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A new model to explain the
redundant-signals effect!
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The typical reaction time (RT) experiment on the
redundant-signals effect (RSE) (Gielen, Schmidt, & van
den Heuvel, 1983; Miller, 1982) entails a comparison of
three conditions: The redundant-signal trials, in which
two stimuli are presented, are compared with the single-
signal trials, in which one of the two stimuli is presented
alone. In most cases, an auditory and a visual stimulus
are employed. The RSE, or at least an instance of it, is
that the RT in redundant-signal trials is shorter than the
RT in single-signal trials in a stochastic sense.

In an influential paper, Raab (1962) considered a purely
statistical explanation of this effect: In the redundant-signal
trials, the subject responds simply to the signal that is
transmitted first to a central decision stage onto which both
stimulated peripheral channels converge. Denoting the
latencies of the auditory and visual channels from the pre-
sentation of the appropriate stimulus to the central re-
sponse as T4, Ty, respectively, his model states that

Tr = min(T4,Tv), 1

where T is the latency to the central decision to execute
the response in the redundant-signal trials.

The common finding (Diederich & Colonius, 1987,
Miller, 1982, 1986) is that although this sort of facilita-
tion may well be present, it is alone insufficient to ex-
plain the amount of the RT reduction in the redundant-
signal trials as inferred from the single-signal trials. This
holds true even if the latercies of the two channels are
allowed to covary negatively in order to maximize the
RSE (Colonius, 1986; Ulrich & Giray, 1986).

In contrast to the thoroughness with which Raab’s
“‘nullmodel”’ (Equation 1) has been formulated and tested,
there is as yet no satisfactory model to explain the RSE.
Miller (1986, p. 338) has described an ‘‘exponential co-
activation model’’ that is also incapable of explaining the
total effect. Colonius (1988) has shown that the same holds
true if one drops the exponential assumption.

Hitherto, the only alternative has been the accumula-
tion model of Grice, Canham, and Boroughs (1984),
which, however, makes very strong deterministic assump-
tions concerning the accumulation of sensory information.
In the light of newer evidence (Luce, 1986, chaps. 8-9;
Ratcliff, 1988), these deterministic assumptions are prob-
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ably an oversimplification. Furthermore, Miller (1986)
has shown that the model of Grice et al. (1984) cannot
explain his redundant-signal RTs if the two signals are
not presented simultaneously. The aims of this note are
both to present a stochastic model that can fully explain
the RSE and to illustrate its scope using the stimulus onset
asynchrony (SOA) data of Miller (1986).

The Superposition Model

Consider, first, single-signal trials, and assume that the
presentation of the stimulus induces a neural renewal
counting process {N4(?), =0} (e.g., see Green & Luce,
1974). Let T;, i = 1, denote the waiting time for the ith
count. In an ordinary renewal process (Smith, 1988), the
intercount intervals Z, =T, and Z;=T,—T;,~, i > 1, are
independently and identically distributed. Assume that the
central decision to execute the response is reached as soon
as ¢ counts have been registered.

The main assumption for the redundant-signal trials is that
the two renewal processes are simply superposed—that
is, we define a stochastic process Ng(f) = Na() + Ny (9
and consider again the waiting time T to the cth renewal
count. It is intuitively obvious that the ¢ counts will be
collected earlier in the superposed process Ng(?), but for
serious work we need the exact relation between the in-
dividual channel latencies and the latency on redundant-
signal trials.

Denote as Py (T, < t), k=A,V,R, the distribution func-
tion of T, under the auditory single-signal, visual single-
signal, and redundant-signal trials, respectively. Our aim,
then, is to find Pr(T. < 1) in terms of the P4(T, < 1),
Py(T. < #). In Appendix A, it is shown that

c—=1 n

1-Pr(Test) = ¥ X [Pa(Ti<t) — Pa(Tis1=0))
n=0i=0

[Pv(Tp-i<t) — Py(Tp-is1=0)], (2)

where Pi(To <t) = P[Nx(t) =0] = 1.

Equation 2 gives (one minus) the distribution function
of the waiting time T for the cth count in the superposed
process Nr() = Na(t)+Ny(t), in terms of the waiting-
time distributions of the auditory and the visual channel.
In general, Ng(?) is not again a renewal process with in-
dependent and identically distributed intercount intervals.
For the special case c=1, Equation 2 reduces to Raab’s
model (Equation 1) with independent channels, as is clear
from the construction of the process Ng(?).

Of course, the apparent generality of the result (Equa-
tion 2) is somewhat misleading. For its general use,
we need both sequences of the functions {P4(T,, =< 1),
n = 1}, {Pv(T, < H,n = 1}. Practically, this amounts
to finding a stable or at least divisible distribution for the
intercount intervals Z (Feller, 1966, pp. 165ff.). Thus,
two obvious choices for the densities g(z) of Z are



8(z) = axexp(—oxz)
and

& \2
g = (Tz’) CXP[—5k

The first case refers to the homogeneous Poisson pro-
cess with its exponential intercount intervals (with a rate
that depends on which stimulus was presented). For this
process, the density £,(¢) of the waiting time T, to the nth
count is well known to be

(Z—uk)z] k=AV.

2zui

a(oxd)™ exp(— o)
(n—1)!

The second case refers to intercount intervals distributed
according to Wald’s first passage-time distribution—that
is, the time to the first crossing of a predescribed level
in a Brownian motion. For this process, the density f,(?)
of the waiting time 7, to the nth count is

2

%
_|(n 6k) [_ ) (t—nu)’]
f) = (21rt3 exp| ~m'dx 2t(nps)?
Luce (1986, pp. 145, 334) gives applications of this family
to RTs.

fo®) =

Prediction of SOA-Dependent RT Data

The application of the superposition model to SOA data
as given by Miller (1986) is straightforward. Assume that
the visual stimulus is presented 7 (7 € R) msec apart from
the auditory stimulus. If 7 > 0, the visual stimulus is
presented 7 msec before the auditory stimulus; if 7 < 0,
the auditory stimulus is presented —7 msec before the
visual stimulus. We consider the process

NA(t) + Nv(t'l'T) ifr=<0
Ng,:(1) = 3
Nv(t) + Ny(it—71) ifr =0,

where, of course, Ny(1)=0, Ny(f)=0 for t<0.

The interpretation of Equation 3 is that on redundant-
signal trials with SOA 7, each channel starts a renewal
counting process upon the presentation of the appropri-
ate stimulus, and that both outputs are superposed to form
the relevant overall counting process. As before, we as-
sume that the central decision to respond is reached as
soon as the cth count of the process Ng,-(?) is registered.
For r=0, this construction reduces to the one given in
the discussion of the superposition model above.

Application to the Data of Miller (1986)

To apply the foregoing developments to the SOA-RT
data of Miller (1986), let us assume that the individual
channels form homogeneous Poisson renewal counting
processes. Thus, for an SOA equal to 7 msec, we consider
the process Ng, (f) and study the distribution Pg, (T, <7)
of the waiting time 7 to the cth count in N ,. In Ap-
pendix B, we show that for an SOA 7=0, we have
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c~1 t i
1 —exp(—avt) ¥ (a—;l O<t=<rt
i=0 b
Pr(T.<pt = 4)

1 — exp{—~[av7+(av+aa)t—7)]}

Ci‘ [aVT+(aVIaA)(t_T)]i

i=0

T<1

where a4, ay denote the intensity parameter of the audi-
tory and the visual channel, respectively. For 7 <0, if the
auditory stimulus precedes the visual stimulus, we must
simply replace 7 by —7 (>0), and exchange a4 and ay.
The corresponding expectation E,[T.] for 720 is

c oq <Nayr)
% ep(—ayD L
ay  aylavtas) P i2=:0 i!

(c=0, )

while for 7<0, remarks similar to those above apply.

Finally, we assume ‘the total RT to be additively com-
posed of T, and all processes following it. We denote the
duration of these latter processes by the random variable
M. In general, T, and M will not be stochastically indepen-
dent (e.g., see Ulrich & Stapf, 1984). However, on the
level of the expected RT, we still have

E[RT] = E[T.+M] = E[T.] + E[M].

This special version of the superposition model was
fitted to the SOA-RT data of Miller (1986). For details
of this experiment, we simply refer to Miller’s original
paper. Table 1 contains empirical and predicted mean RT
for each SOA.

The fit is quite close and it reproduces all the main fea-
tures of the data: both asymptotic behaviors, the maximal
RSE for SOA =0, and the asymmetry of the SOA curve.
In addition, it may be noted that in contrast to Raab’s race
model and its various generalizations, the superposition
model can easily cope with substantially larger RSEs than
the comparatively small ones in Miller’s (1986) study.

Table 1
Fit of Superposition Model to Miller’s (1986) Data
Subject B.D. Subject K.Y.

SOA Mean RT Prediction Mean RT Prediction
— 231 231 211 215
—-167 234 231 216 215
—-133 230 231 217 215
-100 227 230 214 215
—67 228 227 218 215
-33 221 222 215 213
0 217 214 208 208
33 238 238 237 232
67 263 261 249 251
100 2717 282 256 263
133 298 299 273 271
167 316 313 278 276

+ o 348 348 282 283*

Note—Parameters: B.D., M=165, C=3, ay=1/22, ay=1/61; K.Y.,
M=185, C=2, ay=1/15, ay=1/49.
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Although this result is quite encouraging for future work
with the superposition model, it is obvious that much
stronger tests than the simple fitting of mean RTs are
called for. One possibility is to consider predictions for
the entire RT distribution; another one is to test the obvi-
ous applications of the model to related detection, dead-
line, temporal order, or go/no-go paradigms.
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NOTE

1. After the submission of this note, R. Ulrich and M. Giray informed
me that they had discussed a special case of the superposition model,
namely of exponential intercount times and 7=0, in a speech given in
1983, and that they are currently planning a separate publication. At
the time of submission, I was not aware of this fact. Apparently, one

of the reviewers, Jeff Miller, also had explored independently some
aspects of the superposition model.

APPENDIX A

To derive Equation 2, note first that by definition of an addi-
tive process, Ng(f) is the convolution of N4(f) and Ny (r):

n
P[Ng()=n] = ¥ PIN4@®)=i] - PINv(®)=n—i]. (a)
i=0
Using an identity originally due to Feller (1949), we have

i~1
P(T;=1) = PIN\()=i] = 1 — ¥ PIN:®)=jl, ()
j=0

and, similarly,
i
Pi(Tiy =0 = PIN\@®z(+1] = 1 — X PINi(t)=/];
j=0
and so, by subtraction,
Py(T;<1t) — P(Tis1<t) = P[Nx(=i]. ©)

To obtain Pr(T. <¢) in terms of the single stimulus distributions,
P,,Py, we use Equation a to rewrite Equation b with k=R

c—1
1-Pr(T. <9 = Y, P[Ng(t)=n]
n=0
c—1 n
= ¥ Y PINa@®)=i1"PINv()=n—i],
n=0 i=0

and we apply Equation ¢ to obtain finally

c—1 n
1-Pe(T.s8) = ¥ ¥ [PaTist) = Pa(Tisy <0)]
n=0i=0

" [Pv(Tw-ist) = Py(Tp-inn=0). Q)

APPENDIX B

To derive Equation 4, we again apply Feller’s identity to the
process Ng (1): P(T.<1t) = P[Ng +(f)=c] and use the fact that
Ng +(?) is Poisson distributed with mean value function m(f) =
ayt for 0<t<7, and m(t) = ayr+(av+ay)(@—1) for t=7.

To derive ET.], we integrate 1 —P(T, <?) from zero to in-
finity (e.g., Feller, 1966, pp. 148, 346) and simplify to obtain
Equation 5.
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