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Abstract

We present an adaptive multi-lateral filter for real-time

low-resolution depth map enhancement. Despite the great

advantages of Time-of-Flight cameras in 3-D sensing, there

are two main drawbacks that restricts their use in a wide

range of applications; namely, their fairly low spatial reso-

lution, compared to other 3-D sensing systems, and the high

noise level within the depth measurements. We therefore

propose a new data fusion method based upon a bilateral

filter. The proposed filter is an extension the pixel weighted

average strategy for depth sensor data fusion. It includes

a new factor that allows to adaptively consider 2-D data or

3-D data as guidance information. Consequently, unwanted

artefacts such as texture copying get almost entirely elimi-

nated, outperforming alternative depth enhancement filters.

In addition, our algorithm can be effectively and efficiently

implemented for real-time applications.

1. Introduction

Time-of-Flight cameras are a relatively new 3-D sens-

ing sensors that promise to be an alternative to other 3-D

sensing systems such as stereo vision systems, laser scan-

ners or structured light. They present several advantages

such as simultaneously providing intensity and distance in-

formation for every pixel at a high frame rate. Moreover,

they are compact, robust to illumination changes and of low

weight. Although ToF cameras cannot yet attain the resolu-

tion and precision of alternative 3-D sensing systems, their

distinctive features make them suitable for many applica-

tions where not very precise but fast 3-D image data acqui-

sition is needed, such as coarse 3-D reconstruction, obsta-

cle avoidance, human tracking and pose estimation among

others [4, 8]. Indeed, in applications where the limited res-

olution of a ToF camera is critical, it is complemented with

other sensors, usually colour cameras [5]. For this reason,

data fusion is a very promising strategy to overcome ToF
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drawbacks [1, 3, 6, 7, 9, 17, 19]. Indeed, current research

efforts in ToF and 2-D data fusion deliver dense depth maps

at near real-time frame rates, outperforming, in some cases,

alternative 3-D sensing systems.

In this paper, we propose an adaptive data fusion method

for depth enhancement. Indeed, we extend our previous

multi-lateral filter based upon a bilateral filter, namely, the

pixel weighted average strategy (PWAS), recently proposed

in [6]. The PWAS filter copes well with inaccurate edges

as it includes a new factor that explicitly accounts for the

unreliability of the depth measurement along the edges. Al-

though this filter outperforms alternative data fusion meth-

ods for depth enhancement, some limitations are yet to be

improved, such as the artefacts due to texture copying. We

therefore propose an extension of the PWAS filter and de-

fine a new adaptive filter. Our contribution consists in con-

sidering not only the 2-D information, but also the depth

measurements when filtering depth measurements describ-

ing a smooth geometry. This combination will allow to sig-

nificantly reduce the noise level in depth measurements and

to almost entirely eliminate unwanted artefacts. Moreover,

in order to ensure that this filter maintains a high compu-

tational efficiency for real-time applications, we propose to

adopt the fast bilateral filter implementation proposed by

Yang et al. [16].

The outline of this paper is as follows: In Section 2, we

cover state-of-the-art techniques in low-level data fusion for

low-resolution depth map enhancement. In Section 3, we

present our new adaptive filter, and propose, in Section 4,

its implementation for a real-time data fusion. In Section 5,

we compare and quantify our filter with alternative depth

enhancement methods. Finally, in Section 6, we give our

conclusions.

2. Related Work and Background

When the low-resolution provided by ToF cameras re-

stricts their use in certain applications, the combination with

colour cameras is a valid approach to enhance and improve

the ToF data. Data fusion exploits the advantages of each

of the cameras in the hybrid ToF multi-camera rig avoiding

their individual drawbacks. We talk about low-level data



fusion in contrast to higher fusion levels in which the fu-

sion deals with post-processed data (feature or decision fu-

sion) [11]. Over the last years, there have been some at-

tempts for data fusion. The application of Markov Random

Fields (MRFs) to the problem of enhancing ToF data by

considering both ToF and 2-D data was first presented by

Diebel et al. [3], and extended by Gloud et al. [7]. Despite

their promising results, both methods are not suitable if real-

time is required. To that end, more recent sensor fusion ap-

proaches based upon a bilateral filter, an edge-preserving

image filter [14], enables a real-time data fusion. This was

achieved by adapting recent implementation techniques that

accelerate the bilateral filtering process [12, 13, 15, 16].

Kopf et al. presented the Joint Bilateral Upsampling (JBU)

filter [9], a modification of the bilateral filter that consid-

ers two different data sources within the kernel of the filter.

This way, they upsample the downsampled data for image

analysis and enhancement tasks, such as tone mapping, to

the full resolution input image. This idea is the basis of our

approach as it also applies for depth map enhancement as

further investigated by Crabb et al. [2] for real-time matting.

The JBU filter has a spatial weighing term fS(·) based on

the pixel position, and a range weighing term fI(·) based on

the 2-D data. Thus, this filter adjusts the edges in the low-

resolution depth map R to the edges in the 2-D guidance

image I as follows:

J1(p) =

∑

q∈N(p) fS
(

p,q)fI(I(p), I(q)
)

R(q)
∑

q∈N(p) fS(p,q)fI
(

I(p), I(q)
) , (1)

where N(p) is the neighbourhood at the pixel indexed by

the vector p = (i, j)T , with i and j indicating the row, re-

spectively column of the pixel. The weighing terms fS(·)
and fI(·) are generally taken to be Gaussian functions with

variances σS and σI, respectively. The resulting filtered

image J1 is an enhanced version of R, that presents less

discontinuities, and a reduced noise level. Nevertheless,

according to the bilateral filter principle, the fundamental

heuristic assumptions about the relationship between depth

and intensity data may lead to erroneous copying of texture

into actually smooth geometries on the depth map. Further-

more, a second unwanted artefact known as edge blurring

appears along depth edges that have no corresponding edge

in the 2-D image, i.e., in situations where the objects on ei-

ther side of a depth discontinuity have similar colour. Chan

et al. proposed in [1] the so-called Noise Aware Filter for

Depth Upsampling (NAFDU), an extension of the JBU fil-

ter that prevents artefacts in those areas where JBU is likely

to cause erroneous texture copy. Specifically, the NAFDU

appraoch makes the filter behave like the JBU filter except

in the areas that are geometrically smooth but heavily con-

taminated with random noise in the distance measurements.

In that case, the filter behaves like a standard bilateral filter,

i.e., analysing both spatial and range domains on the same

depth map R without considering the guidance image infor-

mation. The crux is to decide when the filter has to switch

from one case to the other, which for NAFDU needs to be

manually tuned.

More recently, we proposed the PWAS filter [6], an al-

ternative extension to the JBU filter that copes well with

inaccurate edges as it includes an additional factor Q(·)
to the kernels in (1), named credibility map, and defined

as a weighted gradient of the low-resolution depth map R,

Q(q) = fQ(|∇R(q)|), and fQ(·) being a weighing func-

tion. Due to the low spatial resolution of ToF cameras,

there are pixels that cover foreground and background at

the same time. Thus, distance measurements at depth edges

may be inaccurate or erroneous. This factor Q(·) explic-

itly accounts for these pixels. In a nutshell, the credibility

map boundaries define in which areas the distance measure-

ments are unreliable and thus adjusted according to the 2-D

guidance image. The PWAS filter takes the form of:

J2(p) =

∑

q∈N(p) fS(p,q)fI
(

I(p), I(q)
)

Q(q)R(q)
∑

q∈N(p) fS(p,q)fI
(

I(p), I(q)
)

Q(q)
.

(2)

Unwanted artefacts such as blurring of depth edges with no

corresponding edge in the guidance image may still occur,

but are significantly reduced compared to the JBU filter.

3. Proposed depth enhancement filter

Although the PWAS filter outperforms alternative data

fusion techniques for depth enhancement as demonstrated

in [6], the assumption of only considering the 2-D guidance

image within the range term of the kernel in (2) may en-

tail to texture copying in regions that are actually geomet-

rically smooth. Instead, one should directly consider the

depth map measurements as, in that situations they usually

are reliable. Thus, we define two separate normalized ker-

nels with each one operating on a different data source. The

decision of which kernel the filter has to consider is auto-

matically given by the credibility weight of the pixel to be

filtered. Therefore, the main benefit of our assumption is the

increase of the depth measurement accuracy within smooth

regions. The proposed filter takes the form of:

J4(p) =
(

1−Q(p)
)

· J2(p) +Q(p) · J3(p), (3)

where J3(p) is the filtered value at pixel p given by a

PWAS filtering considering only the depth information from

R, i.e.,

J3(p) =

∑

q∈N(p) fS(p,q)fR
(

R(p),R(q)
)

Q(q)R(q)
∑

q∈N(p) fS(p,q)fR
(

R(p),R(q)
)

Q(q)
.

(4)

Similarly to [6], we choose the weighting functions to be

Gaussian functions with variances σS, σI, σR and, σQ, re-

spectively. We set the σS to the scale factor between the



low-resolution depth map and the guidance image. σI and

σR are set to the mean of the gradient of images I and R,

respectively. The value of σQ corresponds to the mean of

the noise level in the depth map measurements.

4. Implementation

In order to ensure that our filter maintains a high com-

putational efficiency for real-time applications, we adopted

the bilateral filter implementation proposed in [16], where

Yang et al compared their real-time bilateral filtering against

state-of-the-art methods [12, 13] outperforming for accu-

racy, speed and memory consumption. Thus, we have

adapted this method to the previously presented filter by

defining four mappings: EI(p)(·) and F I(p)(·) for a fixed

value of the 2-D image I at the pixel p and GR(p)(·) and

HR(p)(·) for a fixed value of the depth map R at the pixel

p, such that:

EI(p) : q 7−→ fI
(

I(q), I(p)
)

·Q(q)·R(q),

F I(p) : q 7−→ fI
(

I(q), I(p)
)

·Q(q),

GR(p) : q 7−→ fR
(

R(q),R(p)
)

·Q(q)·R(q),

HR(p) : q 7−→ fR
(

R(q),R(p)
)

·Q(q). (5)

We then may rewrite (3) as follows:

J4(p) =
(

1−Q(p)
)

∑

q∈N(p)

[

fS(p,q)·E
I(p)(q)

]

∑

q∈N(p)

[

fS(p,q)·F I(p)(q)
] +

Q(p)

∑

q∈N(p)

[

fS(p,q)·G
R(p)(q)

]

∑

q∈N(p)

[

fS(p,q)·HR(p)(q)
] . (6)

We note that fS(p,q) is a function of the difference (p−q).
We may hence write (6) as:

J4(p)=
(

1−Q(p)
)

(

fS∗E
I(p)

)

(p)
(

fS∗F I(p)
)

(p)
+Q(p)

(

fS∗G
R(p)

)

(p)
(

fS∗HR(p)
)

(p)
,

(7)

where ∗ denotes the convolution between functions. In ad-

dition and according to Paris et al. [12], the sampling of

the data to be filtered does not introduce significant errors.

In contrast, that ensures a good memory and speed perfor-

mances. In [12], the authors present a study done on a set

of images considering different σS and σI values as well

as several sampling rates (sS, sI). They end with a consis-

tent approximation when using a sampling rate proportional

to the Gaussian bandwidth. The reformulation of the filter

in (7) using two convolutions together with a sampling of

the data to be filtered enable its implementation to perform

in real-time, as we present in Section 5.3.

5. Experimental Results

In the following we analyse three main aspects of our

depth enhancement filter. We first quantify our method

against alternative filtering solutions. To that end, we con-

sider our own recorded sequence as well as various scenes

from the Middelbury dataset1. Then, we check the filter

response against noise and we end with a runtime analysis

using the filter implementation proposed in Section 4.

5.1. Quantitative comparison

We start the assessment of our method with a qualitative

comparison against the JBU and the PWAS filters employ-

ing real data. The test rig we have used comprises a 3D

MLI Sensor
TM

from IEE S.A. 2 and a Flea R©2 video camera

from Point Grey
TM 3. Both sensors are coupled with a nar-

row baseline of 30 mm. Also, they are calibrated for a per-

fect data alignment and frame-synchronised. Whereas the

Flea R©2 video camera provides (648×488) pixels, the 3D

MLI Sensor
TM

provides a lower resolution of (56×61) pix-

els. Figure 1 shows the final depth map for two real scenar-

ios in addition to the input data to be filtered, i.e., the high-

resolution 2-D image, the low-resolution depth map and the

credibility map. First, one recognizes that our adaptive filter

enhances the low-resolution depth maps from (56×61) pix-

els to the VGA-resolution of the coupled 2-D image. Also,

the noise level has been greatly reduced. From the credi-

bility map, depth edges weighted with a lower value, i.e.,

0, are accurately adjusted to the ones in the guidance im-

age. Hence, resolving details like the fingers of the per-

son in Figures 1(d), 1(h), that are not resolved in the raw

depth map. Figure 2 compares a detailed region of our en-

hanced depth maps with the ones given by the JBU and the

PWAS filters. In the first example one recognizes the edge

blurring within the contour of the hand when filtering with

JBU, which is drastically reduced for both the PWAS and

the proposed filter. Although PWAS performance is not im-

proved when adjusting depth edges, depth accuracy for pix-

els with a high credibility weight is increased by maintain-

ing smooth regions. Figure 2 shows an example where the

black belt of the person has the same (black) colour as the

background. Contrary to the JBU and PWAS responses, our

adaptive filter correctly addresses that situation, as shown in

Figure 2(f).

In order to quantify our method against the alternative

filtering solutions, we employ the Teddy, Art, Books and,

Moebius scenes from the Middlebury dataset. Each scene

contains an intensity image and its corresponding dispar-

ity map, from which we have generated a depth map as a

ground truth using the also provided system specifications.

1Middlebury Stereo Dataset, http://vision.middlebury.edu/stereo/data
2IEE S.A., 3D MLI Sensor

TM
, http://www.iee.lu

3Point Grey
TM

, Flea R©2, http://www.ptgrey.com/products/flea2/



(a) 2-D guidance image (b) Low-resolution depth map (c) Credibility map (d) Enhanced depth map

(e) 2-D guidance image (f) Low-resolution depth map (g) Credibility map (h) Enhanced depth map

Figure 1. Depth map enhancement on our own recording sequences.

(a) JBU (b) PWAS (c) Our filter

(d) JBU (e) PWAS (f) Our filter

Figure 2. Visual comparison of enhanced depth maps using differ-

ent depth enhancement filters.

We simulate the low-resolution depth map to be enhanced

by downsampling (at different sampling rates) the ground

truth depth map. Figure 3 shows an example of the Teddy

and the Art scenes where the ground truth depth maps were

downsampled by a factor of nine. As also occurs in the real

data examples, our filter enhances the downsampled depth

map to the intensity image resolution. Figure 4 shows a

zoomed area where we can observe the same differences

between the different filters applied on the real data exam-

ples shown in Figure 2. The JBU filter shows a strong edge

blurring where the grey image contrast is low, e.g., around

the teddy’s ears, marked as red rectangles in Figure 4(c). In

addition to strongly reducing this artefact, our adaptive fil-

ter also removes the texture copying effect inside the teddy’s

head (see the green marked rectangle in Figure 4(c)), which

remains in both JBU and PWAS final depth maps. Figure 5

shows an example of the limitations of our filter. This scene

contains really small objects (in the regions indicated by red

rectangles in 5(c)) that are tackled as outliers. This occurs

because the credibility map gives a low weight to these ob-

jects and consequently their value is replaced by the neigh-

bourhood pixel values. Exactly the same occurs when fil-

tering using PWAS. However, on the larger surfaces in the

scene (see areas inside the green rectangles in 5(c)), the re-

sulting depth values of our filter are much more accurate

than those of JBU and thus, on average, a better perfor-

mance can be expected.

Although the root mean square error (RMSE) is a

frequently-used measure to quantify the visibility of errors

between a treated image and a reference image, we use an

alternative complementary framework for quality assess-

ment based on the degradation of structural information,

the Structural SIMilarity (SSIM) Index [18]. Table 1 re-

ports the SSIM measure that quantifies our method against

alternative depth enhancement solutions. We can observe

that under global error measure, our filter performs at least

as well as the PWAS filter. The only case where our fil-

ter is not outperforming the JBU is in the Art scene with a

downsampling rate of 3. This occurs due to the suppressed

small details in the scene as discussed above. For higher

downsampling rates, the performance is, however, superior

to JBU.

5.2. Robustness to noise

As shown in Figures 1(b), 1(f), ToF data is generally af-

fected by random noise. We thus want to quantify how our

filter behaves against different noise levels. Due to the ac-

tive illumination of ToF cameras, the noise level increases

according to the measured distance. Therefore we simulate

this behaviour by adding Gaussian noise with a variance lin-

early dependent on the distance measurement [10]. We used

the Teddy scene downsampled by a factor of 5 and with a

noise of ±100mm at the maximum distance (8976 mm).

The results in the graph from Figure 6 were obtained by a

Monte Carlo simulation over 100 times, which gave us an



(a) 2-D guidance image (b) Downsampled (9x) depth map (c) Credibility map (d) Enhanced depth map

(e) 2-D guidance image (f) Downsampled (9x) depth map (g) Credibility map (h) Enhanced depth map

Figure 3. Depth map enhancement employing the Teddy and the Art scenes, 1st and 2
nd rows respectively.

(a) Ground truth (b) Downsampled (9x) (c) Intensity image

(d) JBU output, SSIM:

62.62

(e) PWAS output,

SSIM: 69.14

(f) Our output, SSIM:

69.95

Figure 4. Visual comparison employing the Teddy scene.

(a) Ground truth (b) Downsampled (9x) (c) Intensity image

(d) JBU output, SSIM:

44.01

(e) PWAS output,

SSIM: 49.95

(f) Our output, SSIM:

50.13

Figure 5. Visual comparison employing the Art scene.

accuracy of ±1.2× 10−3, ±2.2× 10−4, and ±2.2× 10−4

for the JBU, PWAS, and our filter, respectively. Within in-

dividual executions only the last digit varies.

Table 1. Quantitative comparison using the SSIM measure (100

corresponds to a perfect matching with the ground truth).

Downsampled JBU PWAS Our method

3x 97.65 97.71 97.81

Teddy 5x 96.29 96.80 96.90

9x 93.47 94.57 94.79

3x 96.57 96.65 96.71

Moebius 5x 94.67 94.68 94.75

9x 90.75 90.96 91.45

3x 96.89 97.44 97.46

Books 5x 95.59 96.11 96.13

9x 92.51 93.01 93.59

3x 92.96 91.52 91.59

Art 5x 88.42 88.07 88.21

9x 81.09 83.28 83.42

Figure 6. Filter responses against to Gaussian noise.

5.3. Runtime analysis

We next present a runtime analysis to validate that the

implementation proposed in Section 4 enables for real-time

applications. We ran the tests to estimate the time consump-

tion on an Intel Core 2 Solo processor SU3500 (1.4 GHz,

800 MHz FSB) with an integrated graphic card Intel GMA

4500MHD. The filter was implemented in C language and



the tests have been performed on our own recorded scenes,

enhancing from (56×61) pixels to VGA-resolution. Table 2

reports the seconds per filtered frame calculated over 1000

iterations. Also, we have sampled the input data by a fac-

tor of 2x, 4x, 8x and, 16x. With the latter sampling factor,

the filtering process only takes 78 ms per frame. In addi-

tion, we have quantified the corresponding induced error to

each sampling rate. Table 3 reports the SSIM measure con-

sidering the non downsampled case as a reference, and the

final depth maps for each sampling rate. We notice that a

sampling factor of 8x or 16x drastically reduces the time

consumption without inducing a significant error in the fi-

nal depth map. As a consequence, data sampling enables a

real-time depth enhancement despite being restricted by the

ToF camera frame rate of 11fps.

Table 2. Runtime analysis for the tested input data sampling rates

(units are in seconds; average over 1000 iterations).

Sampling JBU PWAS Our method

1x 1.88 1.89 13.59

2x 0.49 0.50 3.17

4x 0.13 0.13 0.65

8x 0.06 0.06 0.18

16x 0.05 0.05 0.08

Table 3. SSIM measure depending on the input data sampling.

Sampling JBU PWAS Our method

2x 95.78 99.71 99.85

4x 95.46 99.51 99.65

8x 94.89 98.80 98.86

16x 92.25 95.11 95.17

6. Conclusion

In this paper, we have presented a new multi-lateral filter

for low-level data fusion in real-time. The method enhances

the low-resolution depth maps delivered by common ToF

cameras up to the image resolution delivered by a coupled

2-D video camera in the hybrid ToF multi-camera rig. The

generated dense depth maps present more accurate mea-

surements where the depth discontinuities are well defined

and adjusted to the 2-D guidance image. We increase the

depth accuracy in such areas that are geometrically smooth,

which are determined by the credibility map, adjusting the

right weights within the filtering process. As a consequence

of being based upon a bilateral filter, the filtered depth mea-

surements are smoothed. Therefore, the global noise level

is significantly reduced. The experimental results show that

our filter outperforms previous fusion techniques, deliver-

ing better results even in the case where depth edges have

no corresponding 2-D edges in the guidance image. In addi-

tion, we have proposed a fast implementation inspired from

the work of Yang et al. [16] and following the recommen-

dations of Paris et al. [12] that enables for real-time appli-

cations.
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