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ABSTRACT The semantic segmentation of remote sensing (RS) image is a hot research field. With the

development of deep learning, the semantic segmentation based on a full convolution neural network greatly

improves the segmentation accuracy. The amount of information on the RS image is very large, but the

sample size is extremely uneven. Therefore, even the common network can segment RS images to a certain

extent, but the segmentation accuracy can still be greatly improved. The common neural network deepens the

network to improve the classification accuracy, but it has a lot of loss to the target spatial features and scale

features, and the existing common feature fusion methods can only solve some problems. A segmentation

network is built to solve the above problems very well. The network employs the InceptionV-4 network as

the backbone and improves it. We modify the network structure and introduce the changed Atrous Spatial

Pyramid Pooling module to extract the multi-scale features of the target from different training stages.

Without losing the depth of the network, using Inception blocks to strengthen the width of the network

can obtain more abstract features. At the same time, the backbone network is used for semantic fusion of the

context, it can retain more spatial features, then an effective decoder network is designed. Finally, evaluate

our model on the ISPRS 2D Semantic Labeling Contest Potsdam and Inria Aerial Image Labeling Dataset.

The results show that the network has very superior performance, reaching 89.62% IOU score and 94.49%

F1 score on the Potsdam dataset, and the IOU score on the Inria dataset has been greatly improved.

INDEX TERMS Semantic segmentation, neural network, remote sensing, feature fusion.

I. INTRODUCTION

With the development of RS technology, the amount of

RS image data is becoming larger and the resolution is higher.

RS image contains a lot of information, so there are many

aspects in the application of RS image, including target

detection, scene classification, semantic segmentation, and

so on. The application of RS image tends to be diversified,

such as urban planning [1], building extraction [2], road

extraction [3], vehicle detection [4], and illegal building
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extraction [5]. In these fields, high segmentation quality is

needed. Although there are many RS image segmentation

methods, the segmentation effect still needs to be improved.

Semantic segmentation is the pixel-level classification

method, which marks each pixel of an image as a certain kind

of object label. There are many challenges in the semantic

segmentation task of RS images. First, the RS image contains

a large amount of information, but the amount of data in

each sample is extremely uneven, and the samples in different

scenes are diverse, which puts forward high requirements

for segmentation methods. Second, because the RS images

are taken vertically from high altitude, some samples will
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overlap or occlude, such as the occlusion of trees on vehicles,

resulting in feature differences in vehicle extraction. Third,

the same kind of samples also have different characteristic

information, such as the different color trees in the forest,

and the top color of buildings will be greatly different, which

will bring great challenges to segmentation. Fourth, because

of the different angles of the sun, there will be a lot of

shadows in the image, which is the noise of the image.

Therefore, numerous researchers pay attention to the segmen-

tation of RS images and put forward a lot of segmentation

methods.

In recent years, artificial intelligence has made rapid devel-

opment and shown strong productivity. Deep learning is also

increasingly applied to the processing of RS images, espe-

cially RS image classification. At the same time, the rapid

development of high-performance computing equipment and

computer software technology provides a guarantee for the

application of deep learning in RS image classification. The

application of deep learning in RS images can reduce the

dependence of RS image classification on expert knowl-

edge, improve classification accuracy and recognition effi-

ciency. Consequently, the combination of deep learning and

RS images is of great significance.

The main purpose of the current study is to estab-

lish a deep learning network for semantic segmentation of

high-resolution RS images. So, a multi-channel segmen-

tation network (DAPN) is established with dual Atrous

Spatial Pyramid Pooling (ASPP) [6] to segment wholesale

RS images.

II. RELATED WORK

Over the past few decades, most research in RS has empha-

sized the employ of machine learning. Firstly, texture [7] and

geometry features of ground objects are extracted. Then, for

vegetation and water body, it is necessary to further study the

reflectivity of ground objects, Normalized Difference Water

Index (NDWI) [8], [9].

The features of RS images mainly include spectral, spatial

and texture features. Shao et al. [10] proposed two improved

texture descriptors for RS image classification, which are

color Gabor wavelet texture (CGWT) and color Gabor oppo-

nent texture (CGOT), and the experimental results show

that the performance is better than other texture features.

Huaiying [11] adopted a shadow detection method based on a

statistical hybrid model to solve the problems of a high reflec-

tion area and false positives in the presence of water. These

methods are based on machine learning algorithms, but there

are still some defects, over-reliance on expert knowledge,

recognition efficiency is not high, so it is necessary to study

a more efficient and stronger generalization classification

algorithm.

In recent years, many researches on deep learning

and computer vision have been published, and various

high-performance deep learning algorithms have emerged.

Image processing based on deep learning has gradually

become a trend in the whole field of computer vision.

Deep learning was firstly proposed by Hinton and

Salakhutdinov [12] in 2006. They built the multi-level struc-

ture model of automatic coding, and then extended the depth

confidence network based on Restricted Boltzmann Machine

(RBM) [13]. Razavian et al. [14] applied the convolution

neural network algorithm to train pixel feature classifiers, but

the accuracy is low because of the shortcomings of traditional

segmentation methods. In 2014, GoogleNet [15] won the

championship in the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) competition, and VGGNet [16]

won the second place in the competition, while made remark-

able achievements in image transfer. In 2015, Long et al. [17]

achieved pixel-level image classification based on a full con-

volution neural network (FCN), and then many researchers

improved it based on FCN. Later, He et al. [18] detected

objects in the image and generated a segmentation mask

for each object, which is called Mask R-CNN. In 2016,

Szegedy et al. [19] improved the Inception-V3 network to

make the network deeper and wider to build the Inception-V4

network. Besides, due to the extension of the codec struc-

ture, many FCN-based codec semantic segmentation net-

works have been built, such as U-Net [20], SegNet [21],

Deeplab [22] and so on. These are recently published seman-

tic segmentation networks, and the segmentation effect is

much better than the former methods. The application of

atrous convolution [23] to FCN enlarges the sampling of

the feature image, thus the receptive field is expanded, and

the segmentation effect is improved obviously. Lafferty and

Mccallum [24] applied conditional random fields to optimize

the results of FCN output [25], which became a commonly

used method for segmentation post-processing.

Numerous deep learning methods are applied to the

semantic segmentation of RS image. Reference [26] used

the DCNN framework for semantic segmentation of multi-

spectral imagery (MSI) images, which overcomes the label

scarcity of MSI data and achieves a good segmentation

effect. Reference [27] combining the RGB feature infor-

mation obtained in the deep learning framework with the

optical detection and ranging (LiDAR) features, formed a

multi-sensor decision fusion technique, which is applied to

mark the LiDAR data and RGB data semantically. Finally,

introduce the high-order conditional random field frame-

work to improve the semantic tagging. Reference [28] com-

bined DCNN with decision-making forest, and introduced a

super-pixel enhancement region module to further enhance

the edge information of the target. Reference [29] proposed a

spatial residual module (SRI) to continuously fusemulti-level

feature extraction multi-scale information, which shows sig-

nificant segmentation improvement compared with several

latest FCN models. Reference [30] designed the Web-Net

which is a layered and densely connected nested network

structure. A super-layered sampling block (UHS) is inlaid to

integrate the feature map of each layer, and finally identify

the building area more accurately.

Although the above segmentation methods are recently

published and introduced some methods to improve the
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performance of segmentation, it cannot extract enough fea-

tures to classify, so the segmentation effect still needs to

be improved. Given this situation, the DAPN is established,

which takes into account the depth training of the network and

the preservation of shallow features, on the basis of which

more multi-scale features are extracted. As a result, they

obtain higher segmentation accuracy.

III. PROPOSED MODEL

The DAPN is a codec structure, in which the encoder module

downsampling and extracts the abstract features of the image

through themulti-layer convolutionmodule. Then the upsam-

pling is gradually restored to the original size of the image by

the decoder module. It will be covered in detail in this section.

A. MODULE OF THE ENCODER

1) BACKONE

The DAPN takes the InceptionV-4 network as the back-

bone and adds dual ASPP modules as the encoder of

the network. The InceptionV-4 is a popular deep learn-

ing network recently, which comes from the improved

InceptionV-3 network [32]. Over the past few years, there

have been many popular full convolution neural networks,

such as VGG, ResNet and YOLO. Compared with these

mainstream networks, the InceptionV-4 has higher classi-

fication accuracy and less model memory. In the test set

of the ImageNet Classification Challenge, the Top-5 error

rate is 3.08%, and the network is deeper. Our RS images

have more information, it is necessary to extract more

abstract features for learning and classification. Therefore,

the InceptionV-4 network is used as the network backbone.

Compared with the InceptionV-3 network, the conspicu-

ous difference of InceptionV-4 is the Stem module and the

Reduction-B module, which adopts more skills to reduce the

calculation of the model. In order to obtain feature maps,

it modifies the Stem module to make the structure more

complex and the network level deeper. The Reductionmodule

changes the width and depth of the network, and improves the

bottleneck problem without adding too much network depth.

Because using the parallelism of convolution and pooling

to prevent bottleneck problems has been mentioned in the

InceptionV-3, convolution and pooling parallelism is used

again in the InceptionV-4.

Figure 1 is the model structure of the InceptionV-4 net-

work. Firstly, input the image with 299 × 299 sizes into the

Stem module, and in this module, through parallel groups

of convolution layers and pooling layers, the feature map of

35 × 35×384 is passed into the Inception module, that is,

to achieve the purpose of preprocessing. The Inception-A,

Inception-B, Inception-C module have the same structure

as in the InceptionV-3. The Reduction-A and Reduction-B

modules reduce the size of the feature graph. In Reduction-B,

asymmetric convolution and pooling parallel strategies are

applied to reduce the calculated amount. The structure of the

Reduction module is shown in Figure 2.

FIGURE 1. The InceptionV-4 architecture diagram.

2) ATROUS SPATIAL PYRAMID POOLING

In addition to apply the Inception network to extract features,

the ASPPmodule is applied to further extract multi-scale fea-

tures of images [31]. To put it simply, the ASPP is composed

of multiple parallel atrous convolutions [23], and fuses the

convolution blocks of the feature maps, that is, a spatial pyra-

mid structure with atrous convolution. The ASPP proposed

firstly in the deeplabv2 that the mapping at the top of the

feature uses four kinds of atrous convolution with different

dilated rates. The verification results show that convolution

with different dilated rates is effective. Compared with ordi-

nary convolution, atrous convolution enlarges the area of the

receptive field due to the difference of dilated rate, and a

larger range of information can be obtained in each con-

volution, while parallel convolution with dilated rates of 6,

12 and 18 are used in the ASPP, so more scale features can

be obtained. As shown in Figure 3, the upper feature maps

are inputted into a module containing parallel operations

of four convolutions and a pooling and extract the multi-

scale features through the characteristics of four convolutions

(where the dilated rates of the four parallel convolutions are 1,

6, 12, 18 respectively). At the same time, the global average

pooling operation is performed on the feature maps, and then

combine the outputs of the five parallel operations, and finally

through a 1 × 1 convolution. This is the overall flow of

the ASPP module. By introducing this module, our network

can extract sufficient multi-scale features, and strengthen the

whole network training. In our work, a dual ASPP module is

built, which will be described in detail in Section 3.3.

B. DECODER

In order to restore the feature size without losing the

local information of the image, a simple decoder mod-
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FIGURE 2. Reduction module structure diagram, (a) is Reduction-A
structure diagram, (b) is Reduction-B structure diagram.

ule is designed, which receives the feature maps from the

encoder, and then through four sets of convolution modules.

Finally, the image is restored to its original size by a bilin-

ear upsampling. Each set of convolution modules contains

three complete convolution operations, and the last decoding

block includes an upsampling, a convolution, and a bilinear

upsampling.

C. MODEL STRUCTURE

The above two sections describe the basic modules, and this

section will describe the architecture of the overall model in

detail. The DAPN architecture is shown in Figure 4, which

takes the InceptionV-4 network as the backbone, abandons its

final Average Pooling, Dropout and Softmax, while introduc-

ing the dual-ASPP module, and then combine the features to

form the encoder module. After the Stem module, establish

the first ASPP module to form a parallel training network.

In the first ASPP module, introduce 35 × 35 × 384 feature

maps, and fully extract the multi-scale features of the first

FIGURE 3. The ASPP structure diagram.

stage through the atrous convolutions with the dilated rate

of 1, 6, 12 and 18 respectively. Then combine the feature

maps of the five branches of the first ASPP module to form

the 35 × 35 × 256 feature maps, and the combined feature

maps are convoluted through a 1× 1 convolution. In order to

match the size of the feature maps to be fused, add the max

pool operation of 4×4 after the 1×1 convolution, and the size

of the feature maps is reduced to 32 × 32. The second ASPP

module is established after the Reduction-A module of the

InceptionV-4 network, and it receives 17×17×1024 feature

maps. To match the size of the feature maps, the dilated rate

of convolution in the second ASPP module is respectively set

to 1, 6, 8, 12, and then combine the four branches of the ASPP

module. Through a 1× 1 convolution layer, the feature maps

of 17×17×512 is outputted, and tomatch the size of the fused

feature map. The max pool layer of 2 × 2 is added after the

convolution layer, obtain the feature maps of 16× 16× 512.

After completing the training of the dual ASPP module, fuse

the feature images of the corresponding size in the decoder.

In addition, another branch of the network is constructed.

Considering that the degree of fusion training and the learned

features in the earlier stage may not be enough, combine the

feature graph of Inception-A module with the output feature

graph of Inception-C to form an encoder with multi-channel

training branch, which can fully extract the context infor-

mation of the network. The decoder module is divided into

four convolution modules, each convolution block has an

upsampling operation, and finally, the image size is restored

by bilinear upsampling. The parameter configuration of the

overall network is shown in Table 1,2,3,4.

Compared with the traditional InceptionV-4 network,

the DAPN uses this network as the backbone and modi-

fies it to make the network more complex, while improving

the training quality. On the basic of the InceptionV-4 net-

work, remove the last two layers, combine the contextual

semantic information of the network, embed the dual ASPP

module into the backbone, and finally establish the decoder

module.
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FIGURE 4. The architecture of DAPN.

TABLE 1. The configuration parameters of backbone.

The common ASPP module at the end of the encoder,

which only expands the receptive field to extract multi-scale

features, but in RS images with a lot of information, this

operation is not enough to extract more features. Due to

the deepening of the network, the shallow features of the

target are seriously lost. That is, the location information of

the target is seriously lost, so the prediction effect of the

model still needs to be improved. By adding a dual ASPP

module, a new semantic segmentation network is constructed.

The DAPN adds dual ASPP in the first two stages of the

network so that the location information of the data will

not be lost, and multi-scale features can be extracted from

feature maps of different sizes through different receptive

TABLE 2. The configuration parameters of the first ASPP.

fields. Then combine with the corresponding modules of the

decoder. So, on the one hand, the context information of the

network is fused together to ensure that the shallow features

of the network will not lose too much. On the other hand,

more multi-scale features can be obtained through the dual

ASPP module. Finally, to strengthen the learning ability of

the network, fuse the backbone network. In order to verify

the good segmentation performance of the DAPN, we have

carried out experiments on ISPRS 2D Semantic Labeling

Contest Potsdam and Inria Aerial Image Labeling Dataset.
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TABLE 3. The configuration parameters the second ASPP.

TABLE 4. The configuration parameters of the decoder.

IV. EXPERIMENTS

A. DATASET AND PREPROCESSING

1) ISPRS 2D SEMANTIC LABELING CONTEST POTSDAM

DATASET

ISPRS 2D Semantic Labeling Contest Potsdam dataset [32] is

a high-resolution aerial image dataset with complete semantic

markings in the International Society for Photogrammetry

and RS, including high-resolution true orthophoto (TOP)

and digital surface model (DSM). Image files are composed

of different channels, there are IRRG (IR-R-G,3 channels),

RGB (R-G-B, 3 channels) and RGBIR (R-G-B-IR, 4 chan-

nels) three kinds of image format respectively. In this section,

only use TOP RGB images for training. The dataset contains

38 RS patches (6000 × 6000), and each patch is extracted

from orthophoto images, of which 24 images have the cor-

responding semantic label. Dataset labels are divided into

six categories, including Impervious Surfaces, Building, Low

Vegetation, Tree, Car, and background.

Cut 24 images into 299 × 299 size images, due to the

depth of the network is deep, the data volume is too small to

get enough features. Therefore, data augmentation is carried

out to reduce the impact on training. After cropping, flip the

image horizontally and then vertically, obtain 76800 images

of 299 × 299 sizes by rotation, which ensures sufficient

training data. Select randomly 75% of the total samples as

a training set, 20% as the test set, and the rest is used as a

validation set. The effect prediction is made on the validation

set after deriving the model.

2) INRIA AERIAL IMAGE LABELLING DATASET

The Inria Aerial Image Labeling Dataset [33] contains

high-resolution RS data of five areas. There are Austin,

Chicago, Kitsap County, Western Tyrol, Vienna, and each

with 36 orthophoto images of 5000 × 5000 sizes, the image

band combination is RGB. The semantic labels of the dataset

can be divided into architectural and non-architectural (back-

ground) categories.

Cut each image into 400 images size of 250×250, and then

use bilinear interpolation to resize the image into 299× 299.

All the images are flipped horizontally and vertically, and

then rotated to get the final training set, each area contains

115200 RS images. Selected randomly 75% of the total sam-

ples as trainset, 20% as a test set, and the rest is used as the

validation set. The effect prediction is made on the validation

set after deriving the model.

B. EVALUATION FUNCTION

In order to comprehensively evaluate the performance of the

proposed model, use Intersection over Union (IOU), Overall

Accuracy (OA), F1, Precision and Recall to evaluate the

experimental results. The above evaluation indicators are fre-

quently used in previous papers, and they are compared with

the recognized semantic segmentation evaluation indicators.

The calculation formulas of each evaluation index are as

follows:

IOU =
TP

TP+ FP+ FN
(1)

OA =
TP+ TN

P+ N
(2)

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 = 2 ×
Precision× Recall

Precision+ Recall
(5)

where P is the number of positive samples, N is the number

of negative samples, TP is the number of positive samples

that predict correctly, FP is the number of positive samples

that predict falsely, TN is the number of negative samples that

predict correctly, FN is the number of negative samples that
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predict falsely, and the number of samples is the number of

pixels in each picture.

C. TRAINING OPTIMIZATION

In the present study, training samples have multiple clas-

sifications and binary classifications, so use the Negative

Log-Likelihood Loss function (NLLLoss). It is applicable

to both multi-class and second class.NLLLoss is similar

to the Cross-Entropy Loss function, but the Cross-Entropy

Loss function is more widely used. In the classification task,

predicted label y is discrete categories, and the output tar-

get f (x, δ) of the model is the conditional probability for

each category. Suppose y∈ {0, 1, . . . ,N−1}, the conditional

probability of the ith class predicted by the model is the

formula (6):

P (y = i|x) = fi(x, δ) (6)

then f (x, δ) meet the formula (7):

fi (x, δ) ∈ [0, 1] ,

N−1∑

i=1

fi (x, δ) = 1 (7)

So fy (x, δ) can be seen as a likelihood function of

category y, and take the negative logarithm to get the negative

log-likelihood loss function:

L(y, f (x, δ)) = − log fy(x, δ) (8)

that is

L (y, f (x, δ)) = −

N−1∑

i=1

yi log fi(x, δ) (9)

Due to the large training data and the limited computing

power of the computer, use the Adam (Adam optimization

algorithm) algorithm for training optimization. It combines

the optimal performance of the two optimization algorithms

AdaGrad and RMSProp, and it is easier to adjust the parame-

ters, while it has high computational efficiency and can adapt

to large datasets. The training acceleration effect on a large

amount of training data is obvious.

D. EXPERIMENTAL RESULTS

1) IMPLEMENTATION SETTINGS

The DAPN is implemented using the Pytorch framework.

Train our models using the adaptive learning rate algorithm

Adam with a learning rate of 0.0005 to converge the model

quickly, while with a momentum of 0.9. In addition, use

L2 regularization with a weight decay of 0.0001 to avoid

over-fitting. The model is deployed on NVIDIA Tesla V100

(32GBRAM) server with CUDA10.0, and train 200 epochs

with a batch size of 32. After training, the model with the

best evaluation index is selected for testing.

2) COMPARISON OF COMMON MODELS

Compare the performance of four common models on two

datasets. These models are common codec structures and

fusion network for segmentation. Because the number of

samples of each category is not balanced, the IOU score and

the F1 score are selected to compare. Table 5 and 6 show the

IOU, F1 scores of all kinds of samples on the Potsdam dataset.

The results show that the segmentation accuracy of the DAPN

is much better than that of other models, with an overall IOU

score of 89.62% and a total F1 score of 94.49%. The Inria

dataset has only two categories, in which the segmentation

target is the building. Experiments are carried out on the

dataset of five regions, and only the IOU score is calculated.

The table shows that the performance of our model is the best

in each regional test set. Then predict on the validation set and

compare it with the prediction results of several mainstream

models. Figure 5 and Figure 6 show the comparison of the

marked effects of various common segmentation models on

the two datasets. The marked effect of the DAPN is better

than that of other models.

FIGURE 5. Comparison of marked effects with common models on
Potsdam dataset.

As shown in Table 8, we also calculate the FLOPs of the

DAPN compared to common classification networks with

the same inputs. The FLOPs is the floating point operations

which can be comprehended the calculated amount. Net-

works with a similar FLOPs do not necessarily perform at the

same speed, so it is not an absolute measure, but because it

measures the complexity of the network, it is also a reference.

TheDAPN have the highest params and FLOPs, among them,

params of the VGG and the DAPN are similar. In addition,

the processing time of each image is calculated in the test set

and validation set. On the test set, many evaluation indicators
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FIGURE 6. Comparison of marked effects with common models on Inria
dataset.

TABLE 5. The IOU scores compared with common models on Potsdam
test set.

TABLE 6. The F1 scores compared with common models on Potsdam test
set.

need to be calculated, while on the validation set, only classi-

fication prediction is needed, so the runtime of test is slightly

longer than that of prediction. In general, the predicted time

is very short, and the predicted efficiency of remote sensing

images is appreciable.

TABLE 7. The IOU scores compared with common models on Inria test
set.

TABLE 8. The comparison of params and FLOPs for networks.

3) EXPERIMENTAL COMPARISON OF THE LATEST

SEGMENTATION METHODS

With the rapid development of deep learning, there are more

and more methods to combine RS image classification with

artificial intelligence, and the segmentation effect is greatly

improved. Compare it with some RS image semantic segmen-

tation methods. Some of the methods are as follows:

Audebert et al. [34] proposed a three-stage segment-

before-detect method. Firstly, the full winder neural network

is used to infer the semantic segmentation of the pixel-level

classification mask, then the boundary box of the connec-

tion part is used for vehicle detection, and finally, the tra-

ditional convolution neural network is used for target-level

classification.

Wang et al. [35] used the deep residual network as

the encoder and combines two proportional high-level

features and the corresponding low-level features into a

decoder to further develop the multi-scale loss function and

enhance the learning process. finally, the final segmentation

post-processing technique of conditional random field based

on superpixel is added to improve the segmentation effect.

Zhang et al. [36] studied the role of each feature layer

in FCN, proposes an effective fusion strategy, quantifies the

sensitivity of multimodal data through recall rate and recall

decline rate in the multi-resolution model, analyzes the influ-

ence of different modes on pixel prediction, and explains

the reasons for poor performance caused by common fusion.

Finally, propose an optimization scheme of fusion elevation

information.

Yu et al. [37] proposed an incremental learning method,

which makes the network suitable for learning the previously

learned features on the new training data, retains the previous

features, and minimizes the loss function of the network.

Guo et al. [38] designed a gated convolution (L-GCNN).

Firstly, design a parameterized gate module (PGM) to gen-

erate pixel-level weights. Then, embed a single PGM and its

connected extension units into different levels of encoders in
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FIGURE 7. The first fusion convergence solution network diagram.

FIGURE 8. The second fusion solution network diagram.

TABLE 9. Processing time of each image for the DAPN.

the L-GCNN, resulting in a fine segmentation framework that

aggregates context information.

Some of the methods mentioned above are the recently

published RS image segmentation methods. The experiment

is carried out on two datasets and compared with the above

methods.

a: Comparison of experiments on Potsdam datasets

Apply the IOU, F1 and OA scores to evaluate our model

on the Potsdam test set. Table 10 and Table 11 show the

experimental results on the Potsdam dataset. The method

proposed achieved the highest IOU, F1 and OA average

scores. Table 11 provides the comparative results of per class,

the DAPN can obtain the best performance by and large. The

F1 score of the class Imp.Surf achieves the highest 96.97%,

which is higher than the [28] about 3%. The F1 score of

the [27] for class Car can reach a maximum of 96.40%, while

the score of our model is near. Expect the class Tree, other

classes of F1 scores also achieved the highest results by and

large.

b: Comparison of experiments on Inria datasets

Table 12 is the experimental results on the Inria dataset.

Through experiments on the Inria five regional datasets,

TABLE 10. Comparison of different methods on Potsdam test set.

TABLE 11. Comparison of F1 scores on Potsdam test set.

obtain better segmentation results than the other twomethods,

in which the IOU score has been greatly improved. Combined

with the results on the two datasets, our model performs

excellently in the segmentation of the building.

In addition, verify the segmentation effect of three

cases which fusing context information without adding a

dual ASPP module on two datasets. In the first case,
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the InpectionV-4 network is used as the encoder and then

directly connected to the decoder used in this paper without

any other processing. In the second case, the InpectionV-4

network is used as the encoder, in which the characteristic

image of the Reduction-A module is fused to the end of the

encoder and then connected to the same decoder. In the third

case, the trunk of the encoder is the same as above, and then

the feature image output by the Reduction-B module is fused

to the end of the encoder, and finally connected to the same

decoder module. Among them, two kinds of fusion features

use common fusion techniques to extract features from dif-

ferent layers, and then fuse the feature with the feature map

of the deeper network, so that the context information of

the neural network is simply fused. To achieve the purpose

of improving the accuracy and effect of segmentation. The

two merged network architectures are shown in Figure 7 and

Figure 8.

Experiment on two datasets with the methods of three

cases. On the Potsdam dataset, calculated five evaluation

indicators of various situations, and more comprehensively

showed the segmentation effect of different fusion methods.

On the Inria dataset, use only one fusion strategy, and then

obtain the IOU scores after training in five areas respectively.

As can be seen from Table 13 and Table 14, the evaluation

indicators obtained from the training on the two datasets are

significantly higher than those obtained by other strategies,

because the feature map of the moderate training stage is

fused to the end of the encoder. The loss of target location

information can be greatly reduced, and enough abstract fea-

tures can be obtained. After merging the feature map of the

Reduction-B output with the feature map output at the end of

the encoder, the evaluation indicator is significantly reduced.

The result shows that the performance of segmentation can be

improved by using the fusion strategy. After adding the dual

ASPP module, the evaluation indicators have been signifi-

cantly improved. Without losing too many shallow features

of the network, the dual ASPP module has a wider receptive

field through atrous convolution with different dilated rates.

Features are extracted from different depths of the convolu-

tion network to obtain more location information, the final

segmentation accuracy is also higher. Figure 9 and 10 shows

the comparison of the prediction results of different strategies

on the validation set, and the prediction effect of the DAPN

proposed in the present study is better.

V. DISCUSSION

After completing the basic experimental comparison, have

a more in-depth discussion of the generalization ability of

the DAPN, so a transfer learning experiment is carried out

with Potsdam dataset and Vaihingen dataset [32]. The orig-

inal image of the Vaihingen dataset is composed of IR-R-G

three channels. Although the categories of the two datasets

are the same, the different channel combinations can result

in significant color differences in the image. Therefore, the

prediction results are very bad by using the model trained

on Potsdam R-G-B dataset and Vaihingen IR-R-G dataset to

FIGURE 9. Comparison of marked effects with different fusion schemes
on Potsdam datasets.

FIGURE 10. Comparison of marked effects with different fusion schemes
on Inria datasets.

carry out transfer learning experiment. To avoid this problem,

the training data of Potsdam is also used IR-R-G images in

this section.

The preprocessing of the Potsdam IR-R-G dataset is the

same as the Potsdam R-G-B dataset, which obtain 60800

Potsdam IR-R-G images to train. Since each patch size of the

Vaihingen IR-R-G dataset is different, the Vaihingen IR-R-G

dataset is cut according to the corresponding size and the data
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TABLE 12. Experimental comparison of various methods on Inria test set.

TABLE 13. Comparison of different fusion schemes on Potsdam test set.

TABLE 14. Comparison of IOU scores with different Fusion schemes on
Inria test set.

TABLE 15. Comparison of IOU scores with other models on Vaihingen
IR-R-G dataset.

is expanded by mirroring. Finally, 5559 images with the size

of 299 × 299 are obtained. The training parameters are the

same as the previous section, and the Vaihingen dataset is

tested using the model obtained after training with Potsdam

IR-R-G datasets.

In addition, use several common segmentation networks

for comparison experiments, and the IOU scores are shown

in Table 15. As can be seen from the table, the DAPN has

a stronger generalization ability than other models. However,

compared with the performance on the Potsdam dataset, there

is a significant decrease in the IOU scores on the Vaihin-

gen IR-R-G dataset due to the differences between the two

datasets. Althoug h the categories of the two datasets are the

same, there is a lot of variability in ground targets because

of the images collected in different regions, resulting in the

decline of the prediction ability of the model.

VI. CONCLUSION

In the current study, a network with the multi-channel con-

volutions and dual ASPP modules is proposed, which fully

extract the multi-scale features of the image and retain the

spatial features of the object at the same time, while taking

into account the loss of network features in many aspects.

The network is a segmentation network with codec structure,

which extracts features by downsampling and restores the

original resolution by upsampling, and it is a well-recognized

structure in the task of semantic segmentation. Through

the method of data augmentation, the problem of sample

imbalance is solved to a certain extent. In addition, experi-

ments are carried out on Potsdam data sets and Inria datasets,

and the results are compared with a variety of mainstream

segmentation models and the newly proposed segmentation

algorithms. The calculation of a variety of evaluation indi-

cators shows that the network has a significant improve-

ment effect compared with other methods. Finally, explore

further the generalization ability of the DAPN and predict

on Vaihingen IR-R-G datasets. The code of the DAPN is in

https://github.com/Udellliu/InceptionV4-ASPP-semantic.
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