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Abstract— After more than two decades of research in the
field of password strength estimation, one clear conclusion may
be drawn: no password strength metric by itself is better than
all other metrics for every possible password. Building upon this

certainty and also taking advantage of the knowledge gained
in the area of information fusion, in this paper, we propose a
novel multimodal strength metric that combines several imperfect
individual metrics to benefit from their strong points in order
to overcome many of their weaknesses. The final multimodal
metric comprises different modules based both on heuristics and
statistics, which, after their fusion, succeed to provide in real time
a realistic and reliable feedback regarding the "guessability"
of passwords. The validation protocol and the test results are
presented and discussed in a companion paper.

Index Terms— Password security, strength metrics, informa-
tion fusion, multimodality, Markov chains, password policies,
privacy.

I. INTRODUCTION

HOW secure are passwords? Such a question has recently

been brought once again to the public fore following the

release in May 2016 of over 117 million pairs of password

hashes and emails of LinkedIn acocunts [1]. Just two days

after the leak, KoreLogic announced that they had been able

to crack over 65% of the hashes in the first two hours of

a password guessing session [2]. As an illustrative anecdote,

it was later known that one of the affected LinkedIn users

was one of the founders and current CEO of Facebook.

His password was not only among the cracked ones but had

also been reused in other online services, which enabled hack-

ers to also access both his Twitter and Pinterest accounts [3].

The answer to the question, how secure are passwords? is

ambiguous: it depends on the password. Certain passwords

are more secure, or stronger, than others. As such, password

strength is commonly understood as a way to measure how

difficult it is to break passwords. Therefore, password strength

metrics are functions that take as input a password and output

a score related to the strength of that password.

The purpose of password strength metrics is the identifica-

tion of weak passwords in order to support password policies
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that attempt to maximize the security offered by this type of

user authentication [4]. A common way to enforce the policy

is the real-time checking of the password strength during the

password selection process by the users. This good practice

was already promoted by researchers in the field of password

security in the early 1990’s [5]: should the strength fall below

an acceptable threshold, the user will be requested to provide

a different password. The effectiveness of a password strength

metric in estimating the actual resistance of passwords will

have a direct impact on the level of security for both the users

and the provider [6].

Coming back to the recent LinkedIn leak scandal, the impact

could have been reduced if users had not been allowed to select

weak passwords, or at least warned of the danger to do so,

specially if the password is later reused is later reused [7].

Current password strength estimation methods may be clas-

sified into three main groups, each of them based on a different

perspective of the same problem: attack-based, heuristic-based

and statistical-based (further details about the rationale behind

these methods are given in Sect. III).
• Attack-based methods. Such methods give a measure

of the resistance of passwords depending on the time

taken by a specific attack (or set of attacks) to break

it [8]–[10] (see Sect. II for further details on existing

password attacks). The longer it takes for the attack to

break the password, the stronger it is.

• Heuristic-based methods. These methods focus on pro-

viding a measure of the password complexity based on

heuristics [11], [12]. The de-facto standard for this type

of methods is the NIST 800-63 published in 2004 and

updated in 2012 [12]. It proposes to measure password

strength in entropy bits, following Shannon’s Information

Theory [13], on the basis of some simple rules such as

the length of the password and the type of characters used

(e.g., low-case, upper-case, or digits).

• Probabilistic-based methods. Searchingto address the

shortcomings of the previous techniques, new methods

for password strength estimation have emerged based on

the statistical evaluation of passwords [14], [15]. Most of

these methods are based on Markov Models [16] (please

see Sect. VI for further details on Markov Models).

A key factor that has been traditionally overlooked by many

of the password strength estimation approaches mentioned

above is that: password strength is not a universal value.

Rather, it is highly dependent on the context in which the

password is used [17]. That is, the exact same password
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can have a significantly different strength depending on the

application where it is utilized. For example, a Hungarian word

used to login to a computer in a Spanish-based company can be

a quite strong password. However, that same password, used

in a Hungarian-based context would most likely be regarded

as weak. A similar argument can be made for a five character

password used to access remotely an account protected by a

three-attempt limit (strong), compared to that same password

used to access a local service with unlimited number of

attempts (weak).

The current scene in password strength estimation presented

above leads to two main conclusions:

• Conclusion 1: No golden bullet. As happens for most

complex problems, in password strength estimation there

is no unique valid solution. That is, no password strength

metric by itself is better than all other metrics for every

possible password. All existing strategies for password

strength estimation present advantages and drawbacks

(these are presented in Sect. III). Therefore, new methods

could potentially benefit from the strong points of each of

the three types of approaches mentioned above in order

to overcome their weaknesses.

• Conclusion 2: No immutability. Password strength

estimation algorithms should not be immutable. On the

contrary, they should be able to adapt to different envi-

ronments in order to give more accurate strength values

(e.g., depending on the language, alphabet, etc.)

These conclusions have led to set two main objectives in

the design and development of the new password strength esti-

mation method presented in the article, which can hopefully

contribute to the advance of the state of the art in password

strength estimation:

• Objective 1: Multimodality. The first main by-design

goal of the novel scheme is to exploit the advantages of

different methods in order to provide a more reliable feed-

back regarding the robustness of passwords than each of

the algorithms individually. To do so, the model combines

the strength values generated by different complementary

modules based on: 1) specific attacks, 2) heuristics and

3) statistics. Such multimodality approach, as will be

explained in Sect. IV, is supported by multiple works

in the field of information fusion.

• Objective 2: Adaptability. The second main objective

of the present work is to overcome the typical short-

coming of current methods that provide one unique

strength value for each password independently of the

context where it is used. This is achieved by devising

a strength estimation algorithm that may be adjusted,

through a training process, to diverse application-specific

environments.

With these two major objectives in mind, the contributions

of the present Part I of this series of two papers may be

summarized as follows (for the experimental evaluation of

the method we refer the reader to Part II [18]): 1) the

global fusion strategy to provide a unique strength indica-

tor through the combination of several individual modules

(see Sect. IV); 2) the two individual probabilistic-based

strength metrics described in the paper are novel: the Markov

Chain with adaptive memory (see Sect. VI-A) and the Hierar-

chical Markov Chain (see Sect. VI-B).

The rest of the article is structured as follows. In order

to better set the scene that has promoted the development of

the new multimodal strength metric, two brief introductions

to password guessing attacks and to password strength met-

rics are given in Sects. II and III, respectively. The overall

multimodal metric is described in Sect. IV, with each of

the individual modules presented in Sects. V, VI and VII.

Sect. VIII specifies the contributions of the proposed approach

and discusses similarities and differences with previous meth-

ods. Finally, conclusions are given in Sect. IX.

II. INTRODUCTION TO PASSWORD GUESSING ATTACKS

As mentioned in the introduction, the main objective of a

strength metric is to estimate the “guessability” of a pass-

word (understood as the ease with which a password can be

guessed). This parameter is undoubtedly linked, among other

aspects, to the type of guessing attacks that will be performed

to break it. For this reason, the present section provides some

basic concepts related to the field of password guessing that

can help the reader to better understand the rationale behind

the multimodal strength metric proposed in the work.

Why are password guessing attacks successful? Why are

they able to consistently break a significant amount of pass-

words? Since the development of the first password cracking

algorithms [20], the answer to these questions has been rela-

tively simple: passwords are chosen by humans, and humans

are, to some extent, predictable [21], [22]. In fact, humans

have a tough time when they are asked to be random, and

even a tougher time when they are asked to “remember

random” [23], [24]. This way, in many occasions, users delib-

erately select passwords easy to remember and, as a result,

easy to guess [25]. Password guessing attacks take advantage

of this predictability to give preference and test first those

passwords that are more likely to be selected by a person in

order to speed up the guessing process (see Fig. 1).

With this objective in mind, as shown in Fig. 1, adver-

saries usually apply a sequential strategy in their password

guessing sessions: starting by the most straightforward attacks

(i.e., internal squares in Fig. 1) and gradually moving towards

the more general ones (i.e., outer squares in Fig. 1). This

means that the first attacks to be carried out are those that

have traditionally shown a higher success rate measured in

terms of passwords cracked per given number of attempts.

These initial attacks are very fast retrieving passwords at the

beginning but also become unsuccessful soon, as they explore

a limited region of the whole password space. The last attacks

to be implemented are the most general ones, that is, those

that, in absolute terms, are capable of cracking the largest

amount of passwords but that, in turn, also generate many more

wrong guesses which makes them slower (i.e., they cover a

large region of the whole password space). Such a password

guessing strategy has even been implemented in automatic

tools that sequentially launch the most efficient attack as the

number of guesses increases [26], [27]. Just as an illustrative
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Fig. 1. General diagram of the password-cracking problem. The external rectangle represents the space of all possible passwords. The circle represents the
limited subspace of human-selected passwords. The internal rectangles represent the subspaces of computer-generated passwords for different attacks: from
the most targeted ones (i.e., inner rectangles that cover a smaller subset of the whole space) to the most general ones (i.e., outer rectangles covering wider
subspaces). The attacks that appear are just a typical subset example selected for illustrative purposes. Regular rectangles represent attacks based on heuristics,
while rounded-corner rectangles represent probabilistic-based attacks (the Layered Markov Chain and the Simple Markov Chain are described in [19]). The
shaded areas (overlap between human-selected passwords and computer-generated passwords) represent the cracked passwords. A darker shade corresponds
to passwords that, on average, are harder to crack (i.e., it takes a higher number of guesses to retrieve them). The bottom arrow represents password strength,
where a darker shade corresponds to passwords that are more difficult to guess (i.e., stronger).

example, a typical password guessing session would follow

the next two-step methodology [28]–[30]:

• STEP 1: Break trivial passwords. Trivial passwords

may be defined as those that can be broken, with all

certainty, within a limited number of guesses. Therefore,

these passwords should receive very low strength values.

In general, they are passwords vulnerable to:

– Attack 1: Attack based on a list of known pop-

ular passwords [31]–[33]. It simply attempts to

gain access trying all the possibilities in any of

the existing lists that contain well-known common

passwords [34]–[36], e.g., “123456”, “admin123”,

“password”. These lists, in some cases released on

a yearly basis [37], are compiled according to the

number of times a given password appears in the

existing large databases of passwords [38].

– Attack 2: Brute-force attack [39], [40]. This attack

performs an exhaustive search over all possible com-

binations within a given search space defined by an

alphabet of N symbols (e.g., N = 26 lower-case

letters in the ASCII code) and a given password

length L. The total number of guesses is computed

as N L . If the size of the search space is too big, the

attack becomes practically unfeasible.

• STEP 2: Break non-trivial passwords. Other increas-

ingly complex guessing algorithms are applied for pass-

words that are robust to the previous two attacks. These

passwords are non-trivial in the sense that there is

only a certain non-zero probability (i.e., no guaran-

tee) that they will be retrieved. As such, they should

be assigned a higher strength by password strength

metrics.

– Attack 3: Dictionary attack [39]. It is similar to the

attack based on a list of very common passwords

but in this case a dictionary (i.e., a very large list of

words) is used instead [43]. In fact, in many cases,

these dictionaries already integrate lists of known

passwords. The basis of this approach is that in most

cases humans select real words as passwords since

they are easier to remember [44]. Different cracking

tools specialized in performing this type of attacks

may be found in the internet [27], [45], [46].

– Attack 4: Dictionary attack with rules [20]. Analogue

to the dictionary attack but in this case not only

the words in the dictionary are used, but also slight

modifications of them, that are produced following

certain rules commonly observed in the generation

of passwords such as: capitalize the first letter, add

numbers at the end, etc.

– Attack 5: Probabilistic attacks [19], [44], [47], [48].

Although dictionary attacks are really effective,

being able to retrieve up to 50% of the passwords of

all known big datasets, they are not able to produce

passwords which are not directly derived following

a fixed set of rules applied to a selected dictionary.

As an alternative to break passwords resistant to

dictionary attacks, probabilistic approaches apply

statistical models, in most cases based on some

variation of Markov Models [49], that try to capture

the way in which humans produce passwords. Such

models are sampled to generate human-like guesses.

In the previous typical example, the first two simple but

highly efficient attacks designed to break trivial passwords
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may be considered substantially as a de-facto standard. These

two attacks will be applied, with very small variations, at the

beginning of virtually any password guessing session.

On the other hand, attacks 3-5 applied to break non-

trivial passwords present uncountable variations. For example,

dictionary-based attacks depend on the dictionary considered

and on the type of rules implemented. Probabilistic attacks

depend on the statistical model selected and also on the data

used to train that model. As a result, it is not feasible to

foresee all the precise attacks that will be used against non-

trivial passwords, specially because new guessing algorithms

are being continuously devised.

The reader should bear in mind that the previous typical

password guessing session and the subset of attacks consid-

ered in it, are just given for illustrative purposes and are

not exhaustive (specially those attacks targeting non-trivial

passwords). It should also be highlighted that the frontier

between trivial and non-trivial passwords, although quite well

defined, is not deterministic. As will be explained in Sect. V,

such categorization is context-dependent, since not the same

passwords are brute-forceable in all applications.

III. INTRODUCTION TO PASSWORD STRENGTH METRICS

All passwords can be broken. Given enough time, eventu-

ally, any password will be broken by means of an unlimited

brute-force attack (as shown by the external rectangle in

Fig. 1). Therefore, the question is not any more if a password

can be guessed, but rather, when it will be guessed. In fact,

as mentioned in the previous section, all password guessing

attacks have one common aim: accelerate the speed at which

passwords are retrieved. As such, it seems reasonable to think

of time as the ultimate scale to measure the strength of

passwords. A password which is broken in 10 minutes is

weaker than one which is broken in 10 days, 10 months,

10 years or 10 centuries.

However, time, as a metric for password strength, is very

dependent on external variables, for instance, the time needed

to crack a password using a certain attack can be drastically

reduced if the computational resources are increased. But not

only computational power affects the password-guessing time,

it is also intimately related to the type of oracle that discloses

the validity or not of the password. As an example, if the oracle

allows an offline attack (i.e., the attacker is in possession of

the hash of a password), hundreds of millions of candidate

passwords can be tested per second for some currently wide-

spread used algorithms using an optimized implementation for

GPUs [50]. On the other side of the spectrum, if the oracle

is a remotely accessible authentication system, there can be a

limit on the allowed amount of passwords to be tested and

eventually the account will be temporarily or permanently

locked out [51]. Furthermore, the type of hashing or encryption

algorithm also has a very important impact on the time needed

to perform each comparison (e.g., attacking MD5 hashes is

significantly faster than attacking SHA-3 ones.1)

1Our own experiments carried out running a benchmark of Hashcat 3.10
with two AMD Radeon R9 290 cards showed the next results: MD5 cracking

speed was 20 · 109 Hash/sec, while SHA-3 cracking speed was 0.3 · 109

Hash/sec, which is in line with values reported in [50].

For the above mentioned reasons, time is usually converted

into “number of guesses required to break a password” (NoG),

which is a strength unit independent of the actual contextual

conditions. Then, depending on the “NoG per second” that

can be performed in a given framework, it is straightforward

to estimate the time that will take to break a certain password.

Some initiatives, such as the NIST recommendation [12], go

a step further and translate the “number of guesses” into

“number of bits” as a way to measure the password strength

in terms of a fictional password entropy [13]. For instance, a

password that is cracked by an attack in 1024 guesses would

mean that has a 10 bit strength entropy. As such, all three

measures, time, number of guesses and entropy (or number

of bits), are three directly related ways of measuring the same

concept. In the following, we will refer to NoG as the standard

scale to measure password strength.

As mentioned in Sect. I, from a general perspective, pass-

word strength estimation approaches can be classified in three

big groups: attack-based, heuristic-based and probabilistic-

based. The next subsections discuss the rational behind each

of the groups, their advantages and limitations. The reader

should be aware that Sect. VIII further analyzes some of the

methods mentioned here and compares them to the multimodal

strength metric presented in this work, highlighting similarities

and differences.

A. Attack-Based Approaches

Probably, one of the most direct ways to objec-

tively quantify NoG is to actually attack a password

until it is broken. Most of the works in the state

of the art that consider this type of approach are

based on a single-attack strategy [8]–[10], [52], [53].

However, a recent work has shown that simulating a cracking-

session with multiple successive attacks of increasing com-

plexity provides significantly better results [30].

These attack-based approaches present two major issues:

1) on the one hand, they are not able to generalize well to

different attacks or even to different configurations of the

same attack [30] (e.g., using different dictionaries). That is,

assuming that it takes 1,000 guesses to break a password with

one given attack, we have a measure of its strength against

that particular attack, but, what if the attack is changed?

How can the NoG associated to a given password be made

independent of the attacks considered? 2) On the other hand,

carrying out an attack to compute the NoG needed to break

a password requires time, and, for many applications, an

immediate answer is needed (e.g., giving feedback to a user

regarding the strength of a password he has just chosen).

Due to the two limitations specified above, the objective

and real-time evaluation of NoG is difficult and, although

some very interesting strength checkers have been designed

following this approach [9], alternative ways of indirectly

estimating password strength have been proposed.

Nevertheless, attack-based approaches are extremely helpful

to detect weak passwords vulnerable to very targeted attacks

that do not admit multiple configurations, such as the ones

using lists of common trivial passwords (see Attack 1 in

Sect. II). This has lead to different publications that recom-
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mend the use of black-lists of banned passwords as part of the

protection methods [31], [54].

B. Heuristic-Based Approaches

Currently, probably the most popular and deployed trend

in the field of password strength metrics is that based on

heuristics also known as LUDS: counts of lower- and upper-

case letters, digits and symbols. Although some very valuable

heuristic-based works are currently moving away from the

LUDS paradigm [55], the majority of password policies used

in practice are based on this concept [54]. This strategy

is followed, for instance, by the current NIST recommen-

dation [12], by different password strength estimators that

may be found on-line [56], and even by top technological

companies [57]. Such metrics are based on expert rules derived

in an ad-hoc manner from experience, that aim at estimating

the complexity of passwords under the assumption that a

more complex password (according to these principles) will

be less vulnerable to attacks. Examples of these rules are:

longer passwords are more robust, or passwords with more

character types (e.g., lower case, upper case, numbers and

special characters) are more robust.

Although such rules, from a general point of view, are

sensible, they may produce illogical results for many particular

passwords. In fact, it has now been shown in different works

that these methods are not reliable strength estimators for a

wide range of passwords [8], [10], [31] and have even been the

target of witty critics outside the security community [58]. For

instance, these strength metrics will assign a higher strength

to a password like “David-1982” than to “RpixTsGa”. “David-

1982” is length 10 and has lower case, upper case, num-

bers and special characters, whereas “RpixTsGa” is length 8

and has only lower case and upper case letters. However,

most users would agree that “David-1982” is a much more

guessable password than “RpixTsGa”, that is, it would take a

higher number of guesses to break “RpixTsGa” than “David-

1982”. As a consequence of the comments received, NIST

is currently reviewing its recommendation and has released

a new draft that clearly changes the philosophy of previ-

ous versions towards new more comprehensive guidelines

not only focused on rules but, for instance, recommend-

ing the use of blacklists built based on available password

corpuses [59].

The question is, why do heuristic-based metrics fail to

give, in many cases, a correct estimation for the strength of

passwords? The problem lies in the fact that, implicitly, these

metrics rely on the incorrect premise that: all passwords are

equally likely to be selected by humans. That is, the probability

of occurrence of a password like “kzlprtu” would be the same

as that of “rebecca”. Under this assumption, the usual proposed

ad-hoc rules hold: longer passwords are more robust, and

passwords that contain more character types are more robust.

In fact, in this unrealistic case, the only sensible approach for

breaking passwords would be to use brute-force, as no other

attack would outperform it in terms of number of guesses.

However, as mentioned in Sect. II, experience has shown

that human behaviour for password selection is significantly

different from the fictional situation presented here in which

all passwords were equally probable. Rather, it is now known

that human password selection is heavily influenced by natural

language, which leads to certain passwords being much more

likely to be chosen by users than others [44].

The discussion given above leaves a very important lesson:

heuristic-based methods, in spite of their limitations, should in

no case be dismissed, as they are the optimal way of detecting

passwords vulnerable to brute-force attacks (see Attack 2 in

Sect II). As such, a comprehensive strength metric should, in

any case, take heuristics into account.

C. Probabilistic-Based Approaches

The previous subsection on heuristic-based methods intro-

duced a very interesting concept: the relationship between

passwords and probabilities. It seems reasonable to use the

probability that a password is selected by a human as an

estimation of the NoG it will take to break it, since also

“smart” attacks exploit the lack of randomness in the selection

of passwords. This way, the probability of occurrence may

be used as an effective password strength metric. If such

probability is very high, the strength is low, and the other

way around, a low probability would denote high strength.

However, the problem is not simple: The probability that

a password is selected by a human is intrinsically a very

subjective matter. Therefore, the ultimate question is, how can

it be estimated?

The most straight forward manner to answer the previous

question would be to count the number of times that a given

password appears in currently available databases. This would

lead to what has been referred to in some works as the “ideal

password strength meter” [17]. However, except for very few

examples (such as “password”, “12345” or “test123” that

are the basis for Attack 1 in Sect. II), most passwords do

not appear enough times in order to reliably estimate their

probability of occurrence. Furthermore, many likely passwords

are not found in public databases and therefore would be

assigned an unrealistic probability of occurrence equal to zero.

In order to address this issue, a new branch of strength

metrics based on statistical models was introduced. Similarly

to probabilistic attacks, statistical strength estimation methods

try to accurately model the likelihood that a password is

selected by a user. In fact, many of these algorithms can be

indistinctively used, with very small variations, to produce

password guesses or to estimate the strength of passwords.

The main challenge to be faced in the development of these

methods is: given a finite set of training data containing human

selected passwords (ideally as large as possible), generate a

statistical model which is able to accurately represent the

probability of occurrence of all possible passwords and not

just those contained in the training set. Therefore, in general,

this type of methods require to reach a difficult compro-

mise between generality (i.e., ability to correctly estimate the

strength of new unseen passwords) and accuracy.

Since the first cracking methods using probabilities

appeared to reduce the size of dictionaries in dictionary-based

attacks [60], many different probabilistic strength estimation

algorithms have been proposed. The vast majority of these

techniques take advantage of the lessons learned in the field



2834 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 12, DECEMBER 2017

Fig. 2. General diagram of the “password-cracking vs strength-estimation”
problem.

of natural language modeling [68] and may be grouped in three

main trends: 1) Approaches that model passwords as simple

character sequences using some form of the popular Markov

Models [15], [17], [19], [47], [62]. 2) A very successful line of

research using Probabilistic Context-Free Grammars (PCFG)

was initiated by Weir as a cracking tool [48] that was further

refined in [63]. The method was later adapted as a strength

metric [64]. The core idea behind this innovative approach

is to consider not only characters, but also the existence of

higher-order structures or semantic patterns. 3) Lastly, Bon-

neau addressed the problem of determining the probability of

occurrence of passwords from a more theoretical perspective

using different deterministic mathematical functions (instead

of HMM or PCFG) to approximate the statistical distribution

of passwords to finally propose his α-guesswork metric [10].

While probabilistic-based approaches have typically outper-

formed heuristic-based or attack-based methods for the robust-

ness estimation of non-trivial passwords, they usually fail to

assign sufficiently low strength values to trivial passwords (as

defined in Sect. II).

D. Current Password Strength Metrics: Summary

Given the argumentation presented in this section, it fol-

lows that, however important and useful password strength

estimation is, it remains a very challenging problem with no

closed answer or unified approach to address it. As already

introduced in Sect. I and further discussed here, all methods

have advantages and drawbacks.

The above statement about pros and cons of current strength

estimation approaches implies that: no method is universally

better than all the rest for every password, but also, no pass-

word strength estimation method is fully useless or discard-

able. In fact, each of the three type of approaches described in

the present section are very effective at accurately producing

strength results for different specific sets of passwords:

• Attack-based approaches using blacklists are optimal to

detect trivial passwords vulnerable to attacks based on

lists containing the most trivial passwords (see Attack 1

in Sect. II).

• Heuristic-based approaches are optimal to detect trivial

passwords vulnerable to brute-force attacks (see Attack 2

in Sect. II).

• Probabilistic-based approaches are optimal to detect non-

trivial passwords which may be vulnerable to: dictio-

nary attacks or probabilistic attacks (see Attacks 3-5 in

Sect. II).

As such, in this on-going battle between good (i.e., pass-

word strength metrics) and evil (i.e., password cracking algo-

rithms) where passwords are the battlefield, it happens that

each supervillain has its own nemesis, as depicted in Fig. 2.

However, no superhero can fight on its own all supervillains:

An alliance needs to be made.

Such a comic-ish analogy leads to the core idea behind

the proposed multimodal strength metric described in the

following sections: do not dismiss certain imperfect pass-

word strength approaches leaving all the responsibility of

correctly estimating the robustness of passwords to just one

algorithm. Instead, combine different complementary methods

specialized in detecting a particular group of weak passwords

to generate a more general, accurate and reliable overall

approach. In simple terms, follow the principle “strength in

numbers” to try to defeat the enemy, as depicted in Fig. 3.

IV. MULTIMODAL STRENGTH METRIC

In the present section we build upon the general analysis

provided previously in Sects. II and III to propose a novel

method that meets by design the two main goals highlighted

in the article introduction: multimodality and adaptability.

The main rationale behind the proposed approach for pass-

word strength estimation is that: by exploiting the capabilities

of different individual techniques through their fusion, it will

be possible to achieve one unique multimodal measure which

overcomes many of their weaknesses. Such a “multimodal

hypothesis” is supported by different works carried out in the

active area of knowledge of information fusion that has been

applied to multiple real-world problems.

In particular, the present strength metric is inspired by infor-

mation fusion systems that exploit multimodality to improve

the overall performance of individual solutions for challenging

problems such as biometrics [65]. These systems consolidate

the evidence presented by several sources and typically provide

better performance compared to systems based on a single

source. Although information fusion in a typical multimodal

machine-learning system can be performed at various levels,

integration at the score level is the most common approach.

In the present work we take advantage of the knowledge

gained in the field of score fusion in machine-learning systems,

and apply it to generate a novel and more robust password

strength metric (please see Sect. VII for further details on

how the fusion is performed).

As can be seen in Fig. 4, according to the multimodality

principle presented above, the proposed approach takes as

input a password and generates one single strength score

SMU LT I . To do this, inspired by the typical two step guessing
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Fig. 3. General diagram showing the core idea behind the proposed
multimodal password strength metric: The combination of several individual
methods, each of them specialized at detecting a particular group of weak
passwords, will lead to a more general and reliable overall approach.

strategy described in Sect. II, two types of passwords are dif-

ferentiated: 1) trivial passwords and 2) non-trivial passwords.

For each of the two types of passwords, a specific set of

individual metrics has been developed to accurately estimate

the strength of that particular group. The individual scores

SAM and SN given by the strength modules designed to detect

non-trivial passwords are normalized in an intermediate step,
¯SAM and S̄N , to the range of values [0,10]. This normalization

step transforms the scores into one common domain and gives

them a more easily interpretable meaning prior to their fusion

(further details on the normalization and fusion are given

in Sect. VII). Scores SD and SH generated by the modules

focused on trivial passwords are directly produced in the

range [0,10] and therefore do not need to be normalized.

A final fusion module combines the normalized scores of

each individual block to generate the definitive multimodal

password strength value SMU LT I .

The four individual techniques that are fused into the final

unique multimodal measure (see Fig. 4), have been developed

to be highly flexible depending on a number of parameters

that should be fixed on a case by case basis during an initial

training phase. This way, the method meets the second of

the objectives set out for the work: adaptability. This feature

allows it to give more accurate strength estimations depending

on each application-specific scenario. Essentially this means

that the proposed metric can give different strength values to

the same password depending on the context (i.e., training

data). As pointed out in the introduction, this adaptability

is a very desirable characteristic of strength metrics, since

the guessability of one same password can vary significantly

depending on the context where it is used.

The different modules shown in Fig. 4 are described in

the following sections. For clarity, we introduce here some

basic mathematical notation that will be used in the following

sections: a generic password pwd will be noted as a chain

of L characters cl , that is, pwd =
(

c1, c2, . . . cl , cl+1, . . . cL
)

,

where the superindex l denotes the position of the character

in the password; the characters are selected from an alphabet

of size N .

V. STRENGTH MODULE 1: TRIVIAL PASSWORDS

Any efficient strength metric should be able to detect trivial

passwords that do not withstand the two basic attacks that

will be performed almost with all certainty at the beginning

of any password guessing session: attacks based on a list of

the most used passwords and brute-force attacks (see Sect. II).

Such passwords should be assigned a very low strength score

as essentially there is the guarantee that they will be broken.

The present strength module, composed of two submodules,

is designed to detect these very weak trivial passwords whose

final strength should be equal or close to 0.

As already mentioned in Sect. II, the classification between

trivial and non-trivial passwords is not deterministic, it will

depend on the application being considered. The two strength

modules described next have been conceived from a general

perspective so that, properly selecting their input parameters,

they can adapt to different frameworks and applications.

A. Strength Module 1A: Attack-Based

In order to detect extremely common passwords, the present

strength module 1A is introduced in the overall system. The

module is based on blacklisting, which has now been shown

in different works to be a highly valuable method against

password cracking attacks [31], [54]. The objective of this

metric is to detect the very simple, but very effective, attack

used by an adversary that seeks to gain access by just trying a

list of common passwords [34]–[36]. Such attack is specially

relevant in a scenario where intruders try to get illegal access

to an on-line application for which a very limited number of

attempts (i.e., guesses) per time unit is allowed. In this very

constrained situation in terms of access attempts, adversaries

will try to break the system by simply trying the known “worst

of the worst passwords” (i.e., most common passwords).

To increase the generality of the module, that is, to avoid

making it fully dependent on the selected list of passwords, any

test password with a Levenshtein distance [66] equal or lower

than 1, i.e., L D ≤ 1, to any password in the list, is considered

to be of very low strength. In essence, this means that any

test password with a difference of just one single-character

edit (i.e., insertion, deletion or substitution) with respect to a

password in the list is assumed to be a trivial password.

Accordingly, based on a password list List pwd (input para-

meter), the module takes a test password pwd and returns

a strength value SD depending on whether the password

complies with L D(List pwd , pwd) ≤ 1. As such, only two

strength values are possible: SD = 0 for any of the most

popular passwords or 1 character variations of them; and

SD = 10 for those that do not fall in the previous category.

No distinction is made among passwords that are robust to

the attack as they all receive the same high score (that may be

later lowered by the rest of the strength modules implemented

in the overall method).
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Fig. 4. General diagram of the proposed multimodal strength metric described in Sect. IV. For each module, the main parameters are specified in brackets.

The metric is highly dependent on the size of the list of

passwords considered. Such list is a design parameter that can

be changed or updated by the service provider in order to

reach a compromise between: security vs convenience. If a

very large list of banned passwords is included (e.g., in the

range of millions) the system will certainly be more secure

but the frustration of the users at the moment of selecting the

password will most likely also increase.

Different works have studied the impact of blacklists size

on the security of the system [8], [31], showing the advantages

of using significantly extensive lists. Against these recommen-

dations, for the novel multimodal strength metric, it is advised

the use of a quite restricted list since the present attack-based

module does not work on its own, but it is complemented by

other algorithms that can effectively detect weak word-based

passwords, as is in particular the case of the Markov Chain

with Adaptive Memory described in Sect. VI-A. This way, it

is recommended to use this module for the detection of “the

worst of the worst” passwords, while leaving other “not-so-

critic” cases to be ranked by the rest of the modules.

Module 1A parameters: Following the description given

above, the parameters of the password-based module that need

to be specified at the training phase of the overall method, are:

list of banned passwords.

B. Strength Module 1B: Heuristic-Based

This module takes as input a password and returns a strength

value SH based on its complexity. It is specifically designed

to detect those passwords that are brute-forceable (i.e., that

may be broken by means of a brute-force attack) in a given

scenario. As such, only two strength values are possible.

All passwords that are not complex enough and that, therefore,

would not resist a brute-force attack, are given the same very

low score SH = 0. On the other hand, all passwords that are

robust to brute-force are assigned the same very high score

SH = 10 (that may be later lowered by the rest of the strength

modules implemented in the overall method).

As already mentioned in Sect. III, a standard brute-force

attack consists of trying all possible character combinations

(i.e., passwords) within a given search space until the targeted

password is retrieved.

Nowadays it is accepted that, given the current state of

development of computing technology, passwords below a

certain complexity (i.e., in terms of length L and number of

symbols N in the alphabet used) can be broken by means of

the brute-force strategy described above (i.e., exhaustive search

in the password space). The size of such password space is

defined by the password complexity, and is equal to N L .

The challenge in this case is to define what a brute-forceable

password is for each different application/scenario. That is,

what is the minimum complexity in terms of N and L that a

password must present not to be found by means of a brute-

force attack given some application-specific implementation

constraints.

It should be noticed that the number of alphabet symbols

N defining the search space is defined by the password being

evaluated itself. For example, in the case of a password with

only lower-case letters N = 26, while in the case of a

password with lower-case and upper-case letters N = 52. This

way, the complexity parameter to be determined on a case by

case basis is the minimum length Lmin that passwords should

have in order to withstand an exhaustive search given that

specific N . This minimum length depends on two factors:

• Maximum number of guesses per second NoGmax .

This value may be computed as NoGmax =

min[NoG
app
max , NoGtech

max ], that is, the minimum between:

(i ) NoG
app
max , the maximum number of guesses per

second allowed by the application being attacked, which

depends, among others, on the type of encryption

strategy and oracle being used. Therefore, this is a
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design parameter which can be defined by the service

provider. (i i ) NoGtech
max , maximum number of guesses

allowed by the technology used for the attack, which

depends for instance on the computation capacity of the

hardware platform at the disposal of the attacker (e.g.,

CPU, FPGA, GPU).

In the case of remote authentication services, as it is

not possible to know what technology will be used to

carry out a brute-force attack, a valid assumption is

that it will be powerful and fast enough to perform

all the guesses per second allowed by the service, that

is, NoG
app
max < NoGtech

max . In this common scenario, the

equality NoGmax = NoG
app
max will hold.

• Maximum time Tmax allowed to run a brute-force attack.

This is a design value to be determined by the service

provider depending on the security level that he wants to

offer. A higher Tmax value will imply a higher security

for the selected passwords.

As a concrete example, in the case of systems that include

a policy defining a password renewal period, a sensible

strategy to select Tmax would be to set it to the password

expiration time. That is, if users of a company’s intranet

must change their password every three months, Tmax

would be set to this same value. This way, the system

designer ensures that the average time required by an

eventual brute-force attack to break a given password

is longer than the validity period of that password, and

therefore the application is robust to that threat.

Given the three parameters defined above, N , NoGmax

and Tmax , selected by the system designer, it holds that:

NoGmax × Tmax = N Lmin . Therefore, the minimum length

Lmin of non brute-forceable passwords can be estimated as:

Lmin =
log (NoGmax × Tmax)

log (N)
. (1)

This is the minimum length required so that passwords gen-

erated from an alphabet of N symbols are not systematically

broken by a brute-force attack running for Tmax time with a

NoGmax computational power.

It can be assumed that, under these parameters, the probabil-

ity that passwords shorter than Lmin are guessed is equal to 1,

whereas the probability that longer passwords are broken by

means of a brute-force attack is very close to 0 (there is always

a non-zero probability that a password is guessed by pure

chance). As a consequence, the proposed strength metric will

assign the minimum strength value SH = 0 to all passwords

shorter than Lmin , and the highest strength value SH = 10 to

all longer passwords, independently of the password selected.

Module 1B parameters: Following the description given

above, the parameter of the heuristics-based module that need

to be specified at the training stage of the overall method,

is: Lmin .

VI. STRENGTH MODULE 2: NON-TRIVIAL PASSWORDS

This strength module is designed to cope with passwords

that have been assigned the highest score value by the previous

modules 1A and 1B, i.e., non-trivial passwords that are robust

to attacks based on lists of common passwords and to brute-

force attacks.

As introduced in Sect. II, it is not possible to foresee all

the specific attacks that will be performed to break these non-

trivial passwords, therefore, as argued in Sect. III, the most

sensible approach to assign them a strength value is to estimate

the likelihood that a person would choose them, since there

are already attacks that model this human behaviour [19], [48].

For this purpose, two novel probabilistic methods inspired

in human password-selecting behaviour have been developed:

1) the Markov Chain with adaptive memory AM (described in

Sect. VI-A); and 2) the Markov Chain based on hierarchical

chains (described in Sect. VI-B).

Both methods are modified versions of the original Markov

model concept [49]. Apart from many other problems related

to machine learning and pattern recognition such as speech

recognition [16], Markov models have been extensively used

for language modeling [61], [67], [68], which is a field of

research tightly related to password representation.

If the reader is not fully familiar with Markov Chains

and other related concepts such as smoothing, it is highly

recommended to go over some general work in the topic

like [16], [49], [69] before moving to the description of

the two novel methods. As an introduction to how Markov

models can be applied to the representation of passwords,

it is also important to get acquainted with the two simple

models that were introduced in [19] and further analyzed

in [62]: the discrete time Simple Markov Chain and the

discrete time Layered Markov Chain. We believe that this

initial introductory readings can help to better understand the

more complex models developed in the work and presented in

Sects. VI-A and VI-B.

Essentially, the objective of all the statistical models pre-

sented hereinafter is to assign a probability of occurrence pocl

to each character cl that composes a given password, so that,

in the end, the probability of occurrence popwd of the whole

password pwd =
(

c1, c2, c3, . . . cL
)

may be computed as the

product of the probability of occurrence of all characters, i.e.,

popwd =
∏L

l=1 pocl .

A. Module 2A: Adaptive Memory Markov Chain

This module takes as input a password and returns a strength

value SAM based on a novel statistical model named Markov

Chain with adaptive memory. It is specifically designed to

detect local patterns in passwords derived from the use of

known words.

As passwords are heavily influenced by language [44], we

know that the transition probability to move from current

state ‘c’ to next state ‘a’ is much higher if the sequence of

precedent states was (R, e, b, e, c, c), than if the sequence

of precedent states was (A, d, v, a, n, c), where the highest

transition probability would be from the state ‘c’ to the state

‘e’. This argumentation shows the need to consider statisti-

cal models with memory for the representation of human-

selected passwords, such as AM-th order Markov Chain, a.k.a.

AM-gram model [68], [70], that takes into account the AM

previous characters. Such approach is extensively used in

the field of computational linguistics, and already consid-
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ered with some success for password strength estimation

in [17].

Although this basic approach addresses many of the

shortcomings of the Simple and Layered Markov Chains

(see [62]), it introduces a new key issue in the representation

of passwords: what would be the optimal memory size? The

biggest memory possible could be a good choice, however, this

would entail a huge model impossible to be properly trained

with a finite (but very large) amount of data. Accordingly,

the transition matrix would be highly sparse and its statistical

significance very low. In addition, if the memory size is too

big, the model would become equivalent to simply checking if

the test password is in the training set of passwords. Therefore,

it would cause the almost total loss of generality of the model,

which would be unable to correctly evaluate passwords not

present in the training set.

To address such lack of generality, we define a new

approach using an adaptive memory size. In essence,

the model considers as the current state of the Markov

Chain the largest possible sub-sequence of AM characters

(AM-gram) for which a transition to the following character

exists in the transition matrix. If there is no such transition,

the size of the memory is reduced by one character until a

non-null transition is found. In those cases, a “bonus” is given

to the evaluated password as we assume that a password that

contains a sequence of AM characters previously observed in

the training set is probably weaker than a password for which

only a sequence of AM − 1 characters has been observed.

Accordingly, a reduction in the memory should entail a

decrease in the probability of occurrence of the password

which is achieved through this bonus.

The model is formally defined by S states, where

S = (N + 3)AMmax and by the conditional transition prob-

abilities ptαiα j , where (i, j) ∈ {0, . . . , S − 1}2. Each state is

a tuple of AMmax characters c taken from the set of N + 3

characters, that are the N characters from the alphabet plus

three artificial characters: an initialization character c0, an

undefined character cu , and an end of password character

ce. A state is denoted αi = (c1
i , c2

i , . . . , c
AMmax

i ), for i ∈

{0, . . . , S − 1}, and by convention α0 = (c0, . . . , c0). The

transition probabilities from one state to another have the two

following properties:

1) The sum of the transition probabilities from a state αi ,

for any i ∈ {0, . . . , S − 1} to any other state in the

chain (including himself) must be equal to 1, that is
∑S−1

j=0 ptαiα j = 1;

2) The transition probability from one state

αi = (c1
i , c2

i , . . . , cAM
i ) to another state

α j = (c1
j , c2

j , . . . , cAM
j ) can be greater than 0 only if

(c2
i , . . . , cAM

i ) = (c1
j , . . . , cAM−1

j ). This represents the

transition probability from a sequence of AM characters

to a single character.

To evaluate the score SAM of a password in the adaptive

memory Markov chain model, all the transition probabilities of

the sequence of states composing the password are evaluated,

starting from the initial state α0 to the last one containing

the end of password character ce. When a transition from

Algorithm 1 Scoring Algorithm of the Adaptive Markov

Chain Model

Input: The password to evaluate pwd = (c1, c2, . . . , cL)

Result: The score SAM (pwd) of pwd

/* (c∗)
(k) is a sequence of k times c∗ */

popwd = 1; α(0) = (c0)
(AMmax );

for l = 0 to L do

if l = L then α(l+1) = α(l)[1 :]||ce else

α(l+1) = α(l)[1 :]||cl+1 no_transition = True; i=0;

while no_transition do

if ptα(l)α(l+1) ! = 0 then

no_transition = False;

popwd = popwd · ptα(l)α(l+1);

else

i=i+1;

popwd = CrCoef · popwd ;

α(l) = (cu)(i)||α(l)[i :];

end

end

SAM (pwd) = −10 log10(popwd);

one state to another is equal to zero, the first character of

the considered state is replaced by the undefined character

cu , virtually reducing the size of the memory. The score of

the password is multiplied by a correction coefficient CrCoef ,

with CrCoef < 1, corresponding to the bonus attributed to

the password strength value previously mentioned. CrCoef is

defined as the ratio between: the minimum non-zero prob-

ability of moving from the given sequence of characters of

size AM to any individual character; and the maximum non-

zero probability of moving from the sequence of characters of

size AM − 1 (after the memory reduction) to any individual

character. This process is repeated until a transition is found

or eventually the length of the sequence is reduced to a single

character, which is equivalent to the Simple Markov Chain.

The final score SAM attributed to a password is equal to

SAM = −10 log10(popwd) and is computed as described in

Algorithm 1.

Although the Adaptive Memory Model addresses the main

limitation of the model with fixed memory, the issue of

determining the maximum memory size AMmax still remains.

There is not a unique optimal value that may be computed

in a deterministic way. Rather, its estimation should be done

heuristically on a case by case basis. To do so it should be

noticed that, essentially, the transition matrix T is equivalent

to an exhaustive combination table in a search space defined

by AMmax and N (i.e., all possible AMmax character com-

binations taken from a pool of N characters are reflected in

the matrix). As the training data is limited, the larger AMmax :

1) the more zeros will populate the table; and 2) the fewer

number of observations that will be used to compute the

probability of non-zero occurrence sequences. In summary,

for a finite and limited set of training data, the larger

AMmax , the lower the statistical reliability of the very sparse

matrix T.
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Therefore, two linked factors should be taken into account

in order to select AMmax :

• Size of the training set: as a general rule, larger training

sets will allow reliably training models defined by larger

values of AMmax .

• Size of T: the larger AMmax , the bigger the transition

matrix T, eventually requiring a very large storing capac-

ity and also slowing down the strength estimation process.

This issue can be partially mitigated in practice using a

sparse matrix as, for long AM sequences, most transition

probabilities are equal to zero.

Smoothing: Smoothing is only performed on the elements

of the transition matrix corresponding to the Simple Markov

Chain, that is, from a state containing one character of the

alphabet to another single character. The additive smoothing

algorithm first introduced in [71] is applied.

Transitions from states containing two or more characters

of the alphabet are not smoothed as the memory reduction

strategy followed by the model can be considered, in itself,

a smoothing technique: transitions from shorter sequences are

represented by smaller transition matrices that, as such, can

be more accurately estimated on the same amount of training

data (which is the ultimate goal of smoothing).

The discussion above is inspired by the Jelinek-Mercer

smoothing that exploits, in the field of language model-

ing, a very similar principle to the one used here [72]:

in general, it is useful to combine higher-order AM-gram

models (i.e., Markov Models with fixed memory AM) with

lower-order AM-gram models, because when there is insuf-

ficient data to estimate a probability in the higher-order

model, the lower-order model can often provide useful

information.

Advantages and Limitations of the Adaptive Memory

Markov Chain: The Adaptive Memory Markov Chain presents

two clear advantages: 1) on the one hand, being a memory

model, it represents passwords in a more realistic way, where

each character does not depend solely on the previous one.

This way, it is and efficient model to detect dictionary-like

passwords that, in general, are quite weak. 2) On the other

hand, thanks to its adaptive memory, it does not lose generality

with respect to the original Simple Markov Chain.

In spite of its strengths, the Adaptive Memory Markov

Chain still has some limitations: 1) The model does not

exploit sufficiently the overall structure of passwords. That

is, characters in passwords are not placed randomly, rather,

they present certain general patterns according to their

class [11], [54] (i.e., letters, digits or special characters). 2) The

size of the model can already become an issue for relatively

small values of AMmax .

Module 2A parameters: Following the description given

above, the parameters of the Adaptive Memory Markov Chain

module that need to be specified during the training of the

method are: AMmax and the transition matrix T.

B. Module 2B: Hierarchical Markov Chain

This module takes as input a password and returns a

strength value SN based on a novel statistical model named

Hierarchical Markov Chain. It is specifically designed to detect

the global structure of human-selected passwords.

The previous section has shown that, although the model

with adaptive memory has clear advantages with respect to

previous probabilistic-based methods such as the ones pro-

posed in [17], [19], [62], it still presents some limitations.

As an attempt to address the previous issues, a new Markov

Chain based on a hierarchical architecture is presented. Up to

this point, all models have considered characters as the only

constituent units of passwords. As such, their main focus has

been the estimation of the individual characters probability of

occurrence in order to, based on those individual probabilities,

infer the likelihood of the complete password.

Only the Adaptive Memory model has considered forming

elements in passwords larger than unique characters (i.e.,

sequences of characters). However, this constitutes a quite

basic first step, as it takes into account specific character com-

binations and not a whole character class. That is, it computes

the probability of occurrence of, for instance, the specific sub-

sequence “vid”, but it does not consider the probability of

occurrence of the general class “any combination of 3 lower-

case letters”.

The Hierarchical Markov Chain is based on the hypothesis

that: the characters of human-selected passwords are not

grouped randomly. Instead, they join following certain rules

to form larger structures that confer passwords recognizable

patterns. The more a password is aligned with these overall

rules, the more likely that it will be selected by a human

and, therefore, the weaker it is. This same hypothesis is

the basis of the Probabilistic Context-Free Grammar (PCFG)

approach initially used for password cracking described

in [48].

The previous assumption implies that, although the funda-

mental password units are the characters, these group together

in higher-order elements that, in turn, group together to form

the password. In this frame, the Hierarchical Markov Chain

is a tree-like model that first estimates the probability of

occurrence of the higher-order structures within the password

and then, in a subsequent step, estimates the probability of

occurrence of characters within each structure. As such, the

states of the higher order Markov Chain are defined by another

(nested) Markov Chain.

In particular, the higher-order elements considered in the

model are the next SS subsequences divided in three classes:

• Letter-class: formed by letter subsequences of sizes 1 to

lcmax .

• Digit-class: formed by digit subsequences of sizes 1 to

dcmax .

• Special characters-class: formed by special character sub-

sequences of size 1 to scmax .

In this model a generic password is formed by a sequence

of P higher-order elements taken from the SS subsequences

belonging to the three classes defined above, that is pwd =
(

ss1, ss2, . . . ss p, . . . ss P
)

. In turn, each of those higher-

order elements is formed by R p characters, that is ss p =
(

cp,1, c p,2, . . . c p,r , . . . c p,R p)

, where c p,r represents the r -th

character of the p-th subsequence.



2840 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 12, DECEMBER 2017

The probability of occurrence of higher-order structures

is defined as poss p , while the probability of occurrence of

characters within each higher-order structure is defined as

pocp,r . This way, the probability of occurrence of a generic

password pwd =
(

ss1, ss2, . . . ss p, . . . ss P
)

can be computed

as:

popwd =

P
∏

p=1

[

poss p

(

R
∏

r=1

pocp,r

)]

. (2)

As in the case of the Adaptive Memory model, the final

strength metric SN assigned to the password is finally com-

puted as SN (pwd) = −10 log10(popwd), so that the less likely

the password is according to the model, the stronger it is

according to the metric.

The probability of occurrence of higher-order structures

pos p is computed according to the Layered Markov Chain

described in [62], where each state is assigned one of the

SS higher-order subsequences. Any transition to/from a sub-

sequence longer than lcmax , dcmax or scmax , is assigned a

probability equal to the same transition to/from the longest

subsequence of its class divided by 10.

Then, each higher-order structure is modeled with a differ-

ent Simple Markov Chain (see [62]) that outputs the probabil-

ity of occurrence pocp,r of the characters within each particular

subsequence. Each state of the simple chain is assigned one

of the N valid characters for the generation of subsequences

of that specific class, that is: N = 52 ASCII capital and

lower-case letters for the letter-class, N = 10 ASCII digits for

the digit-class, N = 32 ASCII visible special characters for

the special character-class. Subsequences longer than lcmax ,

dcmax or scmax , are represented by the Simple Markov Chain

corresponding to the longest subsequence of its class.

As a simple example, according to the Hierarchical Markov

Chain, password “Pet52!” is formed by SS = 3 higher order

elements: ss1 = Pet, ss2 = 52 and ss3 = !. The occurrence

probability of this password would be:

• The probability that a password formed by 3 higher-order

elements starts with a subsequence of 3 letters, multiplied

by the probability that the first letter of a 3-letter sub-

sequence is “P”, multiplied by the probability that in a

3-letter subsequence “P” is followed by “e”, multiplied

by the probability that in a 3-letter subsequence “e” is

followed by “t”, multiplied by the probability that

• in a password with 3 higher-order elements a 3-letter

subsequence is followed by a 2-digit subsequence in the

second position, multiplied by the probability that the first

digit of a 2-digit subsequence is “5”, multiplied by the

probability that in a 2-digit subsequence “5” is followed

by “2”, multiplied by the probability that

• in a password with 3 higher-order elements a 2-digit

subsequence is followed by a 1-special character subse-

quence in the third position, multiplied by the probability

that the first special character of a 1-special character

subsequence is “!”.

Smoothing: The smoothing technique used for all transition

matrices involved in the model is the additive smoothing

introduced in [71].

Advantages and Limitations of the Hierarchical Markov

Chain: Given the definition above, the Hierarchical Markov

Chain presents some noticeable advantages as it is able to

model: 1) the general structure of passwords, like for instance,

the order in which the considered character subsequences

appear (e.g., digits are usually placed at the end); 2) the

likelihood that characters of the same class (i.e., letters, digits,

special characters) are grouped together; 3) what characters

and transitions within each higher-order subsequence are more

probable to happen.

In addition, the Hierarchical Markov Chain: 4) is a quite

general model capable of representing a very large range of the

password space (and not just the one containing the train set);

5) the model is still relatively compact and can be accurately

trained with a reasonable amount of data.

In spite of the previous strengths, the Hierarchical Markov

Chain is a model without memory, and therefore, it does not

detect the occurrence of specific local character sequences

(usually word related), that, as explained in the Adaptive

Memory model, are common in weak passwords vulnerable

to simple dictionary attacks.

Module 2B parameters: Following the description given

above, the parameters of the Hierarchical Markov Chain

module that need to be specified as part of the training phase of

the overall method are: lcmax , dcmax , scmax , parameter Pmax

(from the Layered Markov Chain), Pmax(1 + Pmax )/2 transi-

tion matrices Tp corresponding to the Layered Markov Chain,

SS transition matrices T corresponding to the Simple Markov

Chains modeling each of the considered subsequences.

VII. NORMALIZATION AND FUSION MODULES

The final objective of the normalization and fusion modules

is to combine the scores provided by the four individual

strength estimation algorithms into the final multimodal score.

One of the lessons learned in the field of information fusion

is the “complementarity principle”, that is, the combination

of complementary systems measuring different properties of

the same problem tends to provide a large performance gain.

In this regard, given the descriptions of the Adaptive Memory

Markov Chain and the Hierarchical Markov Chain provided

in Sect. VI-A and Sect. VI-B, it may be concluded that

the two models are complementary, as they are designed to

capture different aspects of human selected passwords: the

Adaptive Memory Markov Chain can be considered as a

local model that searchers for specific word-related patterns,

while the Hierarchical Markov Chain may be understood as a

global model that accurately represents the general structure of

human passwords. The complementarity of the two proposed

probabilistic models is experimentally analyzed in Part II of

this series of two papers [18].

Therefore, following the information fusion “complementar-

ity principle”, it seems reasonable to assume that a multimodal

strength metric could largely benefit from the output of the two

models. To do so, the present fusion module uses a score-level

combination strategy which is explained in the following.

A general theoretical framework for merging the scores

obtained from multiple classifiers was presented in [73]. That

work describes different combination algorithms that have
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been later evaluated in diverse information fusion experimental

frameworks. One of the fusion approaches that has consistently

showed high performance in very different studies is the

weighted sum [74], which combines the scores sk from K

sources into one final score SMU LT I according to the linear

equation:

SMU LT I =

K
∑

k=1

wksk , (3)

where wk are the weights given to each of the scores, generally

complying with
∑K

k=1 wk = 1.

One of the challenges of fusion systems is that the scores

from the individual sources can be very heterogeneous.

For instance, they may not necessarily be on the same

numerical scale or may follow different statistical distributions.

Therefore, prior to combining them into a single multimodal

score, they need to be transformed into one common domain.

This is accomplished through a process known as score

normalization, which plays a critical part in the design of a

combination scheme for score level fusion.

Although many techniques can be used for score normaliza-

tion, the challenge lies in identifying a technique that is both

robust and efficient. Robustness refers to insensitivity to the

presence of outliers. Efficiency refers to the proximity of the

obtained estimate distribution to the optimal estimate when

the real distribution of the data is known. Several of the most

common normalization schemes were analyzed in [75], where

the tanh estimators, first introduced in [76], were identified

as one of the best strategies in terms of robustness-efficiency

tradeoff. According to this algorithm, the normalized score s̄k

in the range [0,10] is given by:

s̄k = 5[tanh(0.01(sk − µG H )/σG H ) + 1], (4)

where µG H and σG H are the mean and standard deviation

estimates, respectively, of the score distribution. These two

parameters, µG H and σG H , are computed on a training set of

scores as given by the Hampel estimators in [76].

Even though potentially any arbitrary range of values could

have been selected for the normalization, the choice of [0,10]

is motivated by two main factors: 1) On one hand, the ultimate

goal of a strength metric is to be used and interpreted by

humans, and humans are very familiar with ranks that go from

0 to 10. From our subjective perspective, it may be easier for a

regular user to understand that the strength of his password is

2/10 than 0.2/1. 2) On the other hand, selecting a range such

as [0,1], could erroneously lead to think that the strength value

given by the method is a probability, which is not correct. The

metric is based on probabilities, but it does not comply with

the mathematical properties required to be a probability.

Taking into consideration the discussion above, in the

current work, the tanh estimators are used to compute the

normalized strength scores of the Adaptive Memory model
¯SAM and the Hierarchical Markov Chain S̄N prior to their

combination using the weighted sum (please see Fig. 4). The

strength scores of the trivial password modules SH and SD ,

as defined in Sects. V-A and V-B, can only take the values 0

or 10 and therefore do not need to be normalized. The final

multimodal score is finally computed following equation 3 as:

SMU LT I = wT · (SH · SD) + wAM · ¯SAM + wN · S̄N . (5)

The three weights [wT , wAM , wN ] comply with wT +

wAM + wN = 1, and define the importance of each of the

individual scores in the final multimodal strength indicator.

Parameters of the Normalization and Fusion modules:

Following the description given above, the parameters of the

normalization and fusion modules that need to be specified

as part of the training phase of the overall method, are:

µG H and σG H for the normalization, and the three weights

[wT , wAM , wN ] for the fusion.

VIII. DISCUSSION: CONTRIBUTIONS WITH RESPECT

TO PREVIOUS APPROACHES

Given the significant amount of password strength met-

rics proposed in the literature (see Sect. III for a non-

comprehensive list), at least two different platforms have been

recently announced that integrate some of the most rele-

vant methods available: 1) “Password Analysis and Research

System - PARS” which also includes several cracking

algorithms [77]; 2) “Password multi-checker” which includes

several password checkers from eleven famous web-services

like Dropbox, Yahoo or Skype [78]. Undoubtedly these are

very relevant initiatives for the field of password security,

however, they do not propose new individual metrics, neither

they consider the combination of different metrics into a

single multimodal one. The contributions of those works are

more related to the generation of a common framework for

the performance evaluation of password strength algorithms.

To the best of our knowledge, the multimodal strength metric

proposed in the present article, based on the principle of

complementarity of single algorithms, is the first of its kind.

Nevertheless, the four individual modules that conform the

overall method do present similarities with previously pro-

posed techniques, in particular: 1) Modules focused on trivial

passwords: The attack-based and heuristic-based modules

(described in Sects. III-A and III-B) present very limited nov-

elty with respect to many of the works presented in the review

of the state of the art, in Sect. III-A and Sect. III-B, respec-

tively. 2) Modules focused on non-trivial passwords: The two

probabilistic-based methods do present notable novelty with

respect to previous related approaches mentioned in the review

of the state of the art in Sect. III-C. The contributions of each

of these particular algorithms are highlighted in the following

subsections.

A. Contributions: Markov Chain With Adaptive Memory

The most related work from the state of the art to the

Adaptive Memory Markov Chain is the one by Ma et al.

[15]. Inspired by Katz’s Language model [79], they have also

used Markov chains of variable orders in their comparative

study of probabilistic password models. In their approach, both

the previous sequence of characters and the ending character

are taken into consideration. The memory is not bound by

an upper limit but by the frequency of appearance of the

considered subsequence (i.e., AM-gram in our model). If it is
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lower than a predefined threshold then the memory is reduced

and the updated transition is considered. A smoothing function

is applied on the probability obtained so that the sum of the

probabilities for all subsequences of a given length remains

equal to one.

As detailed in their paper, the probability estimation is

significantly slower than all the other methods they present.

Although it is not specified in their article, this is probably due

to the impossibility to fully train a Markov model considering

any memory size, thus forcing to estimate the transition

probabilities while computing the strength metric. This makes

the model virtually unusable for real-time strength estimation.

In the case of the adaptive memory method described in the

present section, the maximum memory size AMmax is fixed

in order to define a transition matrix that can be accurately

estimated on the available training data. This way, there is

no need to compute transition probabilities at the time of

password evaluation and therefore can be used in real time.

The memory reduction strategy followed in our model also

decreases the sparseness of the data, allowing to train the

model on a dataset more than 100 times bigger than the one

considered in [15]. In summary, it may be stated that the

current approach is a feasible, practical implementation.2 of

the more theoretical model presented in [15]

B. Contributions: Hierarchical Markov Chain

The Hierarchical Markov Chain was inspired by the first

work in the field of probabilistic-based models that contem-

plated the existence of higher-order structures presented in [48]

and further developed in [63], always in the field os password

cracking. That pioneering study considered that passwords

are formed by character subsequences combined following

certain rules, as defined by Probabilistic Context-Free Gram-

mars (PCFG). In a way, the author defines a password-specific

grammar for human-selected passwords. Although certain

similarities exist between the two models, the hierarchical

MC goes beyond its predecessor trying to give an answer to

some of its limitations, by combining the high potential of

PCFG for modeling structured languages, with the power of

Markov Chains for building symbol strings following a certain

observation probability. The main differences between both

models are summarized in the following.

Regarding higher order structures, the model proposed

in [48] considers only the probability of appearance of fixed

subsequence-combinations. That is, if a password formed

by the exact subsequence combination “L7D3S2” was never

observed in the train set (where L7 is a subsequence

of 7 letters, D3 a subsequence of 3 digits and S2 a subsequence

of 2 special characters), it is impossible that it is produced by

the model.

The Hierarchical Markov Chain is more flexible and

not so training-data driven, as it does not represent spe-

cific subsequence-combinations, but transition probabilities

between subsequences. As such, it can estimate the proba-

bility of occurrence of the sequence “L7D3S2” even if it

2Part II of this series of papers is accompanied by the executable graphical
application JRC-PaStMe that integrates an implementation of this method.

never appeared in the train set. Let’s assume, for instance,

that the training set contained the sequences “L7D1S1”,

“L7D3L2” and “S1D3S2”. Then, the probability assigned

to sequence “L7D3S2” will be: the probability that ‘L7’

is the first subsequence of a password formed by 3 sub-

sequences, multiplied by the probability that ‘L7’ is fol-

lowed by ‘D3’ in a 3-subsequence password, multiplied

by the probability that ‘D3’ is followed by ’S2’ in a

3-subsequence password. Since none of those probabilities

is zero, the sequence “L7D3S2” is a possible output of the

Hierarchical Markov Chain even though not previously seen.

Regarding lower-order structures, the model proposed

in [48] represents only those specific character combinations

that appeared in the training set. That is, if the 7-letter sub-

sequence L7=‘mYpEtyy’ was never observed in the training

word dictionary, it will not be produced by the model (i.e., it

will be assigned a zero probability of occurrence).

Since the Hierarchical Markov Chain represents each sub-

sequence with a Simple Markov Chain, it is totally general

and is capable of modeling subsequences that never appeared

in the training set. Continuing with the previous example, it is

able to assign a probability of occurrence to L7=‘mYpEtyy’ as

long as the training set contains different 7-letter subsequences

where: ’m’ is the first letter, ’m’ is followed by ’Y’ (at any

position), ’Y’ is followed by ’p’ (at any position), etc.

In summary, although both models are based on the

existence of higher-order patterns, the proposed Hierarchical

Markov Chain is an evolution of the probabilistic PCFG model

as it presents a significantly higher generality, being able to

model password structures and character combinations not

observed in the training set.

IX. CONCLUSIONS

Traditional password strength metrics are becoming ineffi-

cient against the new generation of most advanced password

guessing attacks that are being used against real applications.

In this context, new and more reliable approaches for the

estimation of password robustness are required to protect

users against potential external threats as shown by the drastic

change of direction with respect to previous versions of NIST’s

latest draft of recommendation SP 800-63-3 [59].

Different works have shown the inefficiency of current

methodologies used by service providers to persuade users to

select stronger passwords. This includes traditional password

composition policies [54], [80], oriented only to avoid the

selection of trivial passwords vulnerable to brute-force attacks,

but that do not consider other type of common attacks such as

the ones using wordlists of common passwords. Furthermore,

some passwords that do not satisfy those imposed require-

ments can be highly secure, such as for instance a 20-character

password with just lower-case letters.

In this context, new and more effective password strength

metrics are required to support reasonable password policies

and to estimate password security more accurately. Following

this objective, the present work has described a novel multi-

modal and adaptable method for the estimation of password

strength. The main rationale behind the proposed approach is

to exploit the capabilities of different individual techniques
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and, through their fusion, achieve one unique multimodal

measure which overcomes many of the weaknesses of the

unimodal methods. We believe that such approach is, for

instance, largely aligned with the new philosophy in password

security drafted by NIST [59].

To achieve the goal of multimodality and adaptability,

two new probabilistic methods based on the popular Markov

Chains have been proposed to accurately estimate the strength

of non-trivial passwords: 1) the Markov Chain with adaptive

memory and 2) the Hierarchical Markov Chain. The two

models are complementary as they focus on capturing different

aspects of human selected passwords: the Adaptive Memory

Markov Chain can be considered as a local model that

searchers for specific word-related patterns, while the Hier-

archical Markov Chain may be understood as a global model

that accurately represents the general structure of passwords.

Taking advantage of the knowledge gained in the field of

machine-learning multimodal systems, the two previous sta-

tistical methods are fused with an attack based module (using

blacklisting) and an heuristic-based module, both specifically

designed to detect trivial passwords. The result is a single

multimodal strength score which condenses the information

extracted from each of the four individual models.

The new multimodal-adaptable method may be a valuable

tool both for service providers and end-users. On the one hand,

service providers can use it as a security control to enforce the

adoption of strong passwords, by integrating it in the password

selection procedure in such a way that users are not allowed to

choose weak passwords, or at least warned when they do so.

On the other hand, end-users will receive a real-time feedback

concerning the likelihood that their password would be broken

should there be an attack or a leakage.

In Part II of the present work [18], we describe the experi-

mental framework followed to validate the proposed approach,

where it is shown that the multimodal metric produces sen-

sible strength values fully correlated with the resistance of

passwords to attacks of increasing complexity.
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