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NISTMonte is a new application for Monte Carlo simulation1,2 of electron transport, X-ray generation and
transmission in complex sample geometries. NISTMonte uses the Mott cross section3,4 to model elastic
scattering and the Joy–Luo expression5 to model energy loss. The ionization cross section is modeled
using the empirical expression of Casnati.6 The mass absorption coefficients are those of Heinrich,7 and
the fluorescence yields are tabulated experimental values.8

A defining characteristic of the application is the flexibility with which complex sample geometries
may be defined. The application provides a set of basic building blocks that may be combined to build
complex sample shapes. Furthermore, shapes may be embedded within shapes to model inhomogeneous
samples or structured samples. The application imposes no artificial limits on the number of sample
regions or on the number of elements within a material.

A detailed description of the implementation and the results of various tests, including backscatter
yields, will be presented to demonstrate the range of validity of the model and the implementation.

The application has been developed in Java J2SE 1.4 for platform independence. The source code will
be made available on the NIST web site or by contacting the author. Published in 2005 by John Wiley &
Sons, Ltd.
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INTRODUCTION

Monte Carlo simulations of electron transport provide a
valuable tool for understanding the various signals that are
generated when energetic electrons interact with matter. One
field in which they have proven particularly valuable is X-ray
microanalysis. The interaction of an energetic electron beam
with matter and the resulting generation and subsequent
detection of characteristic X-rays is a complex, nonlinear
process. Extracting accurate quantitative results from X-ray
spectra requires a sophisticated understanding of electron
scattering, X-ray generation, absorption and fluorescence.
For simple sample geometries, the dependence on mean
atomic number, absorption and subsequent fluorescence
can be modeled accurately with analytical expressions. For
more complex sample geometries, analytical models break
down, and it is necessary to approach the problem from
a different perspective. Monte Carlo models, while less
computationally efficient than analytical approaches, are
often a viable alternative.
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Many researchers have implemented Monte Carlo
simulations for modeling X-ray microanalysis. Some of
the better-known implementations are NBSMonte,9 Joy’s
Monte Carlo,10 PENELOPE,11 Electron Flight Simulator,12

CASINO13 and Win X-Ray.14 Each of these implementa-
tions has proven valuable; some continue to be refined and
enhanced.

Despite the availability of a range of high-quality Monte
Carlo simulations, there remain questions that the current
implementations are not well suited to answer. In particu-
lar, the current simulations tend to excel at bulk samples or
layered samples. Some can handle basic spherical particle
samples. The model presented in this article is designed to
handle samples of arbitrary complexity. Second, this model
will be made available as a library in multiplatform compat-
ible source code. While NBSMonte and David Joy’s Monte
Carlo models are available in source code, they are more
limited in the range of problems they can handle. Electron
Flight Simulator, CASINO and Win X-Ray are not readily
available in source code form. PENELOPE is capable of com-
plex geometries and is available in source code form but is
far more complex and sophisticated.

OVERVIEW OF THE MODEL

NISTMonte uses a single scattering model to track the
trajectory of energetic electrons as they interact with matter.
While in a material, the electron may ionize a constituent
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atom, potentially leading to the emission of an X-ray.
NISTMonte also models the absorption and detection of
characteristic X-rays by modeling the absorption of X-rays
as they travel between the point of generation and user-
definable detection point.

NISTMonte separates the process of modeling the
electron trajectory from modeling X-ray generation and
absorption. The electron trajectory is modeled as two
independent processes – elastic scattering and continuous
energy loss. The elastic scattering is modeled as a series
of straight segments, the lengths of which are determined
by an exponentially distributed random variable with scale
determined by the mean free path. At the end of each
straight segment, the direction of the electron is perturbed
by a random scattering event. Following each scattering
event, the energy of the electron is decreased to account for
the average energy lost as the result of inelastic collisions
over the straight segment.

Because X-ray generation events occur infrequently,
modeling discrete events is extremely inefficient. Instead,
the model accumulates the probability of X-ray events.
The probability of an event can be readily interpreted by
multiplying the resulting predictions by the ratio of the
number of electrons in a realistic measurement by the number
of simulated electrons. The number of electrons that can
be simulated on a Pentium 4–based desktop computer is
approximately 6 orders-of-magnitude less than the number
of electrons in a typical electron probe.

As the incident electron travels through the material,
it may undergo an inelastic scattering event in which
the incident electron transfers energy to a core electron,
thereby ejecting the core electron from the sample atom. The
probability of ionization is a function of the ionization cross
section and the path length. The path length is nominally
the distance between scattering events. If a boundary
between material regions intersects the segment, then one or
more scattering points may be replaced by the intersection
between the boundary and the segment for computing X-ray
generation.

An X-ray may be generated at any point along the
segment. Rather than arbitrarily assign the locus of the X-ray
generation to the scattering point (and thus subtly bias the
spatial distribution of generated X-rays), the model chooses
a new random number, r, from a uniform distribution
on the interval [0,1). The X-ray generation probability is
assigned to a point that is a fraction r of the distance along
the current path segment. Over an ensemble of equivalent
scattering events, the X-ray generation probability will be
evenly distributed over the length of the segment. This
method was selected for its simplicity. NBSMonte uses
an alternative mechanism to assign the X-ray generation
probability. NBSMonte divides the generation probability
among the (�z) measurement bins according to fraction
of the length of the path segment in each bin. For a fixed
number of trajectories, the (�z) curve generated by the
NBSMonte mechanism will be less noisy, but because this
mechanism introduces the measurement process into the
trajectory model, it is programmatically less clean and less
flexible.

It is important to handle the interface between materials
correctly. Horiguchi15 presents a mechanism to calculate the
mean free path for a trajectory that passes through one or
more materials. While their algorithm is correct, a simpler
method is appropriate for Monte Carlo models.

It is sufficient to initiate each trajectory segment only on
the basis of the properties of the material at the beginning of
the segment. If the segment remains in the initial material,
this method is trivially correct. If the segment crosses into a
new material, the transition must be handled as follows. The
point of intersection between the segment and the boundary
must be calculated. The segment must be prematurely
terminated at the intersection point. The X-ray generation
probability for the completed portion of the segment must
be computed on the basis of the properties of the initial
material and on the distance traveled. The electron trajectory
at the boundary point must be restarted exactly as it would be
after a scattering event with one exception – the direction of
the trajectory does not change at the boundary. The segment
length is chosen at random only on the basis of the properties
of the new material and will, on average, have length equal
to the new material’s mean free path. No compensation
is necessary to account for the incomplete segment in the
previous material.

This simplified procedure works because, like the
proverbial coin flip, past events have no influence on future
events or, expressed another way, scattering is a Markov
process.11 Equivalently, the mean distance to a scattering
event from any point on the electron trajectory is equal to
one mean free path, regardless of whether the electron has
scattered recently or not. However, it should be noted that,
if the locus of X-ray generation is not selected at random
as described in an earlier paragraph (or the probability
otherwise uniformly distributed) then the X-ray distribution
will be biased because the X-ray generation probability is
proportional to the length of the path segment.

The family of X-ray lines and Auger electron energies
that can be emitted is determined by the shell from which
the electron is ionized. The standard X-ray lines result from
ionization of the K, L1 to L3 and M1 to M5 shells when
present. The energy of the X-ray is further determined by the
valence shell, which acts as the source for the electron that
ultimately decays to refill the unfilled core shell. For example,
the transition referred to as the K˛1 in Siegban notation or
more descriptively in IUPAC (International Union of Pure
and Applied Chemistry) notation as the K-L3 is identified as
the X-ray resulting from the ionization of the K shell that is
later filled with an electron from the L3 shell.

The fluorescence yield represents the fraction of ioniza-
tions that result in X-rays rather than in Auger electrons.
Furthermore, the matrix element for electronic transitions
between various shells differ; so the relative intensity of
X-ray lines within a family will vary with atomic number.
The relative intensity of various lines is further complicated
by Coster-Kronig transitions. Coster-Kronig transitions are
currently not modeled.

Once the X-ray has been generated, it may be absorbed
before it can reach a detector. To model absorption of
generated X-rays, the X-ray is assumed to follow a ray
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trajectory from the point of generation to the point of
detection. The ray will intersect the boundary of one or
more sample regions between the generation point and
the detector. Each intersection with a boundary defines
a path length within a region of a specified material.
The material composition, density and mass absorption
coefficients determine the fraction of the incident X-rays
that will be transmitted through the region. The fraction
of X-rays that reach the detector is the product of the
transmission fractions for each region between the generation
point and the detector. To correctly account for complex
sample geometries, the model calculates the absorption from
each generation point to the detector.

The trajectory of the electron is tracked until it has a
kinetic energy of less than 50 eV. This cutoff was selected
as this energy has been defined16 as the arbitrary cutoff
between backscatter and secondary electrons. An electron is
considered to be scattered outside the sample if the trajectory
intersects with a sphere surrounding the sample. The electron
source is located at the top of the sphere. Electrons that scatter
into the surrounding sphere in the upper hemisphere are
considered to be backscattered and the electrons that scatter
into the lower hemisphere are considered to be forward
scattered.

MODEL PHYSICS

The choice of elastic scattering model has a large effect on
the backscatter yield and, thus, on the predictions of the
entire model. Early Monte Carlos used a simple screened
Rutherford17 scattering model. More recent models tend to
use scattering cross sections based on the more accurate Mott
cross section. NISTMonte implements three different elastic-
scattering models – a basic screened Rutherford model, the
Mott scattering cross section of Czyzeweski et al.,4 and the
Mott scattering cross section of Jablonski et al.3

The screened Rutherford cross section is a simple
analytical approximation. The Mott cross sections are based
on interpolations between precalculated, tabulated values.
The Mott cross sections were only available for a limited
range of energies – in the Czyzeweski case, 20 eV to 30 keV
and in the Jablonski case, 50 eV to 20 keV. The limited
ranges would seem to limit the utility of the model.
However, the Mott cross section results are known to
approach the Rutherford cross section at higher energies.
Thus, NISTMonte reverts to the Rutherford cross section
whenever the Mott cross section is unavailable. Backscatter
simulations using each of these three different models are
presented in the results section.

The energy loss is often modeled using the Bethe
energy loss equation that subsumes an array of complex
interactions into an equation that depends primarily on the
mean ionization potential. The Bethe energy loss equation
has divergence problems when the incident electron has
energy at or below the sample atom’s mean ionization
potential. Joy and Luo5 made an empirical modification to
the Bethe expression that eliminates this divergence and
makes the equation behave in a more physical manner
at lower energies. The Joy–Luo expression asymptotically

approaches the Bethe expression at high electron energies.
NISTMonte uses the Joy–Luo expression.

Many empirical or semiempirical expressions exist for
the ionization cross section.18 None of them is entirely satis-
factory. In particular, while there are substantial quantities of
experimental data for K-shell ionizations, such data is sparse
for L-shell ionizations and even sparser for M-shell ioniza-
tions. On the basis of the available information, Powell19

concludes that the best available expression for the ioniza-
tion cross section is that of Casnati.6 Casnati’s cross section
was derived from a careful examination of experimental
data for K-shell ionization of 6 � Z � 79 and 1 � U � 20
where U, the dimensionless overvoltage, is the ratio between
the electron energy and the K-shell binding energy. While
this expression was based on K-shell ionization data, in the
absence of a better alternative, NISTMonte also uses it for
L- and M-shell ionizations.

The fluorescence yields used in NISTMonte are the
values measured by Bambynek.8 The relative line intensities
within a line family are those of Desktop Spectrum Analyzer
(DTSA).20

ARCHITECTURE OF THE LIBRARY

NISTMonte is implemented in Java. NISTMonte is divided
into a library (a ‘jar’ file) providing the algorithmic imple-
mentation and a series of driver applications that configure
and call the library. Java is an object-oriented language
in which related data items and functional methods are
bound together into an organizational structure called a
class. Functionality that is common to multiple classes can
be specified using an interface. An interface is a program-
matic contract that specifies what a class should do without
specifying how the class should do it. For example, the
MonteCarloSS.Physics interface specifies (among other
things) that the class must implement a method to calculate
the elastic-scattering cross section. (Words that refer to pro-
grammatic constructs will be formatted in theCourier font.)
Various different classes can fulfill the interface contract
by implementing the elastic-scattering cross section using
the screened Rutherford or one of the Mott cross sections.
The various different implementations of the MonteCar-

loSS.Physics interface are then readily interchanged to
compare physical models.

A novel aspect of NISTMonte is the mechanism by which
sample shapes are defined. All the information necessary
to define an arbitrary shape with sufficient detail for the
purposes of this model can be distilled to two functions.
In the Java code, this requirement is encapsulated by the
definition of the MonteCarloSS.Shape interface. The def-
inition of this interface is shown in Fig. 1. Any class that
correctly implements this interface can be used to define a
shape and can be used as the foundation for more com-
plex shapes. NISTMonte comes with implementations of the
Shape interface for spheres, blocks, cylinders and arbitrary
shapes bounded by intersecting planes. In addition, NIST-
Monte provides implementations of the Shape interface to
represent the difference of two Shapes and the intersec-
tion of two or more Shapes. Additional implementations of
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(a) (b)

Plate 1. (a) A composite image showing the emission of Mn and Fe X-rays in a 1-µm MnS inclusion embedded in an Fe matrix
probed with a 25-keV electron beam. The green and red shading represents the emitted intensity. The brighter the intensity, the
more X-rays are emitted from this point. The green corresponds to the Mn K-L3 (5.9 keV) transition and the red corresponds to the Fe
K-L3 (6.4 keV) transition. The bars at the left and bottom of the image represent the summed intensity across rows and down
columns respectively. The gray scale tracks visible around the edges represent the first 100 electron trajectories. The image took
10000 electron trajectories to generate. The relative intensities of each X-ray have been rescaled. The number of Fe X-rays emitted
was approximately twice the number of Mn or S X-rays emitted. The absorption was computed assuming a detector located in the
upper right of the image at an angle of 40°. (b) A composite image representing 0.25-µm particle consisting of C, Pb, Ba and Sb
resting on a C substrate probed with a 25-keV electron beam. The particle consists of a 0.25-µm spherical shell of C surrounding a
0.24-µm spherical Pb particle. Three 0.06-µm Ba–Sb spheres are embedded within the Pb particle. The Pb L3-M5 (10.6 keV) transition
is represented in red, the Ba L3-M5 (4.5 keV) is represented in blue and the C K-L3 (0.3 keV) transition is represented in green. The
gray scale tracks in the background represent the first 100 electron trajectories. The image took 10000 trajectories to generate. The
relative intensities of each X-ray have been rescaled. The number of Pb X-rays emitted was approximately equal to the number of C
X-rays emitted and eight times the number of Ba X-rays emitted.
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Figure 1. The commented Java code defining the MonteCarloSS.shape interface.

the Shape interface are planned. For the sake of brevity in
the remainder of the document, a class that implements the
Shape interface is referred to as a Shape.

A sample Region is defined as a Shape made of a
Material. A Material is characterized by its elemental
composition and density. Regions may be combined
to create complex sample geometries. For computational
efficiency, there are rules limiting how Regions may be
combined. Regions must be arranged in a hierarchical
tree structure with the tree root representing the chamber
Region. By default, the chamber Region is a 20-cm
diameter sphere filled with a pure vacuum. However, the
chamber may be replaced by a volume of any Shape filled
with an arbitrary Material. The electron trajectory in an
environmental scanning electron microscope (SEM) may be
modeled by defining the chamber region to have the material
properties of a gas of appropriate composition and density.
Zero or more Regions representing sample volumes may
be located inside the chamber. Furthermore, child Regions

may be embedded within parent Regions in a parent–child
hierarchy of an unlimited depth. The Material properties
of a child Region supercede the Material properties of its
parent within the Shape defining the child’s volume. Child
Regions must be fully contained within their parent. This
restriction is imposed as an optimization. If child Regions

are fully contained within their parent Region, then there
are only three alternatives for the location of the end point of

any given path segment – the segment may remain entirely
inside the current Region; the segment may exit the current
Region and reenter the parent Region or the segment may
enter an immediate child Region. During each step, we need
to only test the segment against the current Region and its
immediate child Regions. This can potentially be a small
fraction of the total number of Regions.

The requirement that child Regions are fully enclosed
within parent Regions might seem to limit the available
sample geometries. However, this need not be the case.
Consider the example of a Region partially embedded in
another Region like an inclusion embedded in the surface
of an iron block. The inclusion is not fully enclosed within
the iron block so it cannot be represented as a child Region.
However, we can use the Shape difference class to subtract
the volume represented by the inclusion from the iron block.
The block and the inclusion are then represented as child
Regions within the same parent Region (e.g. the chamber
Region.) Other complex shaped Regions can be similarly
constructed as sums and differences of simpler Shapes.

The model structure (including the sample structure)
can be defined programmatically (in Java or scripted in
Jython21) or through XML configuration files. Plate 1(a)
and (b) demonstrate some example geometries. Plate 1(a)
represents a MnS inclusion in iron. Plate 1(b) represents
a Pb–Ba–Sb particle, the forensic marker characteristic
of gunshot residue. The intensity of emitted X-rays are
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displayed in red, green or blue color scales. The most intense
regions are displayed in white with a gradient through red,
green or blue to black representing a linear intensity scale.
The images are overlaid on an image of the first 100 electron
trajectories in grayscale. The electron beam enters the sample
from the top center with a downward trajectory. The detector
is located in the upper right at a takeoff angle of 40°.

Statistics are collected using an event-driven model. At
each scattering point or boundary point, a standard Java-
style event is fired. An event is a mechanism by which an
event listener class notifies an event source class that the
listener is interested in receiving notification when certain
events occur. When notified of an event, the event listener
is then free to access the state of the model to accumulate
statistics on electron or X-ray behavior.

An event-driven model has numerous benefits. First, it
loosely couples the statistics accumulators to the electron
trajectory model making it easier to develop new accumu-
lators as it becomes desirable to collect different types of
model statistics. The base NISTMonte library contains sta-
tistical accumulators for the standard (�z) statistics, an
accumulator that plots the electron trajectories, an accumu-
lator that collects backscatter statistics, an accumulator that
plots X-ray generation intensity and an accumulator that
constructs a pseudo-energy dispersive spectrometer (EDS)
spectrum by modeling the properties of an X-ray detector.
Second, an event-driven model is efficient. By registering
only those accumulators that calculate statistics of imme-
diate interest, it is possible to forego potentially expensive
unnecessary calculations. The backscatter data discussed in
the next section was collected using the backscatter accumu-
lator. The backscatter accumulator does not require X-ray
statistics and so the model does not calculate them for this
simulation.

EVALUATION

As a partial evaluation of the NISTMonte model, the
backscatter yield was modeled and compared to measured
values. For the sake of this comparison, an electron was
considered to be backscattered if it emerged with a velocity
component antiparallel to the incident beam and an energy of
greater than 50 eV. The sample was modeled as an infinitely
thick bulk sample consisting of a single element with a
density typical of a common solid form of that element.
(The actual density is not a critical parameter in modeling
backscatter yield.) Ten thousand electron trajectories were
run for each data point and the number of backscattered
electrons was counted. The resulting yields were compared
with yields measured by Heinrich.22 Heinrich attributed
a reproducibility of 0.003 and an accuracy of 0.01 to
his measurements. Other researchers have made similar
measurements.23,24 These measurements tend to agree with
Heinrich’s to within a few percent at 10 and 20 keV.
The results are plotted in Fig. 2 for beam energies of 10
and 20 keV. The plots compare yields calculated using
the screened Rutherford, the Jablonski and Czyzeweski
cross sections to Heinrich’s measured yields. While the
uncertainty in the experimental measurements makes it
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Figure 2. Comparing NISTMonte with different scattering
models with Heinrich’s experimental measurements of the
backscatter yield.

unrealistic to make definitive statements comparing the two
Mott cross sections, the difference between the Rutherford
results and the measured values are sufficiently large to
suggest that this cross section yields increasingly poor
results as beam energy decreases and as atomic number
increases. Overall, the Czyzeweski cross section produces
results most consistent with Heinrich’s measurements across
the range of elements at both incident energies. The
Jablonski cross section produces consistent results over
most of the periodic table but produces yields larger
than Heinrich’s measurements at low atomic numbers at
20 keV.

The backscatter yield is a good way to evaluate the
electron trajectory model. In particular, if either the total
elastic cross section is incorrect or if the shape of the partial
elastic cross section is grossly incorrect, then the backscatter
yield is likely to be incorrectly modeled. The partial cross
sections predicted by the Mott model show nonmonotonic
variation with scattering angle. The backscatter yield is not
sensitive to this structure as any one backscattering event
is most likely the result of many smaller deviations rather
than one large deviation. However, the sensitivity of the
model to subtle changes in the partial cross section was
demonstrated by the modeled yield for the element Rb
using the Czyzeweski cross section. The cross section for
Rb has anomalously large values at higher scattering angles.
This bulge led to a modeled yield that was approximately
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20% larger for Rb than for elements with similar atomic
numbers.

The backscatter yield does not evaluate the X-ray gen-
eration and absorption characteristics of the model. While
there are computationally more efficient ways to perform
these calculations, NISTMonte can be used to perform
the atomic number and absorption correction for quanti-
tative correction of microanalysis data. Preliminary evalua-
tions using NISTMonte to perform standards-based atomic
number and absorption corrections on microanalysis data
have been promising. This preliminary work suggests that
computed (�z) and absorption corrections are reason-
able. However, because the work compared an unknown
material to reference standards, these tests do not eval-
uate the ionization cross-section model and fluorescence
yield. Further evaluation of the model will be pursued
in future research and reported in a future communica-
tion.

CONCLUSION

We have presented a new implementation of a Monte
Carlo model suitable for microanalysis problems with
complex sample geometries. The tests presented in this
article demonstrate that NISTMonte can accurately model
the backscatter yield for bulk samples. Preliminary tests
have shown that NISTMonte can accurately model other
microanalytical data. Work continues to further validate
the model and to extend it to generate artificial spectra of
complex shaped samples as they might be measured on
various different types of X-ray detectors.
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