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Abstract. Multi-class classification is an important and on-going research 
subject in machine learning and data mining. In this paper, we propose a new 
support vector algorithm, called OC-K-SVM, for multi-class classification 
based on one-class SVM. For k-class problem, this method constructs k 
classifiers, where each one is trained on data from one class. OC-K-SVM has 
parameters that enable us to control the number of support vectors and margin 
errors effectively, which is helpful in improving the accuracy of each classifier. 
We give some theoretical results concerning the significance of the parameters 
and show the robustness of classifiers. In addition, we have examined the 
proposed algorithm on several benchmark data sets, and our preliminary 
experiments confirm our theoretical conclusions. 
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1   Introduction 

Support Vector Machines [1] (SVM) were originally designed for binary 
classification. How to effectively extend it for multi-class classification is still an on-
going research issue. Currently there are two types of approaches for multi-class 
SVM. One is the “decomposition-reconstruction” architecture approach [2, 3, 4, 5] 
that makes direct use of binary SVMs to tackle the tasks of multi-class classification, 
while the other is by directly considering all data in one optimization formulation [6, 
7, 8].  

The first approach divides the multiple class problems into a number of binary 
classifications. The generalization step is based on a voting among the binary 
classifiers to derive the winning class. There are different transformations into binary 
problems [2, 3], being the most widely used: one-vs.-all (OVA), in which each class 
is compared with all the other classes considered as one [2]; and one-vs.-one (OVO), 
in which each class is individually compared with all the others [3]. They do not 
consider the full problem directly. Particularly, the one-vs.-all approach unbalances 
the training sets (if the classes are balanced, the negative class in each binary 
classifier will have far more samples than the positive class), and the one-vs.-one will 
be using only information from two classes, losing each classifier the information 
from all the remaining classes. 
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The second trend considers the multi-class problem directly as generalization of 
the binary classification scheme [6] and [7]. This formulation is very promising 
because it deals with all the samples and classes at the same time, without losing any 
relevant information for arriving to the best solution for each problem. Besides, the 
resulting machines need a lower number of support vectors [9] and achieve higher 
performances in the case where the training set is separable. However, if the working 
set selection is not good, its training speed may be slow when using a large parameter 
C [10].  

In this paper, we propose a new algorithm for multi-class classification, called OC-
K-SVM, with decomposition-reconstruction architecture. This method constructs k 
one-class SVM (OC-SVM) [11, 12, 13] classifiers where k is the number of classes.  

The rest of this article is outlined as follows. We first give a brief account of one-
class SVM in Section 2. In Section 3, we present OC-K-SVM algorithm and then 
show some theoretical results on OC-K-SVM. Numerical experiments are in Section 
4, where we show the performance of OC-K-SVM. Finally we have some conclusions 
in Section 5. 

2   One-Class Support Vector Machines 

We first introduce terminology and notation conventions. Consider n training data 
points in a d-dimensional space denoted as{ }nxx ,...,1

. An OC-SVM first projects these 

data into a higher, potentially infinite, dimensional space with the mapping:φ: Rd F 
.In this space, a bounding hypersphere is computed that encompasses as much of the 
training data as possible while minimizing its volume. Shown in Figure 1 is an 
example where OC-SVM was trained on the black dots.  

 

Fig. 1. The hypersphere contains the training data, described by the center c  and radius R. 
Three white objects are on the boundary, the support vectors. One object ix is outside and 
has 0>iξ . 

The hypersphere center c  and radius R are computed by minimizing: 
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Where )1,0(∈ν  is a parameterized constant that controls the fraction of training data 

that fall outside of the hypersphere, siξ are the “slack variables” whose values 

indicate how far these outliers deviate from the surface of the hypersphere. This 
minimization is subject to: 

.,...,1,0,)( 2 niRcx iii =≥+≤− ξξφ                              (2) 

Where ⋅  is the Euclidean norm. The objective function of Equation (1) embodies the 

requirement that the volume of the hypersphere is minimized, while simultaneously 
encompassing as much of the training data as possible. Equation (2) forces the 
training data to lie within the hyperspere.We can solve this optimization with 
Lagrangian multipliers.  

In the following section we show how this basic framework can be extended to 
construct multi-class SVM with multiple hyperspheres. 

3   OC-K-SVM 

An OC-SVM with a single hypersphere, as described in the previous section, obviates 
the need for training classifiers on the other training sets. For k-class problem, we 
propose to cover the k-class training data sets with several hyperspheres, where each 
hypersphere encompasses one class subset of the training data. Shown in Figure 2 is a 
toy 2-D example where an OC-K-SVM was trained on three classes.  

 

Fig. 2. Shown is a toy example of OC-K-SVM. The circles represent the OC-SVM classifiers. 
For example, The 2th one-class SVM are trained on only the black squares-notice that in the 
OC-K-SVM, the classifier is better able to generalize as both the black triangles and diamonds 
generally fall outside the support of the 2th bounding circle. 

Note that, unlike the other multi-class SVM, an OC-K-SVM is trained on data 
from k classes by computing k bounding hyperspheres. We describe below the details 
behind the construction of such OC-K-SVM. 

Given nm training data { }m
n

m
m

xx ,...,1  for the mth class, d
i Rx ∈ , i=1,…,nm where 

},...,1{ km ∈  is the class of m
ix , the OC-K-SVM solves the follows problems: 
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where mR and mc  are the radius and center of the mth hypersphere, )1,0(∈mν  is a 

parameterized constant that controls the fraction of training data that fall outside of 

the mth hypersphere, the training data m
ix  are mapped to a higher dimensional space 

by the function φ  and m
iξ s are the “slack variables”.  

To determine mc and mR , the quadratic programming problem of Equations (3) are 

transformed into their dual form:  
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Where m
iα s are Lagrange multipliers. Standard techniques from quadratic 

programming can be used to solve for the unknown Lagrange multipliers. The centers 
of the hyperspheres are then given by:  
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Similar to the above, 2R is computed from such points, ix  with )(10 mm
m
i n να << . 

Any such data point my that lies on the surface of the mth optimal hypersphere 

satisfies the following: 

.,..,..,1,)(
22 kmcyR mmm =−= φ                                   (10) 

Substituting the solution of Equation (9) into the above yields a solution for the 
hypersphere radius: 
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After solving (3), there are k decision functions: 

.,..,..,1,)()(
22 kmcxRxf mmm =−−= φ                       (12) 

Here we can say x  is the class which has largest value of the decision function: 

( ).)(maxarg
22

,...,1 mmkm cxR −−= φ                                           (13) 

However, there are k hyperspheres with k radiuses and k centers, which makes large 
errors. So we redefine the decision function: 
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Substituting the solutions of Equation (9) and (11) into the above decision function 
(15) yields the decision function: 
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If an appropriate kernel function is introduced, the re-formulated objective function 
takes the form: 
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Then the class of point x  is determined by the largest value of the decision function: 
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Note that the idea is similar to the one-vs.-all approach. The one-vs.-all approach 
also constructs k one-class classifiers. The mth classifier constructs a hyperplane 
between one class and the k-1 other classes. However, for each classifier, the OC-
SVM is trained on data from only one class by computing a bounding hypersphere (in 
the projected high-dimensional space) that encompasses as much of the training data 
as possible, while minimizing its volume.  



682 X.-Y. Yang et al. 

The value )(1 mmnν  gives the upper boundary for the parameters m
iα (see equation 

(8)) where },...,1{ km ∈ . Similar to the statements in [12], the following statements 
hold: 

i. mν is an upper bound on the fraction of outliers, that is, training point outside 

the mth estimated region. 
ii. mν is lower bound on the fraction of support vectors. 

iii. Suppose the data { }
mnxx ,...,1  were generated independently from a 

distribution )(xmΡ , which does not contain discrete components. Suppose, moreover, 

that the kernel is analytic and non-constant. With probability 1, asymptotically, mν  

equals both the fraction of SVs and fraction of outliers. 

4   Numerical Experiments 

In this section we tested the proposed method on the benchmark data sets selected 
from the UCI data repository [14] and Statlog data collection. We scaled all the data 
to rage [-1, 1]. Table 1 summarizes the data sets used. Note that for problems glass 
and satimage, there is one missing class. That is, in the original application there is 
one more class but in the data set no examples are with this class. 

Table 1. Benchmark datasets used for testing 

Problem Training 
data 

testing data class attributes 

Iris 150 0 3 4 
Wine 178 0 3 13 
glass 214 0 6 13 
Segment 2310 0 7 19 
Satimage 4435 2000 6 36 
letter 15000 5000 26 16 
shuttle 43500 14500 7 9 

The most important criterion for evaluating the performance of this method is its 
accuracy rate. As a comparative approach, we also cite the result of comparing five 
methods which presents on [9] In order to reduce the search space of parameters, 
practically, we set parameters νννν ==== m...21  for OC-K-SVM. We only trained the 

classifiers using the Radial Basis Function (RBF) kernel )exp(),( jiji xxxxk −−= γ  

with { }323 2...22 ，，，

－－=γ   and { }2.0,15.0,1.0,05.0,01.0＝ν , where γ  is the width 
parameter of RBF kernel andν is the penalty parameter. We use similar stopping criteria 
for our method. For each problem we stop the optimization algorithm if the KKT violation 
is less than 10-3. We use two criteria to estimate the generalized accuracy. For data sets 
satimage, letter and shuttle where both training and testing sets are available, for each pair 
of ( )νγ， , the performance is measured by training the 80% of training set and testing 
the other 20% of the training set. Then we train the whole training set using the pair of 
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( )νγ，  that achieves the best validation rate and predict the test set. For the other four 
smaller datasets where test data may not be available, we simply conduct 5-fold cross-
validation on the whole training data and report the best cross-validation rate. 

We report best testing rate, training time, testing time and number of support 
vectors in Table 2. These experiments were carried out using LIBSVM [15] on Intel 
Pentium Ⅳ 2.00GHz PC with 256M RAM. However, LIBSVM did not provide one-
class SVM algorithm based on hypersphere. We modified the program to output the 
radiuses and the value of decision function defined in our OC-K-SVM. 

Table 2. The result of the numerical experiment. Measured: best rate, training time, testing 
time, and number of support vectors 

problem rate training time testing time number of SVs 

iris 90.67 0.0156 --- 119 
wine 54.49 0.0156 --- 45 
glass 71.03 0.0156 --- 129 

segment 98.57 0.0781 --- 672 
satimage 90.26 0.4063 4.35 949 
Letter 90.00 0.5600 43.09 3584 
shuttle 99.08 2.1820 7.37 1352 

It can be observed that, for large problem, OC-K-SVM has a good performance. 
Comparing to earlier results listed in [9], the accuracy obtained by OC-K-SVM is 
competitive. Specifically, for the “segment” set, OC-K-SVM outperforms the others. 
For “shuttle” set, OC-K-SVM shows a similar performance to all the others. 
Unfortunately, we note that for smaller problems, the accuracy rate of the OC-K-
SVM is lower than all the others. This is because one-class SVM is proposed in [11] 
as the data domain description problem. If the number of the objects is too small, it is 
likely that the data domain description has poor performance. 

For the training time, our method is the best. This is due to that we only need to 
train k classifiers, each problem is smallest (only data from one class). Although one-
vs.-one has to train as many as 2)1( −kk  classifiers, as each problem is smaller, the 

total training time is still less. 
Regarding the testing time, the experience in [9] show that in general the testing 

time is still dominated by the kernel evaluations and is proportional to the number of 
support vectors. We also observe that among these methods, OC-K-SVM is really 
faster on the testing time. 

We then discuss the number of support vectors. We can see that for larger 
problems, the methods from [6], [7] returns fewer support vectors than all three 
binary-based approaches. On the other hand, we cannot draw any conclusions about 
the OC-K-SVM method by us. Sometime it needs very few support vectors but 
sometimes the number is huge. 

Finally we would like to draw some remarks about the implementation of our 
method. As can be seen in the Table 2, for the larger problems, the OC-K-SVM has 
smallest training and testing time. Moreover, the resulting accuracy is also acceptable. 
Therefore, if the training and testing time is very important, this method can be an 
option. 
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5   Conclusion and Future Work 

In this paper, we propose a new algorithm, OC-K-SVM, for the multi-class 
classification based on one-class classification. This procedure has the advantage of 
providing solutions that are as good as the previously proposed schemes or better with 
a decrease in the training time. We have confirmed the established theoretical results 
and good behavior of algorithm through experiments on benchmark data sets. 

It is worthwhile to investigate the proposed kernel with other efficient algorithms 
which can solve the one-class problems, e.g. The Nearest Point Algorithm or 
Successive Over-relaxation (SOR) algorithm. Future research subjects include more 
comprehensive testing of the algorithm and application to real-world problem. 
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