
A New Module System for Prolog

Daniel Cabeza and Manuel Hermenegildo

{dcabeza,herme}@fi.upm.es

Department of Computer Science

Technical University of Madrid (UPM)

Abstract: It is now widely accepted that separating programs into modules has proven
very useful in program development and maintenance. While many Prolog implemen-
tations include useful module systems, we feel that these systems can be improved in a
number of ways, such as, for example, being more amenable to effective global analysis
and allowing sepárate compilation or sensible creation of standalone executables. We
discuss a number of issues related to the design of such an improved module system for
Prolog. Based on this, we present the choices made in the Ciao module system, which
has been designed to meet a number of objectives: allowing sepárate compilation, exten-
sibility in features and in syntax, amenability to modular global analysis, etc.
Keywords: Prolog, Modules, Sepárate Compilation, Modular Program Processing,
Ciao-Prolog.

1. Introduction

Modularity is a basic notion in modern computer languages. Modules allow dividing programs into
several parts, which have their own independent ñame spaces and a clear interface with the rest of the
program. Experience has shown that there are at least two important advantages to such program
modularization. The first is one is that being able to look at parts of a program in a more or less
isolated way allows a divide-and-conquer approach to program development and maintenance. For
example, it allows a programmer to develop or update a module at a time or several programmers
to work on different modules in parallel. The second advantage is in emciency: tools which process
programs can be more emcient if they can work on a single program at a time. For example, after a
change to a program module the compiler needs to recompile only that module (and perhaps a few
related modules). Another example is a program verifier which is applied to one module at a time
and does its job assuming some properties of other modules.1

The topic of modules and logic programming has received considerable attention (see, for
example, [0'K85, Che87, WC87, GM86, Mil89, MP89]). Currently, many popular Prolog systems
such as Quintus [Qui86] and SICStus [CW94] include module systems which have proved quite useful
in practice.2 However, these practical module systems also have a series of shortcomings, specially
with respect to supporting effectively sepárate program compilation, debugging, and optimization.

1 Modularity is also one of the fundamental principies behind object oriented programming.
2Surprisingly, though, it is also true that a number of Prolog systems do not have any module

system at all.

http://upm.es

Our objective is to discuss from a practical point of view a number of issues related to the
design of an improved module system for Prolog and, based on this, to present the choices made
in the module system of Ciao Prolog [CLI97].3 Ciao Prolog is a next-generation logic programming
system which, among other features, has been designed with modular incremental compilation,
global analysis, debugging, and specialization in mind. The module system has been designed to
stay as similar as possible to the module systems of the most popular Prolog implementations and
the ISO-Prolog module standard currently being finished [PR095], but with a number of crucial
changes that achieve the previously mentioned design objectives. We believe that it would not be
difncult to incorpórate these changes in the ISO-Prolog module standard or in other module systems.

The rest of the paper proceeds as follows: Section 2. discusses the objectives of the desired
module system and Section 3. discusses some of the issues involved in meeting these objectives. Sec-
tion 4. then describes the Ciao Prolog module system. Within this section, Subsection 4.5. discusses
some enhancements to standard Prolog syntax extensión facilities. Finally, Section 5. describes
the notion of packages, a flexible mechanism for implementing modular language extensions, which
emerges naturally from the module system design. An example of a package is provided which
illustrates some of the advantages of the module design.

2. Objectives in the Design of the Ciao Module System

We start by stating the main objectives that we have had in mind during the design of the Ciao
module system:

• Allowing modular (sepárate) and efficient compilation. This means that it should be possible
to compile (or, in general, process) a module without having to compile the code of the related
modules. This allows for example having pre-compiled (pre-processed, in general) system or
user-defined librarles. It also allows the incremental and parallel development of large software
projects.

• Local extensibility, in features and in syntax. This means that it should be possible to define
syntactic and semantic extensions of the language in a local way, Le., so that they affect only
selected modules. This is also very important in the context of Ciao, since one of its objectives
is to serve as an experimental workbench for new extensions to logic programming.

• Amenability to modular global analysis. We foresee a much larger role for global analysis of
logic programs, not only in the more traditional application of optimization [WHD88, VD92,
Tay91, BdlBH99], but also in new applications related to program development, such as au-
tomated debugging, validation, and program transformation [BCHP96, CLMV96, BDD+97,
HC97, HPB99]. This is specially important in Ciao because the program development environ-
ment already includes a global analysis tool (ciaopp, the Ciao preprocessor [HPB99, HBPL99])
which performs these tasks and which in our experience to date has shown to be an invaluable
help in program development and maintenance.

• Amenability to error detection. This means that it should be possible to check statically the

interfaces between the modules and detect errors such as undefined predicates, incompatible

arities and types, etc.

• Support for meta-programming and higher-order. This means that it should be possible to
do meta- and higher-order programming across modules without too much burden on the

3The Ciao system can be downloaded from ht tp : / /www.cl ip .d ia . f i .upm.es /Sof tware .

http://www.clip.dia.fi.upm.es/Software

programmer. Also, in combination with the previous point, it should be possible to detect

errors (such as calis to undefined predicates) on sufficiently determined higher-order calis.

• Compatibility with official and de-facto standards. To the extent possible (Le., without giving
up other major objectives to fulfill this one) the module system should be compatible with
those of popular Prolog systems (e.g., Quintus/SICStus) and official standards, such as the
core ISO-Prolog standard [PR094, DEDC96] and the current drafts of the ISO-Prolog module
standards [PR095]. This is because it is also a design objective of Ciao that it be (thanks
to a particular set of librarles which is loaded by default) a standard Prolog system. This in
contrast to systems like Mercury [SHC96] or Goedel [HL94] which are more radical departures
from Prolog. This means that the module system will be (at least by default) predicate-based

rather than atom-based (as in XSB [SSW93] and BIM [VDW87]), i.e., it will provide separation
of predicate symbols, but not of atom ñames. Also, the module system should not require the
language to become strongly typed, since traditional Prologs are untyped.4

3. Discussion of the Main Issues Involved

None of the module systems used by current Prolog implementations fulfill all of the above stated
objectives, and some include characteristics which are in clear opposition to such objectives. Thus,
we set out to develop an improved design. We start by discussing a number of desirable characteristics
of the module system in order to fulfill our objectives. Amenability to global analysis and being
able to deal with the core ISO-Prolog standard features were discussed at length in [BCHP96],
where many novel solutions to the problems involved were proposed. However, the emphasis of that
paper was not on modular analysis. Herein, we will choose from some of the solutions proposed
in [BCHP96] and provide further solutions for the issues that are more specific to modular analysis
and to sepárate compilation.5

• Syntax, flags, etc. should be local to modules. The syntax or mode of compilation of a mod-
ule should not be modified by unrelated modules, since otherwise sepárate compilation and
modular analysis would be impossible. Also, it should be possible to use different syntactic
extensions (such as operator declarations or term expansions) in different modules without
them interacting. I.e., it should be possible to use the same operator in different modules
with different precedences and meanings. In most current module systems for Prolog this
does not hold because syntactic extensions and compilation parameters (e.g., Prolog flags) are
global. As a result, a module can be compiled in radically different ways depending on the
operators, expansions, Prolog flags, etc. set by previously loaded modules or simply typed
into the top level. Also, using a syntactic extensión in a module prevenís the use of, e.g., the
involved operators in other modules in a different way, making the development of optional
language extensions very complicated. In conclusión, we feel that directives such as op/3 and
se t_p ro logJ l ag /2 must be local to a module.

• The entry points of a module should be statically defined. Thus, the only external calis allowed
from other modules should be to exported predicates. Note that modules contain code which
is usually related in some way to that of other modules. A good design for a modular program
should produce a set of modules such that each module can be understood independently of

4Note however, that this does not prevent having voluntary type declarations or more general
assertions, as is indeed done in Ciao [PBH97, PBH99].

5We concéntrate here on the design on the module system. The issue of how this module system
is applied to modular analysis is addressed in more detail [PH99b].

the rest of the program and such that the communication (dependencies) among the different
modules is as reduced as possible. By a strict module system we refer to one in which a module
can only communicate with other modules via its interface (this interface usually contains data
such as the ñames of the exported predicates). Other modules can only use predicates which
are among the ones exported by the considered module. Predicates which are not exported
are not visible outside the module. Many current module systems for Prolog are not strict and
allow calling a procedure of a module even if it is not exported by the module. This clearly
defeats the purpose of the module system and, in addition, has a catastrophic impact on the
precisión of global analysis, precluding many program optimizations. Thus, we feel that the
module system should be strict.

• Module qualification is for disambiguating predícate ñames, not for changing naming context.

This a requirement of sepárate compilation (processing) since otherwise to compile (process) a
module it may be necessary to know the imports/exports of all other modules. As an example,
given a cali m:p ("cali p in module m"), with the first meaning the compiler only needs to know
the exports of module m, but with the second meaning, as module m can import predicate p
from another module, and that module from another, the interfaces of all those modules would
have to be followed. Furthermore, in some situations changing naming context could invalídate
the strictness of the module system.

• Module text should not be in unavaüable or unrelated parts. This means that all parts of a
module should be within the module itself or directly accessible at the time of compilation,
i.e., the compiler must be able to automatically and independently access the complete source
of the module being processed.6

• Dynamic parts should be isolated as much as possible. Dynamic code modification, such as
arbitrary runtime clause addition (by the use of assert-like predicates), while very useful in
some applications, it has the disadvantage that it adds new entry points to predicates which
are not "visible" at compile-time and are thus very detrimental to global analysis [BCHP96].
One first idea is to relégate such predicates to a library module, which has to be loaded
explicitly.7 In that way, only the modules using those functionalities have to be specially
handled, and the fact that such predicates are used can be determined statically. Also, in
our experience, dynamic predicates are very often used only to implement "global variables",
and for this purpose a facility for adding facts to the program suffices. This simpler feature,
provided that this kind of dynamic predicates are declared as such explicitly in the source,
pose no big problems to modular global analysis. To this end, Ciao provides a set of builtins
for adding and deleting facts to a special class of dynamic predicates, called "data predicates"
(a s s e r t a _ f a c t / l , r e t r a c t _ f a c t / 1 , etc), which are declared as " : - data . . . " (similar kinds
of dynamic predicates are mentioned in [Deb89]). Furthermore, the implementation of such
data predicates is typically much more efficient than of the normal dynamic predicates, due to
their restricted nature.

• Most "built-ins" should be in librarles which can be loaded and/or unloaded from the context

of a given module. This is a requirement related to extensibility and also to more specific need

6Note that this is not the case with the classical user files used in non-modular Prolog systems,
since code used by a user file may be in a different user file which which has no explicit relation with
the first one: there is no usage declaration that allows relating them.

7Note, however, that in Ciao, to preserve compatibility for older programs, a special case is
implemented: if no library modules are explicitly loaded, then all the modules containing the ISO
predicates are loaded by default.

such as those of the previous point, where it was argued that program modification "built-ins"
should be relegated to a library. The idea is to have a core language with very few predefined
predicates (if any) and which should be a (hopefully puré) subset of ISO-Prolog. This makes
it possible to develop alternative languages defining, for example, alternative I/O predicates,
and to use them in a given module while others perhaps use full ISO-Prolog. It also makes it
easier to produce small executables.

• Directives should not be queries. Traditionally, directives (clauses starting with " :-") were
executed by the Prolog interpreter as queries. While this makes some sense in an interpretative
environment, where program compilation, load (linking), and startup are simultaneous, is does
not in other environments (and, specially, in the context of sepárate compilation) in which
program compilation, linking, and startup occur at sepárate times. For example, some of
the directives used traditionally are meant as instructions for the compiler while, e.g., others
are used as initialization goals. Fortunately, this is well clarified in the current ISO standard
[PR094, DEDC96], where declarations are clearly separated from initialization goals.

• Meta-predicates should be declared, at least if they are exported, and the declaration must reflect

the type of meta-information handled in each argument. This is needed in order to be able
to perform a reasonable amount of error checking for meta-predicates and also to be able to
statically resolve meta-calis across modules in most cases.

4. The Ciao Module System

Given the premises of previous sections, we now proceed to present their concretization in the Ciao
module system.

4.1. General Issues

Defining Modules: The source of a Ciao module is typically contained in a single file, whose ñame
must be the same as the ñame of the module, except that it may have an optional .p l extensión.
Nevertheless, the system allows inclusión of source from another file at a precise point in the module,
by using the ISO-Prolog [PR094, DEDC96] : - include declaration. In any case, such included files
must be present at the time of processing the module and can for all purposes be considered as an
integral part of the module text. The fact that the file contains a module (as opposed to, e.g., being
a user file -see below) is flagged by the presence of a ": - module (. . . " declaration at the beginning
of the file.

For the reasons mentioned in Section 2. the Ciao module system is, as in most logic program-
ming system implementations, predicate-based (but only by default, see below). This means that
non-exported predicate ñames are local to a module, but all functor and atom ñames in data are
shared. We have found that this choice does provide the needed capabilities most of the time, with-
out imposing too much burden on the user or on the implementation. The advantage of this, other
than compatibility, and probably the reason why this option has been chosen traditionally, is that
it is more concise for typical Prolog programs in which many atoms and functors are shared (and
would thus have to be exported in an atom-based system). On the other hand, it forces having to
deal specially with meta-programming, since in that case functors can become predicate ñames and
vice-versa. It can also complícate having truly abstract data types in modules. The meta-predicate
problem is solved in Ciao through suitable declarations (see Section 4.4.). Also, in order to allow
defining truly abstract data types in Ciao it is possible to hide atom ñames, Le., make them local to
a module, by means of " : - hide . . . " declarations. Thus, in contrast to predicate ñames, which

are local unless explicitly exported, functor and atom ñames are exported by default unless a : -
hide declaration is used.8

Imports, Exports, and Reexports: A number of predicates in the module can be exported,

i.e., made available outside the module, via explicit : - export declarations or in an export list in

the : - module (. . . declaration. It is also possible to state that all predicates in the module are

exported (by using '_').

It is possible to import a number of individual predicates or also all predicates from another
module, by using : - use_module and : - import declarations. In any case it is only possible to
import from a module predicates that it exports. It is possible to import a predícate which has
the same name/arity as a local predícate. It is also possible to import several predicates with the
same ñame from different modules. This applies also to predicates belonging to implicitly-imported

modules, which play the role of the built-ins in other logic programming systems. In Ciao there are
really no "built-ins:" all system predicates are (at least conceptually) defined in libraries which have
to be loaded for these predicates to be accessible to the module. However, for compatibility with
ISO, a set of these libraries implementing the standard set of ISO builtins is loaded by default.

A module mi can reexport another module, m2, via a : - reexport declaration. The effect of
this is that mi exports all predicates of m2 as if they had been defined in mi in the same way as they
are defined in m2. This allows implementing modules which extend other modules (or, in object-
oriented terms, classes which inherit from other classes [PH99a]). It is also possible to reexport
only some of the predicates of another module, by providing an explicit list in the : - reexport
declaration.

In Ciao it is possible to mark certain predicates as being properties. Examples of properties
are regular types, instantiation properties (such as var, indep, or ground), computational properties

(such as det or f a i l s) , etc. Such properties, since they are actually predicates, can be exported
or imported using the same rules as any other predícate. Imported properties can be used in
assertions (declarations stating certain characteristics of the program, such as, e.g., preconditions
and postconditions) in the same way as locally defined ones. This allows defining, e.g., the abstract
data types mentioned above. This is discussed in more detall in the descriptions of the Ciao assertion
language [CLI97, PBH97] and the Ciao preprocessor [HPB99, HBPL99].

Visibility Rules: Regarding visibility, the set of predicates which are visible in a module are the
predicates defined in that module plus the predicates imported from other modules. It is possible to
refer to predicates with or without a module qualification. A module-qualified predícate ñame has
the form module:predícate as in the cali l i s ts :append(A,B,C). We cali default module for a given
predícate ñame the module which contains the definition of the predícate which will be called when
using the predícate ñame without module qualification, i.e., when calling append(A,B,C) instead of
l is ts :append(A,B,C). Module qualification makes it possible to refer to a predícate from a module
which is not the default for that predícate ñame.

We now state the rules used to determine the default module of a given predícate ñame.
If the predícate is defined in the module in which the cali occurs, then this module is the default
module. Le., local definitions have priority over imported definitions. Otherwise, the default module
is the last module from which the predícate is imported in the module text. Also, predicates which
are explicitly imported (i.e. Usted in the importation list of a : - use_module) have priority over
those which are imported implicitly (i.e. imported when importing all predicates of a module). As
implicitly-imported modules are considered to be imported first, the system allows the redefinition

8 This feature of being able to hide functor and atom ñames is not implemented in the currently
distributed versión of Ciao.

of "builtins". By combining implicit and explicit calis it also possible not only to redefine builtins,
but also to extend them, a feature often used in the implementation of many Ciao libraries. It is not
possible to access predicates which are not imported from a module, even if module qualification
is used and even if the module exports them. It is also not possible to define clauses of predicates
belonging to other modules. This is only allowed if the predicate is defined as dynamic and exported
by the module in which it is defined.

Reexported predicates can also be used in the module reexporting them, Le., they are also
imported into that module. Following the normal rules for imports, the default module for such a
predicate is the module from which it is reexported. However, if the reexported predicate is defined
in the module reexporting it then the default module is that module. Thus, the local definition takes
priority, as with any other imported predicate. However, the predicate actually exported is still the
reexport. On the other hand, if a reexported predicate is defined locally and also exported, then the
predicate seen by other modules is the local definition and not the reexport. This flexible approach
allows for example making specialized modules which are the same as a reexported module but with
some of the predicates redefined as determined by local predicate definitions.

4.2. User Files and Multifile Predicates

For reasons mainly of backwards compatibility with non-modular Prolog systems, there are some

deviations from the visibility rules above which are common to other modular logic programming

systems [Qui86, CW94]: the "user" module and multifile predicates.

User Files: To provide backwards compatibility with non-modular code, all code belonging to files
which have no module declaration is assumed to belong to a single special module called "user."
These files are called "user files," as opposed to calling them modules (or packages -see later). All
predicates in the user module are "exported." It is possible to make unrestricted calis from any
predicate defined in a user file to any other predicate defined in another user file. However, and
differently to other Prolog systems, predicates imported from a normal module into a user file are
not visible in the other user files unless they are explicitly imported there as well. This at least
allows performing sepárate static compilation of each user file, as all static predicate calis in a file
are defined by reading only that file. Predicates defined in user files can be visible in regular modules,
but such modules must explicitly import the "user" module, stating explicitly which predicates are
imported from it.

The use of user files is discouraged because, apart from losing the separation of predicate ñames,
their structure makes it impossible to detect many errors that the compiler detects in modules by
looking at the module itself (and perhaps the interfaces of related modules). As an example, consider
detecting undefined predicates: this is not possible in user files because a missing predicate in a user
file may be defined in another user file and used without explicitly importing it. Thus, it is only
possible to detect a missing predicate by examining all user files of a project, which is itself typically
an unknown (and, in fact, not even in this way, since that predicate could even be meant to be typed
in at the top level after loading the user files!). Also, global analysis of user files typically involves
considerable loss of precisión because all predicates are possible entry points[BCHP96]. Note that
it is often just as easy and flexible to use modules which export all predicates in place of user files,
while being able to retain many of the advantages of modules.

Multifile Predicates: Multifile predicates are a useful feature (also defined in ISO-Prolog) which
allows a predicate to be defined by clauses belonging to diflerent files (modules in the case of Ciao).
To fit this in with the module system, in Ciao these predicates are implemented as if belonging to
a special module m u l t i f i l e . However, calis present in a clause of a multifile predicate are always

to visible predicates of the module where that clause resides. As a result, multifile predicates do

not pose special problems to the global analyzer (which considers them exported predicates) ñor to

code processing in general.

4.3. Dynamic Modules

The module system described so far is quite flexible but it is static, i.e., except in user files, it is
possible to determine statically the set of imports and exports of a given module and the set of
related modules, and it is possible to statically resolve to which module each cali in the program
refers to. This has many advantages: modular programs can be implemented with no run-time
overhead with respect to a non-modular system and it is also possible to perform extensive static
analysis for optimization and error detection. However, in practice it is sometimes very useful
to be able to load code dynamically and cali it. In Ciao this is fully supported, but only if the
special library dynmods which defines the appropriate builtins (e.g., use_module) is explicitly loaded
(dynmods actually reexports a number of predicates from the compiler, itself another library). This
can then be seen by compile-time tools which can act more conservatively if needed. Also, the
adverse effects are limited to the module which imports the compiler.

4.4. Dealing with Meta-Calis

As mentioned before, the fact that the Ciao module system is predicate-based forces having to deal
specially with meta-programming, since in that case functors can become predicate ñames and vice-
versa. This problem is solved in Ciao, as in similar systems [Qui86, CW94] through meta_predicate
declarations which specify which arguments of predicates contain meta-data. However, because of
the richer set of higher-order facilities and predicate types provided by Ciao [CH99a], there is a
correspondingly richer set of types of meta-data (this also allows more error detection):

goal:

denotes a goal (either a simple or a complex one) which will be called.

clause:

denotes a clause, of a dynamic predicate, which will be asserted/retracted.

fact:

denotes a fact (a head-only clause), of a data predicate.

spec:

denotes predicate ñame, given as Functor/ Arity term (this kind of meta-term is used somewhat

frequently in builtin predicates, but seldomly in user-defined predicates).

p r e d O) :
denotes a predicate construct to be called by means of a call/ilf predicate cali. That is, it
should be an atom equal to the ñame of a predicate of arity N, a structure with functor the
ñame of a predicate of arity M (greater than N) and with M-N arguments, or a predicate
abstraction with N arguments.9

The compiler, by knowing which predicates have meta-arguments, can verify if there are un-
determined meta-calis (which for example affect the processing when performing global analysis), or
else can determine (or approximate) the calis that these meta-arguments will produce.

9 A full explanation of this type of meta-term is outside the scope of this paper. See [CH99a] for
details.

4.5. Modular Syntax Enhancements

Traditionally (and also now in the ISO standard [PR094, DEDC96]) Prolog systems have included
the possibility of changing the syntax of the source code by the use of the op/3 builtin/directive.
Furthermore, in many Prolog systems it is also possible to define expansions of the source code
(essentially, a very rich form of "macros") by allowing the user to define (or extend) a predicate
typically called term_expansion/2 [Qui86, CW94]. This is usually how definite clause grammars
(DCG's) are implemented.

However, these features, in their original form, pose many problems for modular compilation
or even for creating sensible standalone executables. First, the definitions of the operators and
expansions are global, affecting a number of files. Furthermore, which files are affected cannot
be determined statically, because these features are implemented as a side-effect, rather than a
declaration, and they are meant to be active after they are read by the code processor (top-level,
compiler, etc.) and remain active from then on. As a result, it is impossible by looking at a
source code file to know if it will be affected by expansions or definitions of operators, which may
completely change what the compiler really sees. Furthermore, these definitions also affect how a
compiled program will read terms (when using the term I/O predicates), which will also be affected
by operators and expansions. However, in practice it is often desirable to use a set of operators and
expansions in the compilation process (which are typically related to source language enhancements)
and a completely different set for reading or writing data (which can be related to data formatting
or the definition of some application-specific language that the compiled program is processing).
Finally, when creating executables, if the compile-time and run-time roles of expansions are not
separated, then the code that defines the expansions must be included in the executable, even if it
was only meant for use during compilation.

To solve these problems, in Ciao we have redesigned these features so that it is still possible
to define source translations and operators but they are local to the module or user file defining
them. Also, we have implemented these features in a way that has a well defined behavior in the
context of a stand-alone compiler (the Ciao compiler, ciaoc [CH99b]). In particular, the directive
load_compilation_module/l allows separating code that will be used at compilation time from code
which will be used at run-time. It loads the module defined by its argument into the compiler (if
it has not been already loaded). It differs from the use_module/l declaration in that the latter
defines a use by the module being compiled, but does not load the code into the compiler itself. This
distinction also holds in the Ciao interactive top-level, in which the compiler (which is the same
library used by ciaoc) is also a sepárate module.

In addition, in order to make the task of writing expansions easier, the effects usually achieved
through term_expansion/2 can be obtained in Ciao by means of four different, more specialized di-
rectives, which affect only the current module. Each one defines a different target for the translations,
the first being equivalent to the term_expansion/2 predicate which is most commonly included in
Prolog implementations. The argument for all of them is a predicate indicator of arity 2 or 3. When
reading a file, the compiler (actually, the general purpose module processing library -see [CH99b])
invokes these translation predicates at the appropriate times, instantiating their first argument with
the item to be translated (whose type varies from one kind of predicate to the other). If the predicate
is of arity 3, the optional third argument is also instantiated with the ñame of the module where
the translation is being done, which is sometimes needed during certain expansions. If the cali to
the expansión predicate is successful, the term returned by the predicate in the second argument is
used to replace the original. Else, the original item is kept. The directives are:

add_sentence_tran.s/l : Declares a translation of the terms read by the compiler which affects the

rest of the current text (module or user file). For each subsequent term (directive, fact, clause,

...) read by the compiler, the translation predicate is called to obtain a new term which will

be used by the compiler in place of the term present in the file. An example of this kind of

translation is that of DCG's.

add_term_trans/l : Declares a translation of the terms and sub-terms read by the compiler which

affects the rest of the current text. This translation is performed after all translations defined by

add_sentence_trans/l are done. For each subsequent term read by the compiler, and recursively

any subterm included in such a term, the translation predicate is called to possibly obtain a

new term to replace the oíd one. Note that this is computationally intensive, but otherwise

very useful to define translations which should affect any term read. For example, it is used

to define records (feature terms [AKPS92]), in the Ciao standard library argnames (see 5.1.).

add_goal_trans/l : Declares a translation of the goals present in the clauses of the current text.
This translation is performed after all translations defined by add_sentence_trans/l and
add_term_trans/l are done. For each clause read by the compiler, the translation predicate is
called with each goal present in the clause to possibly obtain other goal to replace the original
one, and the translation is subsequently applied to the resulting goal. Note that this process
is aware of meta_predicate definitions. In the Ciao system, this feature is used for example in
the functions library which provides functional syntax, as functions inside a goal add new
goals before that one.

add_clause_trans/l : Declares a translation of the clauses of the current text. The transla-
tion is performed before add_goal_trans/l translations but after add_sentence_trans/l and
add_term_trans/l translations. This kind of translation is defined for more involved transla-
tions and is related to the compiling procedure of Ciao. The usefulness of this translation is
that information on the interface of related modules is available when it is performed, but on
the other hand it must maintain the predicate defined by each clause, since the compiler has al-
ready made assumptions regarding with predicates are defined in the code. The object-oriented
extensión of Ciao (O'Ciao) uses this feature [PH99a].

Figure 1 shows, for an example clause of a program, to which subterms would be applied

each type of translation, and also the order of translations. The principal functor of the head in the

clause translation is dashed because the translation cannot change it.

c(D,B) : - f i n d a l l (l (S , D) , cf(B,D,S), Ls) , c l (0 , Ls) .
sentence_trans

term_trans

clause_trans

________ goaLtrans

Figure 1: Subterms to which each translation type is applied in a clause

Finally, there is another directive in Ciao related to syntax extensión, whose raison d'étre is
the parametric and extensible nature of the compiler framework: new_declaration/2. Note that
in ISO-Standard Prolog declarations cannot be arbitrary Prolog goals. Thus, the Ciao compiler
flags an error if a declaration is found which is not in a predenned set. However, a declaration
new_declaration(Decl, In_Itf) can be used to declare that Decl is a valid declaration in the rest
of the current text. Such declarations are simply ignored by the compiler or top level, but can be
used by other code processing programs. For example, in the Ciao system program assertions and
machine-readable comments are defined in as new declarations and are processed by the ciaopp

preprocessor and the automatic documenter. In_Itf is a switch. If it is on this kind of declarations

will be included in the module interface and thus will be visible while processing other modules which

make use of this one, when using the c_itf generic module processing framework (see [CH99b] for

details).

5. Packages

Experience using the Ciao module system shows that the local nature of syntax extensions and the
distinction between compile-time and run-time work results in the libraries defining extensions to
the language having a well defined and repetitive structure. These libraries typically consist of a
main source file which defines only some declarations (operator declarations, declarations loading
other modules into the compiler or the module using the extensión, etc.). This file is meant to
be included as part of the file using the library, since, because of their local effect, such directives
must be part of the code of the module which uses the library. Thus, we will cali it the "include
file." Any auxiliary code needed at compile-time (e.g., translations) is included in a sepárate module
which is to be loaded into the compiler via a loacLcompilationjiiodule directive which is placed
in the include file. Also, any auxiliary code to be used at run-time is placed in another module, and
the corresponding use_module declaration is also placed in the include file. Note that while this
run-time code could also be inserted in the include file itself, it would then be replicated in each
module that uses the library. Putting it in a module allows the code to be shared by all modules
using the library.

Libraries constructed in this manner are called "packages" in Ciao. The main file of such
a library is a file which is to be included in the importing module. Many libraries in Ciao are
packages: dcg (definite clause grammars), funct ions (functional syntax), c l a s s (object oriented
extensión), persdb (persistent datábase), a s s e r t i o n s (to include assertions-see [PBH97, PBH99]),
etc. Such libraries can be loaded using a declaration such as : - i nc lude (l i b r a ry (func t ions)) .
For convenience (and other reasons related to ISO compatibility), this can also be written as
: - use_package(functions).

There is another feature which allows defining modules which do not start with a : - module
declaration, and which is useful when defining language extensions: when the first declaration of a
file is unknown, the declared library paths are browsed to find a package with the same ñame as the
declaration, and if it is found the declaration is treated as a module declaration plus a declaration
to use that package. For example, the package which implements the object oriented capabilities
in Ciao is called "class": this way, one can start a class (a special module in Ciao) with the
declaration " : - c lass(myclass) ," which is then equivalent to defining a module which loads the
c l a s s package. The c l a s s package then defines translations which transform the module code so
that it can be used as a class, rather than as a simple module.

5.1. An Example Package: argnames

To clarify some of the concepts introduced in the paper, we will describe as an example the implemen-
tation of the Ciao library package "argnames."10 This library implements a syntax to access term
arguments by ñame (also known as records). For example, Figure 2 shows a fragment of the famous
"zebra" puzzle written using the package. The declaration : - argnames (where argnames is defined
as an operator with suitable priority) assigns a ñame to each of the arguments of the functor house/5.

10This package uses only a small part of the functionality described. Space restrictions do not
allow adding a longer or more examples. However, many such examples are present in the Ciao
system libraries.

From then on, it is possible to write a term with this functor by writing its ñame (house), then the in-

fix operator ' $ ' , and then, between brackets (which are as in ISO-Prolog), the arguments one wants

to specify, using the infix operator '=>' between the ñame and the valué. For example, house${} is

equivalent in that code to hoi ise(_ ,_ ,_ ,_ ,_) and house${nation=>Owns_zebra,pet=>zebra}- to

house(_,Owns_zebra,zebra,_,_).

: - use_package([argnames]) .

: - argnames house(color , na t ion , pe t , d r ink , c a r) .

zebra(Owns_zebra, Drinks_water, S t r ee t) : -
S t ree t = [house${},house${},house${},house${]-,house${}] ,
member(house${nation=>Owns_zebra,pet=>zebra}, S t r e e t) ,
member(house${nation=>Drinks_water,drink=>water}, S t r e e t) ,
member(house${drink=>coffee,color=>green}, S t r e e t) ,
lef t_r ight(house${color=>ivory}, house${color=>green}, S t r e e t) ,
member(house${car=>porsche,pet=>snails}, S t r e e t) ,

Figure 2: "zebra" program using argnames

The library which implements this feature is composed of two files, one which is the package
itself, called argnames, and an auxiliary module which implements the code translations required,
called argnames_trans (in this case no run-time code is necessary). They are shown in figures 3
and 4 (this last one has been simplified for brevity by deleting error checking code).

: - load_compilation_module(l ibrary(argnames_trans)) .

: - add_sentence_trans(argnames_def/3).

: - add_term_trans(argnames_use/3).

: - op(150, xfx, [$]) .

: - op(950, xfx, (=>)).

: - op(1150, fx, [argnames]).

Figure 3: The package argnames.

The contents of package argnames are self-explanatory: first, it directs the compiler to load the
module argnames_trans (if not already done before), which contains the code to make the required
translations. Then, it declares a sentence translation, which will handle the argnames declarations,
and a term translation, which will transíate any terms written using the argnames syntax. Finally,
it declares the operators used in the syntax. Recall that a module using this package is in fact
including these declarations into its code, so the declarations are local to the module and will not
affect the compilation of other modules.

The auxiliary module argnames_trans is also quite straightforward: it exports the two predi-
cates which will use the compiler to do the translations. Then declares a data predicate (remember,
a simplified dynamic predicate) which will store the declarations made in each module. Predicate
argnames_def/3 is simple: if the clause term is an argnames declaration, it translates it to nothing
but stores its data in the above mentioned data predicate. Note that the third argument is instanti-
ated by the compiler to the module where the translation is being made, and thus is used so that the
declarations of a module are not mingled with the declarations in other modules. The second clause
is executed when the end of the module is reached. It takes care of deleting the data pertaining

: - module(argnames_trans, [argnames_def/3, argnames_iise/3]).

: - data argnames/4.

argnames_def((:- argnames(R)), [] , M) : -

functor(R, F, N),
assertz_fact(argnames(F,N,R,M)).

argnames_def(end_of_file, end_of_file, M) :-

retractall_fact(argnames(_,_,_,M)).

argnames_use($(F,TheArgs), T, M) :-

atom(F),

argnames_args(TheArgs, Args),

argnames_trans(F, Args, M, T).

argnames_args({}, []).

argnames_args({Args]-, Args).

argnames_trans(F, Args, M, T) :-

argnames(F, A, R, M),

functor(T, F, A),

insert_args(Args, R, A, T).

insert_args([], _, _, _) .

insert_args('=>'(F,A), R, N, T) :-

insert_arg(N, F, A, R, T).

insert_args(('=>'(F,A), As), R, N, T) :-

insert_arg(N, F, A, R, T),

insert_args(As, R, N, T).

insert_arg(N, F, A, R, T) :-

N > 0,

(arg(N, R, F)

-> arg(N, T, A)

; NI is N-l,

insert_arg(Nl, F, A, R, T)

Figure 4: The translation module argnames_trans.

to the current module. Then, predicate argnames_use/3 is in charge of making the translation of

argname'd-terms, using the data collected by the other predicate. Although more involved, it is a

simple Prolog exercise.

Note that the argnames library only affects the modules that load it. Thus, the operators

involved (argnames, $, =>) can be used in other modules or libraries for different purposes. This

would be very difficult to do with the traditional model.

6. Conclusions

We have presented a new module system for Prolog which achieves a number of fundamental design
objectives such as being more amenable to effective global analysis, allowing sepárate compilation

and sensible creation of standalone executables, extensibility in features and in syntax, etc. We
have also shown in other work that this module system can be implemented easily and can be
applied successfully in several modular program processing tasks, from compilation to debugging to
automatic documentation generation [CH99b, PH99c, HPB99, Her99]. The proposed module system
has been designed to stay as similar as possible to the module systems of the most popular Prolog
implementations and the ISO-Prolog module standard currently being finished, but with a number
of crucial changes that achieve the previously mentioned design objectives. We believe that it would
not be difficult to incorpórate these changes in the ISO-Prolog module standard (or in other module
systems).

References

[AKPS92] H. A'it-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system for logic
programming with entailment. In Proc. Fifth Generation Computer Systems 1992, pages
1012-1021, 1992.

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard

Prolog Programs. In European Symposium on Programming, number 1058 in LNCS,

pages 108-124, Sweden, April 1996. Springer-Verlag.

[BDD+97] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski,
and G. Puebla. On the Role of Semantic Approximations in Validation and Diagno-
sis of Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on Automated

Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May 1997. U. of Linkop-
ing Press.

[BdlBH99] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Abstract

Interpretation in Automatic Parallelization: A Case Study in Logic Programming. ACM

Transactions on Programming Languages and Systems, 21 (2): 189-238, March 1999.

[CH99a] D. Cabeza and M. Hermenegildo. Higher-order Logic Programming in Ciao. Technical

Report CLIP7/99.0, Facultad de Informática, UPM, September 1999.

[CH99b] D. Cabeza and M. Hermenegildo. The Ciao Modular Compiler and Its Generic Pro-
gram Processing Library. In ICLP'99 WS on Parallelism and Implementation of (C)LP

Systems. N.M. State U., December 1999.

[Che87] W. Chen. A theory of modules based on second-order logic. In Proc. J^th IEEE Internat.

Symposium on Logic Programming, pages 24-33, San Francisco, 1987.

[CLI97] The CLIP Group. CIAO System Reference Manual. The Ciao System Documentation

Series-TR CLIP3/97.1, Facultad de Informática, UPM, August 1997.

[CLMV96] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs
by abstract diagnosis. In M. Dams, editor, Analysis and Verification of Múltiple-Agent

Languages, 5th LOMAPS Workshop, number 1192 in Lecture Notes in Computer Science,
pages 22-50. Springer-Verlag, 1996.

[CW94] M. Carlsson and J. Widen. Sicstus Prolog User's Manual. Po Box 1263, S-16313 Spanga,
Sweden, April 1994.

[Deb89] S.K. Debray. Flow analysis of dynamic logic programs. Journal of Logic Programming,

7(2):149-176, September 1989.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-Verlag,
1996.

[GM86] J.A. Goguen and J. Meseguer. Eqlog: equality, types, and generic modules for logic

programming. In Logic Programming: Functions, Relations, and Equations, Englewood

Cliffs, 1986. Prentice-Hall.

[HBPL99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López. Program Analysis, Debugging and

Optimization Using the Ciao System Preprocessor. In 1999 International Conference on

Logic Programming, Cambridge, MA, November 1999. MIT Press.

M. Hermenegildo and The CLIP Group. Programming with Global Analysis. In Pro-

ceedings of ILPS'97, pages 49-52, Cambridge, MA, October 1997. MIT Press, (abstract

of invited talk).

M. Hermenegildo. A Documentation Generator for Logic Programming Systems. In

ICLP'99 Workshop on Logic Programming Environments. N.M. State University, De-

cember 1999.

P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge MA,
1994.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifica-

tions, and an Extensible Assertion Language for Program Validation and Debugging. In

K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The Logic Program

ming Paradigm: a 25-Year Perspective, pages 161-192. Springer-Verlag, July 1999.

D. Miller. A logical analysis of modules in logic programming. Journal of Logic Pro

gramming, pages 79-108, 1989.

L. Monteiro and A. Porto. Contextual logic programming. In G. Levi and M. Martelli,

editors, Logic Programming: Proc. of the Sixth International Conference, pages 284-299.

MIT Press, Cambridge, MA, 1989.

R.A. O'Keefe. Towards an algebra for constructing logic programs. In IEEE Sympo

sium on Logic Programming, pages 152-160, Boston, Massachusetts, July 1985. IEEE
Computer Society.

[HC97]

[Her99]

[HL94]

[HPB99]

[Mil89]

[MP89]

[0'K85]

[PBH97] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debug-

ging of Constraint Logic Programs. In Proceedings of the ILPS'97 Workshop on

Tools and Environments for (Constraint) Logic Programming, October 1997. Available

from f t p : / / c l i p . d i a . f i . u p m . e s / p u b / p a p e r s / a s s e r t j . a n g _ t r _ d i s c i p l d e l i v . p s . g z

as technical report CLIP2/97.1.

[PBH99] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of

Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski,

editors, Analysis and Visualization Tools for Constraint Programming. Springer-Verlag,

1999. To Appear.

[PH99a] A. Pineda and M. Hermenegildo. O'ciao: An Object Oriented Programming Model for

(Ciao) Prolog. Technical Report CLIP 5/99.0, Facultad de Informática, UPM, July 1999.

[PH99b] G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of Mod-

ular Ciao-Prolog Programs. In ICLP'99 WS on Optimization and Implementation of

Declarative Languages. N.M. State U., Las Cruces, NM, November 1999.

[PH99c] G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of Modular

Ciao-Prolog Programs. In ICLP'99 Workshop on Optimization and Implementation of

Declarative Languages. N.M. State U., Las Cruces, NM, November 1999.

[PR094] International Organization for Standardization, National Physical Laboratory, Tedding-
ton, Middlesex, England. PROLOG. ISO/IEC DIS 13211 — Part 1: General Core,

1994.

[PR095] International Organization for Standardization, National Physical Laboratory, Tedding-

ton, Middlesex, England. PROLOG. Working Draft 7.0 X3J17/95/1 — Part 2: Modules,

1995.

[Qui86] Quintus Prolog User's Guide and Reference Manual—Versión 6, April 1986.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an

efncient purely declarative logic programming language. JLP, 29(1-3), October 1996.

[SSW93] K. Sagonas, T. Swift, and D.S. Warren. The XSB Programming System. In ILPS

Workshop on Programming with Logic Databases, number TR #1183, pages 164-164. U.
of Wisconsin, October 1993.

[Tay91] A. Taylor. High performance prolog implementation through global analysis. Slides of

the invited talk at PDK'91, Kaiserslautern, 1991.

[VD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with the Aquarius

Prolog Compiler. IEEE Computer Magazine, pages 54-68, January 1992.

[VDW87] P. Van Roy, B. Demoen, and Y. D. Willems. Improving the Execution Speed of Compiled

Prolog with Modes, Clause Selection, and Determinism. In Proceedings of TAPSOFT

'87, Lecture Notes in Computer Science. Springer-Verlag, March 1987.

[WC87] D.S. Warren and W. Chen. Formal semantics of a theory of modules. Technical report
87/11, SUNY at Stony Brook, 1987.

[WHD88] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on Logic

Programming, pages 684-699. MIT Press, August 1988.

ftp://clip.dia.fi.upm.es/pub/papers/assertj.ang_tr_discipldeliv.ps.gz

