < Ce. □
•'n * " 2e /R(f)

Remark 6.2. If h(-q) > c > 0, i.e. if the plate has no holes, then (6.25) becomes
I \ 1/2
/|w- w''| <Jx\ < Ce1/2. □
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