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Abstract 

The multi-objective quadratic assignment problem (mQAP) is an NP-hard combinatorial 

optimisation problem. Real world problems are concerned with multi-objective problems which 

optimise more objective functions simultaneously. Moreover, QAP models many real-world 

optimisation problems, such as network design problems, communication problems, layout problems, 

etc. One of its major applications is the facility location, which is to find an assignment of all facilities 

to all locations in the way their total is minimised. The multi-objective QAP considers multiple types of 

flows between two facilities. Over the last few decades several meta-heuristic algorithms have been 

proposed to solve the multi-objective QAP, such as genetic algorithms, Tabu search, simulated 

annealing, and ant colony optimisation. This paper presents a new ant colony optimisation algorithm for 

solving multiple objective optimisation problems, and it is named as the random weight-based ant colony 

optimisation algorithm (RWACO). The proposed algorithm is applied to the bi-objective quadratic 

assignment problem and evaluates the performance by comparing with some recently developed multi-

objective ant colony optimisation algorithms. The experimental results have shown that the proposed 

algorithm performs better than the other multi-objective ACO algorithms considered in this study. 
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1. Introduction 

Real ants in a colony find the shortest path between their nest and the food source using the 

pheromone trails lying on the ground. Ant colony optimisation (ACO) algorithms (Dorigo et al., 1996) 

inspire this foraging behaviour of real ant colonies for finding solutions for optimisation problems. 

This paper proposes a new ant colony optimisation algorithm in the context of multiple objectives for 

solving the bi-objective quadratic assignment problem, and it is named as random weight-based ant 

colony optimisation algorithm (RWACO).The performance of the new algorithm is evaluated by 

comparing it with recently developed multi-objective ant colony optimisation algorithms. The paper is 

structured as follows. Section 2 presents preliminaries of the study, such as multi-objective optimisation 

problem, the quadratic assignment problem, the ant colony optimisation algorithm, and multi-objective 

ant colony optimisation algorithms. The new multi-objective ant colony optimization algorithm, 

RWACO, is presented in Section 3. Methodology of the study is presented in Section 4 while presenting 

conclusions in Section 5. 
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2. Preliminaries 
2.1 Quadratic assignment problem 

Koopmans and Beckmann (1957) introduced the scalar Quadratic Assignment Problem (QAP) 

to model a plant-location problem. QAP is one of the hardest combinatorial optimisation problems 

(Stutzle, 1998) and also an NP-hard problem which can be defined as the problem of assigning a set of 

facilities to a set of locations. The goal is to place facilities on locations such that the sum of the product 

between distances and flows is minimal. The QAP of size 𝑛 can be formulated as given in the following 

equation: 

 Minimise 
π ϵ Ω C(π)=∑∑ aij bπiπj

n

j=1

n

i=1

                                                                                                        (1) 
where bij is the distance between the location 𝑖 and location j;.aij is the flow between the facility 

i to facility j; πi is the location of facility i in the current solution πi ϵ Ω, Ω is the set of all permutations. 

 

Knowles and Corne (2003) introduced multi-objective quadratic assignment problem (mQAP) 

by considering several flow matrices and the same distance matrix and it can be defined as follows: 

 Minimise 
π ϵ Ω 𝐶(𝜋) ={C1(π),C2(π),…,Cm(π)}                                                                                        (2) 

C k(π)=∑∑ dij  f  kπiπj

n

j=1

,  1≤k≤m
n

i=1

                                                                                                                        (3) 

where n is the number of facilities/locations and C(π) is the vector of m objective functions. dij 

is the distance between location 𝐿𝑖 and location 𝐿𝑗. f ijk  is the k-th flow between the facilities πi and πj . 

 

2.1 Multi-objective optimisation problem 

A general multi-objective optimisation problem (MOOP) (Deb, 2001) can be formulated 

according to the following equation, which includes a set of m objective functions, n decision variables 

with k restrictions. 

y=f(x)=[f1(x),f2(x),…,fm(x)]                     
e(x)=[e1(x),e2(x),…,ek(x)≥0,                    
x=(x1,x2,…,xn)∈X is the decision vector,   
y=(y1,y2,…,ym)∈Y is the objective vector.  }  

  
                                                                                        (4) 

where  X denotes the decision space of n decision variables and the objective space with m set of 

objective functions is denoted by Y. 

 

2.2 Ant colony optimisation 

Real ant colonies perform several different patterns, such as foraging, cooperative transport, 

division of labour, and brood sorting. They indirectly communicate via stigmergy which is used to 

coordinate their activities because ant species are totally blind.  
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Foraging ant in the colony deposits a chemical called pheromone on the ground when travelling 

and other ants probabilistically prefer to follow the same path. Pheromones deposited on the ground are 

evaporated over time. Thus, real ants in the colony are able to find the shortest path between their nest 

and the food source.  

Ant colony optimisation (ACO) algorithm is inspired by the behaviour of these real ant colonies 

(Dorigo et al., 1996; Dorigo and Stutzle, 2004). ACO can be applied to solve combinatorial optimisation 

problems. Ants in the artificial colony traverse from one node to another on a graph to find a solution 

for a problem. The probability of choosing a node as the next node depends on the artificial pheromone 

trail and the heuristic information. After completing a tour by an ant the pheromone trail is evaporated 

and applies a new pheromone trail on the path. If the completed path by the ant is a good solution, then 

the pheromone trail on that path will be high, and vice-versa. 

 

2.3 Multi-objective ant colony optimisation algorithms 

During the last few years several MOACO algorithms were developed. The following MOACO 

algorithms were considered for evaluating the performance of the new approach.  

Rabanimotlagh (2011) proposed an efficient ant colony optimisation algorithm for multi-

objective flow shop scheduling problem named “ACOMOFS.” It minimises two objectives, make span 

and total flow time simultaneously in flow shop scheduling problem. It uses one ant colony with several 

heuristic matrices and only one pheromone trail. ACOMOFS compares with the hybrid algorithms for 

multi-criteria (HAMC) (Yagmahan and Yenisey, 2010) and the multi-objective ant colony system 

algorithm (MOACSA) (Ho and Chang, 1991) to verify its performance. The experimental results have 

shown that the ACOMOFS algorithm performs better than the other HAMC and MOACSA algorithms. 

Angus (2007) proposed a crowding population-based ant colony optimisation named “CPACO” 
which is based on a crowding population replacement scheme and the population based ant colony 

optimisation algorithm (PACO) (Guntsch and Middendorf, 2003). Performance of the CPACO 

algorithm was compared with the PACO algorithm by applying both algorithms to the travelling 

salesman problem. The results obtained have shown that the CPACO algorithm achieves better 

performance and also lower computational complexity than the PACO algorithm.  

Baran and Schaerer (2003) introduced a new multi-objective ant colony system (MACS) 

algorithm for vehicle routing problem with time windows which extended the MACS-VRPTW 

(Gambardella et al., 1999) algorithm in the multi-objective context. MACS algorithm uses a single 

colony to obtain a set of solutions considering two objectives simultaneously. Experimental results have 

shown that the MACS algorithm is better than the MACS-VRPTW algorithm in the multi-objective 

context. 

 

3. The proposed ant colony optimisation algorithm (RWACO Algorithm) 

This paper proposes a new ant colony optimisation algorithm, random weight-based ant colony 

optimisation (RWACO) algorithm, for solving quadratic assignment problem with multiple objective 

functions. It uses only one colony, and is based on the ant colony system (ACS) algorithm (Dorigo and 

Gambardella, 1997). Furthermore, it uses a single pheromone trail and several heuristic information. 

This new ACO algorithm (RWACO) was experimented in our previous research (Ariyasingha and 

Fernando, 2015, 2017), and has been applied for solving the travelling salesman problem and the job 

shop scheduling problem respectively. The RWACO algorithm obtained best results over the other ACO 

algorithms used in the experimentation. In order to adapt the RWACO algorithm into QAP, 

modifications have to be done according to the following equations. 
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3.1 State transition rule 

First, generate a random number q∈[0,1] , before applying the state transition rule. If the 

generated value q≤q0, each ant 𝑘 assigns facility j to location i according to the following exploitation 

step. 

j= arg maxj∈Ni
k {[τij]α [ηij]

β}                                                                                                                                   (5) 

If q>q0, exploration is performed to assign facility j as follows: 

Pij
 k=

[τij]α[ηij]
β∑  [τiu]α[ηiu]β

u∈N ik   if j∈N ik                                                                                                                              (6) 

where q0 is a parameter. Each coupling (i,j) has the pheromone information τij and the heuristic 

information ηij.α and β are parameters. N ik is the available facilities which are not assigned to locations. 

The heuristic information of the coupling (i,j) is calculated as follows: 

ηij=
1∑ whd ijhH

h=1
                                                                                                                                                          (7) 

where H is the number of objectives and d ijh  is the cost associated to the coupling (i,j) of each 

objective h. Randomly generated weighting coefficient for each objective h is denoted by wh. Sum of all 

these weighting coefficients (w) set equal to one as follows: ∑ wh=1                                                                                                                                                       (8)
H

h=1
 

 

3.2 Local pheromone updating 

At each construction step, the local pheromone updating rule is performed once the next facility 

j is selected according to the following equation. First, pheromone trail on the selected coupling (i,j) is 

decreased. 

 τij=(1-ρ') τij+ ρ' τ0                                                                                                                                                                                (9) 

where  ρ'∈[0,1]=parameter;  τ0 =the initial pheromone information.  

 

3.3 Global pheromone updating 

The global updating rule is applied after all ants in the colony have constructed their permutation 

in each iteration. First, pheromone values of all coupling are evaporated as follows.  

τij=(1-ρ)τij                                                                                                                                                               (10) 
Then, pheromone values of all the non-dominated solutions are updated as given in the following 

equation: 

τij=τij+
ρ∑ whFh

H
h=1

                                                                                                                                                (11) 
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where ρ∈[0,1] is a parameter and H is the number of objectives and equal weighting coefficients 

(wh) are used for each objective h. Fh  represents the objective function value of the non-dominated 

solution. 

 

4. Performance assessment methodology 

Garcia-Martinez et al. (2007) analysed the performance of MOACO algorithms for the bi-

objective travelling salesman problem and they concluded that the MACS algorithm performs best 

among the other algorithms. 

 Further, our previous study (Ariyasingha and Fernando, 2015) has shown that the MACS and the 

ACOMOFS algorithms obtain better performance while the CPACO algorithm achieves good solutions 

in multi-objective travelling salesman problem.  

Thus, in order to evaluate the performance of the newly proposed MOACO algorithm, three 

MOACO algorithms, the MACS, ACOMOFS and CPACO, were considered. These algorithms are 

described in Section 2.4. All of these algorithms were applied to the bi-objective quadratic assignment 

problem and six benchmark instances of size 10: KC10-2fl-1uni, KC10-2fl-2uni, KC10-2fl-3uni, KC10-

2fl-1rl, KC10-2fl-2rl, KC10-2fl-3rl (Knowles and Corne, 2003) were considered for the experimentation. 

Most effective parameters on the performance of MOACO algorithms were identified and the best values 

of the parameters were applied for the MOACO algorithms. The parameters considered in this study are 

given in Table 1. Also, each algorithm considered 20 ants, 100 iterations and 10 runs. All algorithms 

were implemented in the same computer using ‘CodeBlocks 13.12’ under ‘Ubuntu 14.04’ environment 

running on an Intel Core i3 CPU at 2.40 GHz, with 4 GB memory.  

Four performance indicators in the literature were considered to evaluate the performance of the 

MOACO algorithms in this study. They are, overall non-dominated vector generation (ONVG), overall 

true non-dominated vector generation (OTNVG), overall true non-dominated vector generation ratio 

(OTNVGR) (Gottlieb and Raidl, 2006), and coverage performance indicator (C performance indicator) 

(Deb, 2001). Some of these performance indicators require the pseudo-optimal Pareto front for 

calculations which is an approximation to the true Pareto-optimal front and it can be obtained by the 

procedure presented by Pinto and Baran (2005). 

 

Table 1: Parameter values for each MOACO algorithm. 

MOACO Algorithm τ0 α β ρ ρ' q0 

ACOMOFS, RWACO 0.000125 0.1 0.5 0.2 0.05 0.98 

CPACO, MACS 5.5498E-18 1 2 0.2 0.05 0.98 

 

5. Analysis of results 

Four performance indicators presented in Section 4 and also the visual representation methods 

were considered to evaluate the results of the MOACO algorithms. 

 

5.1 Visual representation 

Pseudo-optimal Pareto fronts of each MOACO algorithm were obtained using the non-dominated 

solutions returned by the 10 runs of each MOACO algorithm. Scatter-plot matrix method have been 

considered to visually represent these pseudo- optimal Pareto fronts. Therefore, the bi-objective QAP 

instances: KC10-2fl-1uni, KC10-2fl-2uni, KC10-2fl-3uni, KC10-2fl-1rl, KC10-2fl-2rl, KC10-2fl-3rl 

are presented in Figures. 1-6, respectively, using the scatter-plot matrix method. According to the 
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following figures, it has been observed that the RWACO algorithm obtains better non-dominated 

solutions in KC10-2fl-1uni, KC10-2fl-2uni, KC10-2fl-3uni and KC10-2fl-3rl QAP instances. Also, the 

MACS and ACOMOFS algorithms return poor non-dominated solutions in KC10-2fl-1uni, KC10-2fl-

2uni, KC10-2fl-2rl and KC10-2fl-3rl QAP instances. When all QAP instances have been considered, it 

is shown that the CPACO algorithm returns better solutions same as the RWACO algorithm for most of 

the instances. However, the RWACO algorithm outperforms all the other MOACO algorithms in KC10-

2fl-2uni QAP instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Non-dominated solutions of each MOACO algorithm for KC10-2fl-1uni QAP instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Non-dominated solutions of each MOACO algorithm for KC10-2fl-2uni QAP instance. 
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Figure 3. Non-dominated solutions of each MOACO algorithm for KC10-2fl-3uni QAP instance. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Non-dominated solutions of each MOACO algorithm for KC10-2fl-1rl QAP instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Non-dominated solutions of each MOACO algorithm for KC10-2fl-2rl QAP instance. 
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Figure 3. Non-dominated solutions of each MOACO algorithm for KC10-2fl-3rl QAP instance. 

 

5.2 Analysis with OTNVGR 

Pseudo-optimal Pareto front 𝑦𝑎𝑝𝑟  for each QAP instance can be obtained by the procedure 

presented by Pinto and Baran (2005). Table 2 presents the number of non-dominated solutions in |𝑦𝑎𝑝𝑟| 
which was found experimentally for each QAP benchmark instance.  

Tables 3-5 present the results with respect to the ONVG, OTNVG and OTNVGR performance 

indicators (Gottlieb and Raidl, 2006), and also the CPU time in seconds for each MOACO algorithm. 

The higher values of OTNVGR indicate that the obtained results are better. 

When all QAP instances have been considered, the ACOMOFS and MACS algorithms are 

outperformed by the other two algorithms as they return very poor solutions in OTNVGR. The RWACO 

algorithm is the best algorithm and outperforms all the other MOACO algorithms for KC10-2fl-1uni, 

KC10-2fl-2uni, KC10-2fl-3uni and KC10-2fl-1rl instances as it obtains higher values in OTNVGR. 

Moreover, the CPACO algorithm outperforms other algorithms for KC10-2fl-2rl and KC10-2fl-3rl 

instances as it obtains higher values in OTNVGR. However, the RWACO algorithm returns good results 

in OTNVGR for these two instances.  

According to the computational time (CPU time) in seconds for each MOACO algorithm, it is shown 

that the CPACO algorithm obtains solutions in higher computational time while all the other algorithms 

obtain solutions in lower computational time. 

 

Table 2: Number of non-dominated solutions of |yapr| for benchmark instances. 

QAP 

Instance 

KC10-

2fl-1uni 

KC10-

2fl-2uni 

KC10-

2fl-3uni 

KC10-

2fl-1rl 

KC10-

2fl-2rl 

KC10-

2fl-3rl |𝑦𝑎𝑝𝑟| 12 11 50 33 4 21 
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Table 3: Comparison of solutions with ONVG, OTNVG and OTNVGR of KC10-2fl-1uni and KC10-

2fl-2uni QAP instances. 
MOACO algorithm KC10-2fl-1uni KC10-2fl-2uni 

ONVG OTNVG OTNVGR 

(%) 

CPU time 

(second) 

ONVG OTNVG OTNVGR 

(%) 

CPU time 

(second) 

ACOMOFS 5 0   0.00 192 1 0 0.00 190 

CPACO 7 4 33.33 317 1 0 0.00 315 

MACS 9 0   0.00 197 2 0 0.00 195 

RWACO 11 8 66.67 202 11 11 100 199 

 

Table 4: Comparison of solutions with ONVG, OTNVG, and OTNVGR of KC10-2fl-3uni and KC10-

2fl-1rl QAP instances. 
MOACO algorithm KC10-2fl-3uni KC10-2fl-1rl 

ONVG OTNVG OTNVGR 

(%) 

CPU time 

(second) 

ONVG OTNVG OTNVGR 

(%) 

CPU time 

(second) 

ACOMOFS 27 0   0.00 192 11 0   0.00 191 

CPACO 32 16 32.00 307 18 14 42.42 304 

MACS 44 0   0.00 196 12 0   0.00 198 

RWACO 49 34 68.00 204 36 19 57.58 201 

 

Table 5: Comparison of solutions with ONVG, OTNVG, and OTNVGR of KC10-2fl-2rl and KC10-2fl-

3rl QAP instances. 

 

5.3 Analysis with C performance indicator 

The results of the C performance indicator (Deb, 2001) obtained by all the MOACO algorithms 

are presented using the set of box-plots as given in Figure 7. From left to right six box-plots are presented 

in each box for: KC10-2fl-1uni, KC10-2fl-2uni, KC10-2fl-3uni, KC10-2fl-1rl, KC10-2fl-2rl and KC10-

2fl-3rl, respectively. Row and column of the figure refer to the two algorithms A and B, respectively. 

The C performance indicator measures the proportion of solutions of algorithm B which are dominated 

by solutions of algorithm A. Therefore, C(A, B)=1 means that all solutions of B are dominated by 

solutions of A. Also, C(A, B)=0 presents that solutions of 𝐵 are not dominated by solutions of A. The 

middle line of a box presents the median of C(A, B). Also, the bottom scale presents 0 and the top scale 

presents 1 of each box. 

According to the C performance indicator values presented in Figure 7, the RWACO algorithm 

performs better than the other MOACO algorithms as its C indicator values are almost zero in most of 

the time. However, the CPACO algorithm performs better than the RWACO algorithm only in the 

KC10-2fl-2rl instance as the C indicator value of the CPACO algorithm is close to zero. 

MOACO algorithm KC10-2fl-2rl KC10-2fl-3rl 

ONVG OTNVG OTNVGR 

(%) 

CPU time 

(second) 

ONVG OTNVG OTNVG

R (%) 

CPU time 

(second) 

ACOMOFS 6 0   0.00 190 9 0   0.00 191 

CPACO 4 3 75.00 311 13 12 57.14 307 

MACS 5 0   0.00 198 14 2   9.53 197 

RWACO 7 1 25.00 200 10 7 33.33 199 
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Figure4. Box-plots of the results returns by C performance indicator for MOACO algorithms. 

 

6. Conclusion 

In this paper, a new multi-objective ant colony optimisation algorithm named the random weight-

based ant colony optimisation (RWACO) has been proposed for solving QAP, and it uses randomly 

generated weights. The RWACO algorithm has been compared with the recently introduced three 

MOACO algorithms and applied them for the quadratic assignment problem, in order to evaluate the 

performance of the proposed algorithm. According to the visual representation, the RWACO algorithm 

returns better non-dominated solutions for four QAP instances. Also, the RWACO algorithm obtains 

better solutions for OTNVGR in low computational time. When we consider the results of the C 

performance indicator, it returns better performance as it obtains C indicator values close to zero in most 

of the time. Therefore, it can be concluded that RWACO algorithm obtains better performance than the 

other MOACO algorithms considered. 
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