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Abstract: The traditional multi-level grid multiple-relaxation-time lattice Boltzmann method (MRT-LBM)
requires interpolation calculations in time and space. It is a complex and computationally intensive
process. By using the buffer technique, this paper proposes a new multi-level grid MRT-LBM which
requires only spatial interpolation calculations. The proposed method uses a center point format
to store multi-level grid information. The grid type determination in the flow field calculation
domain is done using the axis aligned bounding box (AABB) triangle overlap test. According to the
calculation characteristics of MRT-LBM, the buffer grid is proposed for the first time at the interface of
different levels of grids, which is used to remove the temporal interpolation calculation and simplify
the spatial interpolation calculation. The corresponding multi-level grid MRT-LBM algorithm is
also presented for two-dimensional and three-dimensional flow field calculation problems. For the
two-dimensional problem of flow around a circular cylinder, the simulation results show that a
four-level grid MRT-LBM proposed in this paper can accurately obtain the aerodynamic coefficients
and Strouhal number at different Reynolds numbers, and it has about 1/9 of the total number of grids
as a single-level grid MRT-LBM and is 6.76 times faster. For the three-dimensional flow calculation
problem, the numerical experiments of flow past a sphere are simulated to verify the numerical
precision of the presented method at Reynolds numbers = 100, 200, 250, 300, and 1000. With the
streamlines and velocity contours, it is demonstrated that the multi-level grid MRT-LBM can be
calculated accurately even at the interface of different size grids.

Keywords: multiple-relaxation-time lattice Boltzmann method; multi-level; buffer technique; spatial
interpolation

MSC: 76M25

1. Introduction

Computational fluid dynamics (CFD) is an interdisciplinary discipline between math-
ematics, fluid dynamics, and computers that emerged with the development of computers.
CFD applies numerical methods to solve a set of partial differential equations that govern
fluid flow. Numerical simulations of complex problems in fluid mechanics facilitate the
qualitative and quantitative analysis of practical engineering problems. CFD is used in
a variety of industries, including aerospace [1], chemical engineering [2], energy [3], and
thermodynamics [4].

The lattice Boltzmann method (LBM) is an important numerical method in compu-
tational fluid dynamics. The LBM has many unique advantages, such as clear physical
interpretations, being suitable for parallel operation, simple boundary treatment, and easy
programming [5]. The Bhatnagar-Gross-Krook (BGK) model [6] is a widely used lattice
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Boltzmann model. It uses a single relaxation coefficient instead of a matrix pattern of
collision terms to regulate the velocity of particles near the equilibrium state, and this
approximate treatment greatly simplifies the solution of LBM. Due to its simplicity and
computational efficiency, the BGK model has been widely used in many fields, such as
engineering [7,8], physics [9,10], and mechanics [11,12]. The BGK model does not take into
account the anisotropy in the actual flow, and the calculation results may be numerically
unstable. The generalized LBM (GLBM) [13] uses multiple relaxation times in the collision
process and improves the numerical stability of the LBM by increasing the number of free
parameters. So, the GLBM is also called the multi-relaxation time lattice Boltzmann equa-
tion (MRT-LBM). MRT-LBM effectively solves the BGK model’s tendency to diverge in some
specific situations. Lallemand and Luo [14] have presented a detailed theoretical analysis of
the MRT-LBM model, and the results show that the MRT-LBM model has great advantages
in terms of physical principles, parameter selection, and numerical stability. In addition,
MRT-LBM transforms the collision process into moment space by linear transformation,
which has better numerical stability and accuracy, and has been used in acoustics [15],
thermodynamics [16,17], geology [18], and materials science [19].

The application of LBM in many fields is limited by the large computational effort and
non-adjustable computational accuracy due to the uniform grid used in LBM. However,
the LBM can be regarded as a special discrete form of the continuous Boltzmann equation,
which allows the use of a non-uniform grid. Moreover, there are usually some regions
with more drastic changes in the flow field simulation. In order to capture the flow details
in these regions, the LBM needs to refine all the computational grid regions, which will
increase the computational effort. Therefore, a local grid refinement method can be used
to deal with these regions. Filippova and Hänel [20] proposed a local grid refinement
BGK model (FH method). The FH method stores the grid information through a vertex
point format scheme, and the evolution between coarse and fine grids takes a bidirectional
coupling approach. Furthermore, the vertex point format has been widely adopted and
further investigated in several studies [21–23]. Two formats are usually available for grid
information storage: vertex point format and center point format, respectively. At the
interface of coarse and fine grids, the vertices of the coarse grids and the fine grids in the
vertex point format are overlapped. The method of storing grid information in center point
format was proposed by Rohde et al. [24], where the information of the coarse grids and
the fine grids are stored separately at the interface of coarse and fine grids. Based on the
center point format structure, the local grid refinement of LBM uses temporal and spatial
interpolation methods to ensure uniform information propagation between coarse and fine
grids, which improves the computational accuracy [25–27]. Guo et al. [28] introduced the
domain decomposition method into the LBM and constructed a domain decomposition-
based LBM (DDLBM). The DDLBM divides the flow field into several non-overlapping
sub-regions. Each sub-region is calculated using the conventional LBM, and the results of
the entire flow field are determined by coupling the calculations of these sub-regions. The
multi-block method divides the flow field into different regions and uses separate grids
of different granularity for each region. At the interface of the coarse and fine grids, the
continuity of physical quantities in different regions can be ensured by using temporal and
spatial interpolation processes [29–31]. Adaptive mesh refinement (AMR) can effectively
reduce the computational effort while decreasing the accuracy loss. A multi-level AMR
method was applied to LBM [32]. The method relies on temporal and spatial interpolation
and solving a constrained least squares problem to ensure conservation. Based on the octree
AMR method, Liu et al. [33] proposed an immersion boundary lattice Boltzmann method
(IB-LBM) solver. The solver exchanges the distribution functions between the coarse and
fine grids interface through a four-point Lagrangian interpolation method. The effectiveness
of the solver was verified by two-dimensional problems and three-dimensional problems.

The encryption of uniform grids using local grid refinement, domain decomposition,
and the AMR method can improve the efficiency of BGK calculations and accurately capture
the flow information in the drastically changing region, but it cannot change the problem
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of BGK model divergence in specific cases. Since MRT-LBM has better computational
stability, the design of MRT-LBM with uniform grid encryption can effectively reduce
the computational effort and guarantee the computational accuracy. An early example of
applying mesh refinement processing to MRT-LBM is studied by Peng et al. [34]. They used
three-sample interpolation and three-point Lagrangian formulation for temporal and spatial
interpolation at different levels of grid interfaces, respectively, and used a multi-block
method with a multi-relaxation time collision scheme to improve efficiency and accuracy.
Good results were obtained by numerical simulations of steady and unsteady flows in
cylinders and wings. Arora et al. [35] constructed a discontinuous grid block MRT-LBM
around a multi-block grid interface using a cubic spline interpolation scheme. By simulating
three standard moving boundary problems, the results showed that the discontinuous
grid block MRT-LBM has better stability than the BGK model at high Reynolds numbers.
Based on this study, the correlation method for all non-equilibrium moments across the
subdomain boundaries and a new method for handling buffer grids at the interface of
coarse and fine grids in the MRT-LBM are presented [36]. A simulation of lid-driven cavity
flow and Couette flow with moving cylinders was performed to validate the proposed
method. Recently, Wu et al. [37] proposed a continuous refinement scheme for MRT-
LBM, which is used to simulate rapidly changing wall regions of flow properties. Data
transfer between coarse and fine grids is performed using a cubic polynomial interpolation.
Turbulent channel flows at different Reynolds numbers are simulated, and the results show
that the proposed continuous refinement scheme is effective in predicting the turbulent
flow volumes.

The existing grid encryption processing methods [34–37] in the evolution of MRT-
LBM usually require temporal and spatial interpolation calculations at different levels
of the grid interface, and these temporal and spatial interpolation formulas are complex.
In order to simplify the complexity of temporal and spatial interpolation formulas and
reduce the computational effort. In this paper, we propose a multi-level grid MRT-LBM
algorithm that requires only spatial interpolation. By setting buffers to remove the temporal
interpolation step, this process effectively reduces the data transfer at different levels of the
grid interfaces and simplifies the computational complexity. Meanwhile, we give a new
spatial interpolation formula at different levels of the grid interfaces, which ensures the
conservation of physical quantities in the two-dimensional and three-dimensional cases.
In this paper, we also propose a grid generation technique applicable to the multi-level
grid MRT-LBM algorithm, including grid storage structure, grid type determination, and
multi-level grid generation, which makes the grid encryption of MRT-LBM more flexible.

The structure of this paper is as follows. In Section 2, the basic theory of MRT-LBM
is described, as well as the MRT collision model. The multi-level generation technique
suitable for MRT-LBM and the corresponding multi-level grid MRT-LBM evolution model
are given in Section 3. Numerical simulation and analysis are provided in Section 4. A
conclusion is presented in Section 5.

2. MRT-LBM

The MRT-LBM evolution equation [13] is:

fi(x + eiδt, t + δt)− fi(x, t) = Ωi (1)

where fi is the distribution function, x is the spatial position, e = (e1, . . . , em)
T is the discrete

velocity, i = 1, 2, . . . , m is the speed direction of the discrete velocity model, δt represents
the time step, t is the time, Ωi is collision item. The vector form of the distribution function
fi is f(x, t) = ( f1(x, t), f2(x, t) . . . fm(x, t))T . DnQm is the discrete velocity model. n and m
are denoted as the space dimension and discrete velocity numbers, respectively.
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The equilibrium distribution function f eq
i can be expressed as:

f eq
i = ωiρ

[
ei·u
c2

s
+

(ei·u)2

2c4
s
− u2

2c2
s
+ 1

]
, (2)

where ωi is the weight coefficient, cs is the lattice sound velocity, and ρ and u are the
macro-density and macro-velocity, respectively.

In the DnQm model, the value of the collision term Ωi is as follows:

Ωi = [Ω]i =
{
−M−1·S·M[f(x, t)− feq(x, t)]

}
i
, (3)

where M is the transformation matrix and S = diag(s1, s2, . . . , sm) is the non-negative
relaxation diagonal matrix.

The evolution Equation (1) consists of two parts:

Collision : fi
∗(x, t) = fi(x, t) + Ωi, (4)

Streaming : fi(x + eiδt, t + δt) = fi
∗(x, t), (5)

where fi
∗ represents the distribution function obtained after the collision.

After the streaming calculation, the macro-density ρ and macro-velocity u on the grids
need to be updated:

∑i fi = ρ,
∑i ei fi = ρu.

(6)

Here, take the D3Q19 model as an example. The 19 velocity values of the discrete
velocity ei are:

ei =


(0, 0, 0), i = 0
(±s, 0, 0), (0,±s, 0), (0, 0,±s), i = 1, . . . , 6
(±s,±s, 0), (±s, 0,±s), (0,±s,±s), i = 7, . . . , 18

where s = δx/δt. δx represents the grid spacing step.
The transformation matrix M can be expressed as follows:

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −1 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −4 −4 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
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The relaxation factor S is

S = diag
(
0, se, sε, 0, sq, 0, sq, 0, sq, sν, sπ , sν, sπ , sν, sν, sν, st, st, st

)
The kinematic viscosity ν and ς are defined as

ν = c2
s

(
1
sv
− 1

2

)
δt,

ς =
2c2

s
3

(
1
sv
− 1

2

)
δt,

the lattice sound velocity cs =
√

1/3.

3. Multi-Level Grid MRT-LBM

Based on the basic concept of MRT-LBM, this section gives the multi-level grid genera-
tion technique applicable to MRT-LBM, including grid storage structure, type judgment,
and a multi-level grid generation algorithm. Meanwhile, the evolutionary model of multi-
level grid MRT-LBM is re-analyzed by setting buffers at the intersection of different levels
of grids. Finally, we combine the multi-level grid generation technique with the MRT-LBM
evolution model and propose the multi-level grid MRT-LBM algorithm capable of handling
complex flows and complex geometries.

3.1. Multi-Level Grid Generation Technique

In this paper, the center point format is used as the storage format for multi-level grid
information; see Figure 1. The dot in the center of each grid in Figure 1 represents the
center point of that grid and is used to record the grid storage information. The blue dots
represent the coarse grid center points and the green dots represent the fine grid center
points. The bigger dots represent the larger size of the grid.
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In 2D and 3D multi-level grid, the center point format will generate a quadtree and
octree structure, respectively; see Figures 2 and 3.
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In a 2D multi-level grid, coarse grid point encryption will lead to four fine grid points.
The fine grid size is half of the coarse grid size. As a result, a quadtree structure is formed
for recording the 2D multi-level grid. Similarly, in a 3D multi-level grid, coarse grid
encryption will lead to eight grid points, which eventually form an octree structure for
recording the 3D multi-level grid. The quadtree or octree data structure facilitates the
implementation of subsequent multi-level grid generation techniques and the storage of
grid information. The multi-level grid MRT-LBM based on this data structure is also easier
to design and implement.

Based on the MRT-LBM evolution details and the storage format of the center point
grid, this paper designs a lattice point class to record the following information:

(I) The coordinates of the center point grid;
(II) Neighborhood number for grid points at the same size;
(III) Types of grid points;
(IV) Size of grid points;
(V) Level of grid points in a quadtree or octree structure;
(VI) Set the marker for grid point encryption. If the grid point is encrypted, the infor-

mation of the corresponding sub-grid (four or eight) is recorded;
(VII) If a parent grid point exists for the current grid point, the information of the parent

grid is recorded;
(VIII) If it is a boundary grid point, the distance information from the actual boundary to

the grid point is recorded.

Here, the grid point types can be divided into flow field points, boundary points,
and solid points; see Figure 4. The black line in Figure 4 is the curved boundary of the
geometry. The boundary grid points (yellow grid in Figure 4) are the interface of the grid
with the geometry. For the evolutionary calculation of MRT-LBM, the boundary grid points
additionally need to record the distance from the grid center point along the direction
of the discrete velocity model to the actual boundary. The solid grid points (brown grid
in Figure 4) are the grid points inside the geometry. Since the solid grid points are not
involved in the evolution calculation of MRT-LBM, the solid grid point information can
also not be recorded. The remaining type of grid points are the flow field grid points, i.e.,
the internal grid points of the flow field (blue grid in Figure 4).

Based on the design of the lattice point class, the following design solutions are
given for judgment on the types of 3D grid points. In the 3D case, we usually load the
surface mesh file (STL file) of the geometry. A STL file is made up of triangles, and each
triangle records its three vertices and normal. In the whole process for determining the
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grid point type, we can first determine whether the grid point intersects with the triangle
in space, i.e., the intersecting grid point is determined to be the type of boundary grid.
The Fast 3D AABB-triangle-box overlap testing method [38] is used to judge whether the
triangle intersects with the computational grid. By judging all computational grids, all
boundary grid points can be marked and stored in the lattice point class of the boundary
grid. Afterwards, by selecting one internal grid point of the geometry, we can directly
divide the unmarked grid into solid grid points or flow field grid points.

The multi-level grid generation technique is presented in detail below. First, the
enclosing box range and grid size for the flow field calculation are set. This enclosing box
is the initial grid. The size of the initial grid is chosen appropriately, which will affect the
quality of the adaptive grid and multi-level grid, and also the accuracy of the calculation of
the whole flow field. After that, the initial grid is generated by isometric division according
to the grid size. The initial grids generated in this way are cubic (3D) or square (2D) grids
and are stored in center point format. The Algorithm 1 for the initial grid generation is
shown as follows (for the 3D case):

Algorithm 1 Initial grid generation algorithm.

Input: the minimum coordinate point and the maximum coordinate point of the calculated region,
size of the initial grid (δx = δy = δz).
Output: flow field calculation region grid

1. Set the initial cube enclosing box based on the maximum and minimum coordinate points;
2. Uniformly divide the cube grids according to the initial grid size for the cube enclosing box;
3. The initial variable information in the lattice point class is stored in all cubic grids in the

order of x-direction, then y-direction, and then z-direction:

(a) The information of (I), (III), (IV), and (VIII) in the lattice point class can be obtained
by direct calculation;

(b) The information of (V), (VI), and (VII) in the lattice point class can be set to the
corresponding initial values since the grids have not been encrypted yet;

(c) The information of (II) in the lattice point class involves information about the
neighbors of the grid points. Since the grid is in a three-dimensional space, each grid
has 6 surface grid neighbors, 12 edge grid neighbors, and a grid with 8 vertex grid
neighbors. The label of the grid has been obtained during initialization, and the
6 surface grid neighbors of a certain grid can be found directly by the number. If the
grid is located at the boundary, there may not be a certain area grid neighbor, so the
area grid neighbors of the grid point to empty. Suppose the grid number is q, and
the number of grids divided on each coordinate axis is k. Then the upper, lower, left,
right, front, and back neighbor grids of the grid can be determined according to the
following grid numbers (when a neighbor of the grid does not exist, this indicates
that the grid is located at the boundary of the calculation area):

(1) upper neighbor grid number: q + 1, it does not exist when
((q + 1)mod k) = 0;

(2) lower neighbor grid number: q− 1, it does not exist when
((q− 1)mod k) = 0;

(3) left neighbor grid number: q− k, it does not exist when
0 ≤

(
q mod k2) ≤ k− 1 or q < k;

(4) right neighbor grid number: q + k it does not exist when
k2 − k ≤

(
q mod k2) ≤ k2 − 1 or q < k;

(5) front neighbor grid number: q + k2 it does not exist when i + k2 ≥ k3;
(6) back neighbor grid number: q− k2 it does not exist when q < k2.

The LBM uses a discrete velocity model with 15 or 19 directions in 3D space. Consid-
ering the space size of the storage, only six faces (see Figure 5) of neighbor information in
the lattice class are recorded here. Neighborhood information of other directions can be
quickly obtained from these six faces.
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In addition to specifying the calculation area of the entire flow field, it is often necessary
to formulate some areas to set smaller grids, as shown in Figure 6. At this time, on the
basis of the initial grid (the first level grid), the lattice of the second level grid area needs to
be refined and recorded in the lattice class. Following the generation of the second level
grid, the third level grid is generated using the similar process. And so on, until the grid
refinement of all specified calculation areas is completed. The solution of problems such as
boundary levels in flow calculations requires very fine grids near the geometry. Therefore,
in addition to meshing different areas, it is also necessary to further refine the boundary
surface of the geometry for complex geometry. Pushing a certain number of flow field grids
outward from the boundary grids is also refined. The grid refinement in this part is still
performed by using 1/2 the size of the surrounding grids, and multiple refinements can be
performed to meet the computational accuracy requirements. The specific multi-level grid
generation in 3D can be described as Algorithm 2.
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Algorithm 2 Multi-level grid generation algorithm.

Input: total number of grid levels: N, initial number of grid level Ni = 2, minimum and maximum
coordinate points of each grid level, size of each grid level (1/2 the size of the previous grid level),
the number of grid points to be encrypted by extrapolation from the boundary grid: M.
Output: flow field calculation region grid

1. Determine the Ni level grid range based on the maximum and minimum coordinate points
of the Ni level grid;

2. Encrypt the Ni-−1 level grid within the Ni level grid range according to the Ni level grid
size and the Ni−1 level grid lattice class in the 5th information: refine = 1, while recording 8
sub-grid information;

3. For the Ni level grid, the information in the lattice class is recorded in the Ni level cubic grid
in the order of x-direction, then y-direction, and then z-direction:

(a) The information of (I), (III), (IV), and (VIII) in the lattice point class can be obtained
by direct calculation;

(b) The information of (II) in the lattice class is calculated in the same way as in
Algorithm 1;

(c) The information of (V) and (VII) in the lattice point class is recorded separately for
each Ni level grid and the parent grid number according to the actual situation
of encryption;

(d) The information of (VI) in the lattice point class is set to the corresponding initial
value since the Ni level grids have not been encrypted yet.

4. If Ni < N, Ni = Ni + 1, repeat steps 1, 2, 3. Else, if Ni = N, execute step 6;
5. Encrypt the boundary grids and M grids outward from the boundary grids according to the

grid size equal to 1/2 of the current grid size;
6. Record the information in the lattice class in the N level cube grid obtained after the

encryption process of the boundary grids and M grids outward from the boundary grids:

(a) The information of (I), (III), (IV), and (VIII) in the lattice point class can be obtained
by direct calculation;

(b) The information of (II) in the lattice class is calculated in the same way as in
Algorithm 1;

(c) The information of (V) and (VIII) in the lattice point class is recorded separately for
each N level grid and the parent grid number according to the actual situation
of encryption;

(d) The information of (VI) in the lattice point class is set to the corresponding initial
value since the N level grids have not been encrypted yet.

3.2. Multi-Level Grid MRT-LBM Evolution Model

In this section, the evolution model of multi-level grid MRT-LBM is presented based
on the proposed multi-level grid generation technique. The discrete velocity model adopts
D2Q9 in 2D and D3Q19 in 3D, respectively. The MRT-LBM evolution process of multi-
level grid is actually the superposition of two-level grid evolution process. In order to
facilitate the presentation, we describe the two-level grid MRT-LBM evolution process in
2D case. The multi-level grid MRT-LBM evolution process in 3D case is similar. Here, the
two-level grids are marked as coarse and fine grids, represented by C and F, respectively.
The distribution function on the coarse grid is denoted as: f C

i , and the distribution function
on the fine grid is denoted as: f F

i . The corresponding MRT-LBM evolution equations are:
Coarse grid:

f ∗Ci = f C,eq
i +

[
−M−1·(I− SC

)
·M f C,neq]i. (7)

where I represents the identity matrix.
Fine grid:

f ∗Fi = f Ceq
i +

[
−M−1·(I− SC

)
·MfF,neq]i. (8)
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The size of the coarse grid is denoted as δC
x , the size of the fine grid is denoted as δF

x ,
and the ratio of the coarse and fine grid sizes is assumed to be r (r is an integer), so it can
be derived:

δF
t =

1
r

δC
t . (9)

To ensure the continuity of density and velocity at the interface of coarse grids and
fine grids, it is necessary to satisfy:

feq = fC,eq = fF,eq. (10)

According to the equal shear stresses at the coarse and fine meshes, it can be obtained:

MfC,neqSC

δC
t

=
MfF,neqSF

δF
t

. (11)

Combining Equations (7)–(11), the streaming equation between the coarse and fine
grid distribution functions can be computed:

f ∗Ci = f eq
i + r


(

I− SC
)

SF(
I− SF

)
SC

M
(̃

f
C − feq

)
i

, (12)

f ∗Fi = f eq
i +

1
r


(

I− SC
)

SF(
I− SF

)
SC

M
(̃

f
F − feq

)
i

, (13)

where f̃
C
=
(

f̃ C
1 , f̃ C

2 . . . f̃ C
m

)T
represents the distribution function that is spatially interpo-

lated from the fine grid to the coarse grid, f̃
F
=
(

f̃ F
1 , f̃ F

2 . . . f̃ F
m

)T
represents the distribution

function that is spatially interpolated from the coarse grid to the fine grid.
A schematic diagram of the interface of the coarse and fine grids is given in Figure 7.

The blue dots represent the coarse grids, the green dots represent the fine grids, and
the interface of the coarse and fine grids is in the dashed box. In the interface area,
the distribution function on the coarse grids need to be assigned to the fine grids by
interpolation format. Similarly, the distribution functions on the fine grid need to be
assigned to the coarse grid by means of a central interpolation format.
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The following is the detailed description of how to solve distribution functions f̃ C
i on coarse

grid and distribution functions f̃ F
i on fine grid in 2D and 3D cases by spatial interpolation.

(I) Spatial interpolation format of coarse and fine grids in 2D.

In Figure 8, Ci(i = 0, 1, . . . , 8) is the coarse grid and Fi(i = 0, 1, . . . , 3) is the fine grid.
The distribution function of the coarse grid C0 is obtained from the four fine grids F0, F1, F2,
and F3 through the center interpolation format:

f̃ C0
i =

f F0
i + f F1

i + f F2
i + f F3

i
4

, (14)

where i = 0, 1, . . . , 8 are the discrete velocity directions of the D2Q9.
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The distribution functions of the fine grids F0, F1, F2, and F3 are obtained by interpo-
lating the distribution functions on the nine coarse grids Ci(i = 0, 1, . . . , 8). The specific
format is as follows:

f̃ F0
i =

32 f C0
i + f C1

i + 11 f C2
i + 11 f C3

i + f C4
i + f C5

i + 6 f C6
i + f C7

i
64

, (15)

f̃ F1
i =

32 f C0
i + 11 f C1

i + 11 f C2
i + f C3

i + f C4
i + 6 f C5

i + f C6
i + f C8

i
64

, (16)

f̃ F2
i =

32 f C0
i + f C1

i + f C2
i + 11 f C3

i + 11 f C4
i + f C6

i + 6 f C7
i + f C8

i
64

, (17)

f̃ F3
i =

32 f C0
i + 11 f C1

i + f C2
i + f C3

i + 11 f C4
i + f C5

i + f C7
i + 6 f C8

i
64

, (18)

where i = 0, 1, . . . , 8 are the discrete velocity directions of the D2Q9 model.

(II) Spatial interpolation format of coarse and fine grids in 3D.

In Figure 9, the coarse grids are Ci, (i = 0, 2, . . . , 26), and Fi(i = 0, 1, . . . , 7) is the eight grid
points refined by the coarse grid point C0. The distribution function of the coarse grid C0 is
obtained from the eight grids Fi(i = 0, 1, . . . , 7) through the center interpolation format:

f̃ C0
i =

f F0
i + f F1

i + f F2
i + f F3

i + f F4
i + f F5

i + f F6
i + f F7

i
8

, (19)

where i = 0, 1, . . . , 18 are the discrete velocity directions of the D3Q19.
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The distribution functions of eight grids Fi(i = 0, 1, . . . , 7) are obtained by interpolating
the distribution functions on the 27 coarse grids Ci (i = 0, 1, 2, . . . , 26). The specific format
is as follows:

f̃ F0
i = 1

512

(
168 f C0

i + 6 f C1
i + 58 f C2

i + 58 f C3
i + 6 f C4

i + 6 f C5
i + 58 f C6

i + 7 f C7
i + 5 f C8

i + f C9
i + 29 f C10

i + f C11
i + 29 f C12

i +

5 f C13
i + 5 f C14

i + 5 f C15
i + 5 f C16

i + 29 f C17
i + f C18

i + f C19
i + 4 f C20

i + 4 f C21
i + f C22

i + 17 f C24
i + f C25

i + 4 f C26
i

)
,

(20)

f̃ F1
i = 1

512

(
168 f C0

i + 58 f C1
i + 6 f C2

i + 58 f C3
i + 6 f C4

i + 6 f C5
i + 58 f C6

i + 29 f C7
i + f C8

i + 5 f C9
i + 5 f C10

i + 5 f C11
i + 5 f C12

i +

29 f C13
i + f C14

i + 5 f C15
i + 5 f C16

i + 29 f C17
i + f C18

i + 4 f C19
i + f C20

i + 17 f C21
i + f C28

i + 4 f C24
i + 4 f C25

i + f C26
i

)
,

(21)

f̃ F2
i = 1

512

(
168 f C0

i + 6 f C1
i + 58 f C2

i + 6 f C3
i + 58 f C4

i + 6 f C5
i + 58 f C6

i + f C7
i + 29 f C8

i + 5 f C9
i + 5 f C10

i + f C11
i + 29 f C12

i +

5 f C13
i + 5 f C14

i + f C15
i + 29 f C16

i + 5 f C17
i + 5 f C18

i + 17 f C20
i + f C21

i + 4 f C22
i + f C23

i + 4 f C24
i + 4 f C25

i + f C26
i

)
,

(22)

f̃ F3
i = 1

512

(
168 f C0

i + 58 f C1
i + 6 f C2

i + 6 f C3
i + 58 f C4

i + 6 f C5
i + 58 f C6

i + 5 f C7
i + 5 f C8

i + 29 f C9
i + f C10

i + 5 f C11
i + 5 f C12

i +

29 f C13
i + f C14

i + f C15
i + 29 f C16

i + 5 f C17
i + 5 f C18

i + f C19
i + 4 f C20

i + 4 f C21
i + f C22

i + 4 f C23
i + f C24

i + 17 f C25
i

)
,

(23)
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f̃ F4
i = 1

512

(
168 f C0

i + 6 f C1
i + 58 f C2

i + 58 f C3
i + 6 f C4

i + 58 f C5
i + 6 f C6

i + 5 f C7
i + 5 f C8

i + f C9
i + 29 f C10

i + 5 f C11
i + 5 f C12

i +

f C13
i + 29 f C14

i + 29 f C15
i + f C16

i + 5 f C17
i + 5 f C18

i + 4 f C19
i + f C20

i + f C21
i + 4 f C22

i + f C23
i + 4 f C24

i + 17 f C26
i

)
,

(24)

f̃ F5
i = 1

512

(
168 f C0

i + 58 f C1
i + 6 f C2

i + 58 f C3
i + 6 f C4

i + 58 f C5
i + 6 f C6

i + 29 f C7
i + f C8

i + 5 f C9
i + 5 f C10

i + 29 f C11
i + f C12

i +

5 f C13
i + 5 f C14

i + 29 f C15
i + f C16

i + 5 f C17
i + 5 f C18

i + 17 f C19
i + 4 f C21

i + f C22
i + 4 f C23

i + f C24
i + f C25

i + 4 f C26
i

)
,

(25)

f̃ F6
i = 1

512

(
168 f C0

i + 6 f C1
i + 58 f C2

i + 6 f C3
i + 58 f C4

i + 58 f C5
i + 6 f C6

i + f C7
i + 29 f C8

i + 5 f C9
i + 5 f C10

i + 5 f C11
i + 5 f C12

i +

f C13
i + 29 f C14

i + 5 f C15
i + 5 f C16

i + f C17
i + 29 f C18

i + f C19
i + 4 f C20

i + 17 f C22
i + 4 f C23

i + f C24
i + f C25

i + 4 f C26
i

)
,

(26)

f̃ F7
i = 1

512

(
168 f C0

i + 58 f C1
i + 6 f C2

i + 6 f C3
i + 58 f C4

i + 58 f C5
i + 6 f C6

i + 5 f C7
i + 5 f C8

i + 29 f C9
i + f C10

i + 29 f C11
i + f C12

i +

5 f C13
i + 5 f C14

i + 5 f C15
i + 5 f C16

i + f C17
i + 29 f C18

i + 4 f C19
i + f C20

i + f C21
i + 4 f C22

i + 17 f C23
i + 4 f C25

i + f C26
i

)
,

(27)

where i = 0, 1, . . . , 18 are the discrete velocity directions of the D3Q19.

3.3. Multi-Level Grid MRT-LBM Algorithm

In this paper, a new multi-level grid MRT-LBM algorithm is constructed. The algorithm
adopts the setting of the buffer, which removes the temporal interpolation and simplifies the
data transfer on the interface of different size grids. It provides a convenient implementation
of the algorithm. Considering the 2D case (Figure 7), the following setting of the buffer is
introduced, as shown in Figure 10.
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Figure 10. Buffer area for coarse and fine grid.

The blue and green dots in Figure 10 are the center points of the coarse grids and the
fine grids, respectively. The grid points in the dotted lines are the grid points of the buffer.
The yellow dots are the center points of the coarse grids in the buffer and the red dots are
the center points of the fine grids in the buffer. In Figure 10, the grid points in the buffer
are recorded in two columns of coarse grid points (yellow) and four columns of fine grid
points (red) at the interface of coarse grids and fine grids.

Assuming one collision and streaming process of MRT-LBM on the coarse grid (tC = δt),
in order to ensure that the moments of the coarse and fine grids are the same at the time of
calculation, then the fine grid needs to perform r times collision and streaming process of
MRT-LBM before the moment value is tF= δt. Consider the case of r = 2; thus, the coarse
grid performs one collision and streaming process, and the fine grid needs to perform two
collision and streaming processes to make tC = tF.
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The following is a detailed description of the MRT-LBM calculation process for the
coarse and fine grids in the buffer. After the grid initialization is completed, the first collision
and streaming (tC = δt) is performed on the coarse grid by Equation (7). In Figure 10, the
values of the rightmost column in the buffer with coarse grids will be incorrect after the
collision and streaming process, because there are no coarse grids at the right side of the
column to support the calculation. Additionally, the values of the leftmost two columns in
the buffer with fine grids will be incorrect after performing twice collision and streaming
(tF = δt) by Equation (8), because there are no fine grids at the left side of the column. In
Figure 11, the result for column c1 of the coarse grid in the buffer is correct, while the result
for column c2 is incorrect. The results for columns d1 and d2 of the fine grid in the buffer
are incorrect, and the results for columns d3 and d4 are correct.
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After that, the correct distribution function values in column c2 of the coarse grid and
the correct distribution function values in columns f1 and f2 of the fine grid can be calculated
by spatial interpolation since the current coarse and fine grids are in the same time. The
specific data transfer schematic is shown in Figure 12. The yellow triangle in Figure 12
represents the distribution function values on the coarse grid points corresponding to the
fine grid region of the buffer calculated by the central interpolation Equation (14), and
then the correct distribution function values are transferred to the coarse grid distribution
function values represented by the yellow dots in column c2. In this way, the values of
coarse grid distribution function in columns c1 and c2 are the correct distribution function
values. Similarly, the red triangle in column c1 of the coarse grid in the buffer represents the
distribution function values corresponding to the fine grid calculated by the interpolation
Equations (15)–(18), which are then transferred to the fine grid distribution function values
represented by the red dots in columns d1 and d2. In this way, all the coarse and fine grids
are at time δt, and the distribution functions on all grid points are correct. After that, the
calculation of the flow field information can be performed, and then the next time step can
be started.

Based on the above analysis, setting the buffer can remove the temporal interpolation
calculation and effectively reduce the spatial interpolation calculation, and also reduce
the number of data transfers between the coarse and fine grid interfaces. In order to
clearly describe the evolution of the multi-level grid MRT-LBM, a schematic diagram of the
two-level grid MRT-LBM calculation is given in Figure 13.
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Figure 13. Schematic diagram of MRT-LBM calculation of two-level grid.

In Figure 13, “C&S” indicates the collision and streaming, “T” indicates the evolution
time, and step_max indicates the total number of “C&S” in the first level of the grid.
The red solid boxes indicate incorrect values, and the purple solid boxes indicate correct
values obtained by spatial interpolation. The downward arrows indicate the distribution
function values of the corresponding grid points on the fine grid obtained from the coarse
grid by spatial interpolation, and the upward arrows indicate the distribution function
values of the corresponding grid points on the coarse grid obtained from the fine grid by
spatial interpolation.
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According to the analysis of the two-level grid MRT-LBM calculation in Figure 13,
the computational process of the multi-level grid MRT-LBM proposed in this paper is
clear and easy to be implemented. Since the evolution process on each grid point is the
same, the multi-level grid MRT-LBM recursive evolution process is as follows, as shown in
Algorithm 3.

Algorithm 3 Multi-level grid MRT-LBM algorithm.

Input: The level of the grid is at: level L
Output: The results of evolution

1. Do step = 1, step_max
EvolutionStepofGrid (level L)
EndDo

2.
3.

4. Function EvolutionStepofGrid (level L)
5. Collision (L) //MRT-LBM collision process
6. If (L 6= last level)

7. EvolutionStepofGrid (L + 1);
//recursive call

EvolutionStepofGrid
8. end if

9. Streaming (L);
//MRT-LBM streaming

process
10. If (L = first level)

11. return;
//end function

EvolutionStepofGridPoint
12. end if
13. Collision (L) //MRT-LBM collision process
14. If (L 6= last level)

15. EvolutionStepofGrid (L + 1);
//recursive call

EvolutionStepofGrid
16. Endif

17. Streaming (L);
//MRT-LBM streaming

process

18. Interpolation (L, L + 1);
//transfer buffer data

between L and L+1
19. end

In Algorithm 3, all grids in the first level execute the recursive function Evolution-
StepofGrid() once to complete one time step from t to t + δt for all level grids. Until
step = step_max, the overall evolution of Multi-level MRT-LBM is finished. A similar cal-
culation of multi-level grid MRT-LBM for the 3D case can also be performed by setting the
buffer. The steps are the same as for the 2D case, the difference is the choice of the spatial
interpolation equations. The interpolation equations for the 3D calculation are given in
Equations (19)–(27).

3.4. Analysis of the Computational Complexity

The spatial interpolation equation proposed in this paper is shown in Equations (14)–(27).
The influence of surrounding points on the current grid points can be taken into account in
the two-dimensional and three-dimensional case, respectively. The application of linear
interpolation schemes has a high degree of localization compared to quadratic or cubic
interpolation [34,37].

The multi-level grid MRT-LBM algorithm based on spatial interpolation proposed
in this paper can also further improve the computational efficiency compared with the
conventional temporal and spatial interpolation algorithm. The computational complexity
analysis of the proposed algorithm at the intersection of different levels of the grid is
given below.
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For the convenience of description, we define some variables as follows. Tsp is the com-
putational amount of spatial interpolation on each grid. Tti is the computational amount
of temporal interpolation on each grid. Nbu f is the number of grids at the intersection of
different levels of grids (i.e., the number of buffer grids).

In the two-dimensional case, according to Figure 10, the computational volume of the
conventional temporal and spatial interpolation method can be expressed as follows:

Tcon = 5TspNbu f + 3Tti Nbu f (28)

The computational amount of the proposed method with spatial interpolation in this
paper can be expressed as follows:

Tnew = 5TspNbu f (29)

From the analysis of computational amount, the proposed method in this paper
removes the temporal interpolation at the intersection of multi-level grids and reduces the
computational amount. The ratio R of the computational volume of the proposed method
with spatial interpolation to that of the conventional temporal and spatial interpolation
method is as follows:

R =
Tnew

Tcon
=

5Tsp

5Tsp + 3Tti
(30)

Generally, the computational amount of spatial interpolation and temporal interpola-
tion is approximated, i.e., Tsp = Tti.The value of the ratio R is 62.5%.

The multi-level grid MRT-LBM algorithm proposed in this paper is applicable in
parallel. In the parallel algorithm design, it is usually necessary to set buffers at the grid
interface of each level to achieve MPI communication. Therefore, the parallel algorithm
design can be based on our algorithm.

4. Numerical Experiments

To further verify the accuracy and feasibility of the multi-level grid MRT-LBM pro-
posed in this paper. In this section, numerical simulations are performed for the flow
around a circular cylinder in the 2D case and the flow past a sphere in the 3D case.

4.1. Flow around a Circular Cylinder in 2D Case

The condition of the flow around a circular cylinder problem is: 28D× 20D rectangular
area is used. The coordinates of the center of the cylinder are (8D, 10D). The boundary
condition adopts the YMS format [39]. Reynolds number Re = DU/V, where U is the
flow velocity (U = 0.1), is the diameter of cylinder, and V is the coefficient of viscosity. As
shown in Figure 14, a four-level grid is generated based on the multi-level grid generation
technique proposed in this paper. The first three levels of the grid are the enclosing boxes,
and the range of these three levels of enclosing boxes is determined by the maximum and
minimum coordinate points of the rectangular enclosing boxes at each level of input. The
last level of the grid is obtained by extrapolating 6 grids from the boundary grid. The size
of the first level grid is 1/4D, and the grid size of the other levels is half the size of the
previous level.

The accuracy of the multi-level grid MRT-LBM is verified by drag coefficient CD, lift
coefficient CL and Strouhal number St.

The drag coefficient CD can be expressed as:

CD =
FD

1
2 ρU2D

, (31)

where ρ is the density of the fluid and FD is the drag force,
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The lift coefficient CL can be expressed as:

CL =
FL

1
2 ρU2D

, (32)

where FL is the drag force.
The Strouhal number is usually calculated for unsteady flows. The parameters St are

expressed as:

St =
fqD
U

, (33)

where fq is the vortex shedding frequency.
The vortex structure within the wake is stable and symmetrical at Re < 47. Otherwise,

the vortex begins to shed off the cylinder periodically. The results of the numerical simula-
tion are analyzed below. The streamline for Reynolds numbers 10, 20, and 40 are shown in
Figure 15. The streamlines of Reynolds numbers 100 and 200 are shown in Figure 16, and it
can be seen that vortex shedding has occurred.
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The results of CD at different Reynolds numbers are shown in Table 1. The CD
was compared with the corresponding results of Park et al. [40], Calhoun et al. [41], and
Shi et al. [42]. It can be seen that the current experimental results using multi-level grid
MRT-LBM are well matched.

Table 1. The drag coefficients CD obtained on the cylinder and compared with the other literature [40–42]
at different Reynolds numbers.

Re = 10 Re = 20 Re = 40

CD CD CD

Park et al. [40] 2.78 2.01 1.51
Calhoun et al. [41] — 2.19 1.62
Shi et al. [42] 2.79 2.05 1.55
Present 2.61 2.01 1.66

For Re < 47, the flow characteristics around the cylinder reach a steady state after a
while and do not change anymore. This phenomenon is quantified with two parameters,
separation angle θs, and wake length L/R0 (R0 = D/2). Table 2 lists the current θs and
L/R0 obtained at Re = 10, 20, and 40. It can be seen that the present results are similar to
the results of He et al. [43] and Tuann et al. [44].

Table 2. Separation angle θs and wake length L/R0 of the flow around cylinder at different
Reynolds numbers.

Re = 10 Re = 20 Re = 40

L/R0 θs L/R0 θs L/R0 θs

He et al. [43] 0.474 26.89 1.80 44.1 4.49 52.84
Tuann et al. [44] 0.50 29.7 1.842 42.96 4.20 54.8
Present 0.423 23.9 1.84 39.5 4.611 49.8

For Re ≥ 47, the drag coefficient CD and lift coefficient CL are periodically changing.
Figures 17 and 18 show the schematic diagrams of CD and CL periodically changing at
Re = 100 and Re = 200, respectively. Table 3 shows the numerical results of the average
drag coefficient CD, lift coefficient CL, and Strouhal number St. of this method at Re = 100
and Re = 200. It can be seen that the numerical simulation results are accurate using the
multi-level grid MRT-LBM.
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Table 3. The parameter settings of averaged drag coefficient CD, lift coefficient CL, and Strouhal
numbers St at different Reynolds numbers, compared with those in the other literature.

Re = 100 Re = 200

CD CL St CD CL St

Shu et al. [45] 1.364 0.344 0.163 1.349 — 0.197
Le et al. [46] 1.39 0.346 0.160 1.38 0.676 0.192
Lecointe et al. [47] — — — 1.58 0.5 0.194
Present 1.436 0.291 0.160 1.65 0.60 0.178

The single-level grid of flow around a circular cylinder is shown in Figure 19. The
single-level grid resolution is equal to the resolution (D/32) of the fourth level of the four-
level grid, and the total number of grids is 573,438. At Re = 100, we give the corresponding
runtime overheads for the single-level grid MRT-LBM algorithm and the four-level grid
MRT-LBM algorithm. The comparison of the number of grids and CPU time is shown
in Figure 20. The total number of four-level grids is about 1/9 of the total number of
single-level grids, and the computational efficiency can be improved by 6.76 times. The
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numerical simulation results in Table 3, which match well with the other literature [45–47],
show that the proposed multi-level grid MRT-LBM algorithm has good computational
efficiency and accuracy.
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4.2. Flow Past a Sphere in 3D Case

To verify the feasibility and accuracy of the multi-level grid MRT-LBM designed in
this paper in a three-dimensional flow field, the benchmark experimental section simulates
the flow state of flow past a sphere at a constant velocity for a customized iteration step
time. The simulation results are appropriately compared with simulated phenomena and
numerical results from the other literature. The radius of the sphere within the flow field of
the enclosing box shape is R. The length, width, and height of the computational domain are
set to 20R, 12R, and 12R, respectively. The flow velocity U = 0.1 is adopted experimentally.
The position coordinates of the sphere are shown in Figure 21. A three-level multi-level
grid is selected, with the size of the first-level grid being 1/4R and the size of the remaining
levels being 1/2 of the previous level grid. A schematic diagram of the multilevel grid
hierarchy is shown in Figure 22. The multi-level grid structure in the three-dimensional
sphere flow experiment is set up with two levels of grids in the flow field area (the outer
grids are partially refined to the second level of grid). The grids around the sphere are
locally refined to obtain a third-level grid. Several grids are extrapolated from the sphere
boundary grid to accurately simulate the rapidly changing region around the sphere.
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The flow past a sphere can be divided into three states: the flow is steady and ax-
isymmetric, the flow is steady and non-axisymmetric, and the flow is unstable and non-
axisymmetric. These states correspond to different Reynolds number intervals by Ref. [48],
and it is known that the three states occur at Re < 200, 210, < Re < 270, and Re > 280,
respectively. Therefore, Re = 100, 200, 250, and 300 are set to verify the proposed multi-level
grid MRT-LBM in the flows past a sphere.

Streamlines and velocity contours on the XY plane at Re = 100 and 200 are shown
in Figure 23. The area of the trailing vortices attached to the sphere becomes bigger with
increasing Reynolds number. It can be seen that the flow in both cases is a stable symmetric
flow. The drag coefficient CD compared with the result of the other literature is shown in
Table 4. The comparison of the data in the Table 4 shows that the multi-level grid MRT-LBM
can correctly and effectively simulate the flow field changes.

The CD drag coefficient can be formulated as:

CD =
8Fx

ρπU2D2 (34)
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The CL lift coefficient can be formulated as:

CL =
8
√

Fy2 + Fz2

ρπU2D2 , (35)

The streamlines and velocity contours for flow in XY plane and XZ plane at Re = 250
are shown in Figure 24. The XY plane flow field is still stable and symmetrical, while the
XZ plane flow field is stable but no longer symmetrical.
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Table 4. Comparison of drag coefficient CD at different Reynolds numbers.

Re = 100 Re = 200

CD CD

Johnson et al. [48] 1.08 0.78
Hartmann et al. [49] 1.083 0.764
cheng et al. [50] 1.099 0.80
Present 1.067 0.774
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Figure 24. Streamlines and velocity contours for flow past a sphere at Re = 250.

The flow at Re = 300 is shown in Figure 25, and the streamline shows an unstable state
of flow. In this case, periodic vortex shedding occurs. To quantify this unstable flow regime,
the average drag coefficient CD, average lift coefficient CL, and Strouhal numbers were
calculated in this experiment. Table 5 shows the comparison results with other physical
quantities in the literature. The results indicate that the multi-level grid MRT-LBM proposed
in this paper still has good stability and accuracy in the 3D case.
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Table 5. The drag coefficient CD and the lift coefficient CL are listed at Re = 250 and averaged drag
coefficient CD, averaged lift coefficient CL, and Strouhal numbers are listed at Re = 300.

Re = 250 Re = 300

CD CL CD CL St

Johnson et al. [48] — 0.060 0.656 −0.069 0.137
Hartmann et al. [49] 0.689 0.065 0.657 −0.069 0.135
Kim et al. [51] 0.701 0.059 0.657 −0.067 0.134
Present 0.699 0.059 0.649 −0.066 0.133

In the following, we analyze the numerical simulation for the spherical disturbance
flow with Re = 1000. At Re = 1000, a series of asymmetric hairpin vortexes appear in the
wake of the sphere and the planar symmetry of the flow is lost. The complexity of the
flow field in the wake region is seen in the vortex structure in Figure 26. Our simulation
correctly captures this feature of the flow. Figure 27 shows the numerical results of the drag
coefficient CD obtained from simulations using the multi-level grid MRT-LBM algorithm
proposed in this paper at Re = 1000, which can be seen to be very close to the theoretical
value [52].
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Mathematics 2023, 11, 1089 25 of 27

5. Conclusions

The standard MRT-LBM usually uses a grid with a regular shape, such as a Cartesian
grid. During numerical simulations, it is often necessary to obtain fine flow conditions in
localized areas. If all grids are set to a small enough size, this will increase the total number
of computational grids and the required storage space. Therefore, this paper proposes a
multi-level grid generation algorithm, which is able to set different grid sizes according to
the needs of the computational problem and is able to increase the fineness of the surface
of complex geometry in order to better simulate the flow near the geometry. A detailed
multi-level grid MRT-LBM evolution model and algorithm are given based on the collision
migration process of MRT-LBM and the characteristics of multi-level grids.

Moreover, the proposed multi-level grid MRT-LBM algorithm can effectively reduce
the computational effort and complexity through setting buffers at different levels of the
grid interfaces and eliminating temporal interpolation and reducing spatial interpolation
when transferring information at different level of grid intersections. The accuracy of
our proposed multi-level grid MRT-LBM algorithm has been verified by both 2D and 3D
simulation experiments, i.e., flow around a circular cylinder using a four-level grid and
flow past a sphere using a three-level grid, respectively. In the 2D simulation experiment,
our algorithm achieved higher accuracy in the quantitative data such as separation angle
θs, wake length L/R0, and Strouhal numbers, compared to the results in the published
literature. Meanwhile, the total number of grids of the four-level grid MRT-LBM is only
1/9 of the single-level grid MRT-LBM, which can improve the computational efficiency
by 6.76 times while reducing the computational storage. The three-level grid MRT-LBM
is used to simulate the flow past a sphere at Re = 100, 200, 250, 300, and 1000 in 3D case.
The streamlines, velocity contours, and vortex structure diagrams are plotted at different
Reynolds numbers. The hairpin vortex in the wave is successfully obtained at Re = 1000.
The experimental quantitative data CD match well with the results in the published litera-
ture, which shows that the proposed multi-level grid MRT-LBM in this paper can maintain
numerical stability at higher Reynolds numbers. The multi-level grid MRT-LBM algorithm
provides favorable conditions for subsequent parallel algorithm design and offers a solution
to increasingly complex computational fluid dynamics problems.
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